Political Science 5052:
Mathematical Modeling for Political Science

Ryan T. Moore*
15 October 2013 at 14:04

Course Information

L32 Political Science 5052
Mathematical Modeling for Political Science
Tuesday and Thursday, 10.00-11.30pm
Seigle Hall, Room 104

Instructor Information

Ryan T. Moore, Ph.D.
Assistant Professor of Political Science
Office: 241 Seigle Hall
Telephone: 314.935.3461
Homepage: http://rtm.wustl.edu
Email: rtm (at) wustl (dot) edu
Office Hours: Monday, 9:30am-11:30am

Thomas Carroll
Office: 278 Seigle Hall
Email: tcarroll122 (at) wustl (dot) edu
Problem Sessions: Wednesday, 10-11am, Seigle 204
Office Hours: Tuesday and Thursday, 9-10am

Readings

Jeff Gill. *Essential Mathematics for Political and Social Research.* Cambridge U

*Department of Political Science, Washington University in St. Louis, 241 Seigle Hall, Campus Box 1063,
One Brookings Drive, St. Louis MO 63130. tel: 314.935.3461; fax: 801.922.7901; rtm (at) wustl (dot) edu;
Course Description

Is turning out to vote genetic? Do individual voters have stable, coherent preferences? Do protections for bureaucratic whistleblowers generate better public agency projects? What’s the relationship between parliamentary ministerial tenure and government tenure? Does religious extremism affect the choice of suicide terror attacks? Quantitative modeling and analysis techniques have been used by political scientists to address all of these questions recently (in fact, in the May 2008 issue of the American Political Science Review).

This course is designed to provide mathematical tools useful for the rest of the statistical methods sequence, as well as for other courses in formal theory or mathematical modeling. Throughout the course, the mathematical tools are motivated by applications to the general problem of how politics can be modeled for purposes of statistical analysis, deductive reasoning, or conceptual theorizing. This motivation is accomplished by means of a consistent focus on such processes as individual decision making, the representation of issues, statistical phenomena, and phenomena of change over time. The course assumes a sufficient background in elementary algebra, logic, functions, and graphs; remedial work in these areas will be offered through review work during the last week of summer. Mathematical topics covered include: sets and relations; probability; differential calculus and optimization; difference equations; and linear algebra.

By learning to solve problems covering the mathematical topics above, students will learn to represent political phenomena symbolically, to reason about social inquiry formally, and to test theories and hypotheses quantitatively. These core skills apply to future courses in methodology as well as substantive politics.

Requirements and Evaluation

Students are required to do the weekly reading, attend class, complete problem sets and exams, and participate in course discussions about the material. Using the course email to ask and answer questions is strongly encouraged, and will contribute to your participation evaluation.

The student’s final course assessment is based on ten (roughly) weekly problem sets (30%), two midterm exams (10% and 20%), the final exam (30%), and participation in asking and answering questions in course discussions (10%). Problem sets will be posted and submitted through the course website. Problem sets will be due at the beginning of lecture on the specified date, and will be scored 0 to 10. Your solution sets should be typeset and legible. We strongly encourage you to work together on the problem sets, but each keystroke of your solution set must be your own (cut-and-paste solutions are not acceptable). Exams will be posted and submitted through the course website. Textbooks, solution sets, and the like are acceptable exam resources. Other individuals, help lists, etc., are unacceptable exam resources. If you have a question during an exam, email me directly (rtm (at) wustl (dot) edu); if appropriate, I will anonymize your question and email a reply to the entire class. Exams will be available on Thursdays, and due on Tuesdays. Plan your calendar accordingly. No late work will be accepted.

We encourage you to use our office hours and email to discuss any specific exercises,
difficulties, or questions about the course.

No late work will be accepted. If you cannot submit an assignment on time, arrange to submit it early. I encourage you to use office hours to discuss any specific assignments, difficulties, or questions about the course.

Academic integrity is a core value of institutions of higher learning. It is your responsibility to avoid plagiarism, cheating, and dishonesty. If you haven’t done so recently, reread the University policy on academic integrity at http://www.wustl.edu/policies/undergraduate-academic-integrity.html.

Course Evaluation

The course evaluation will be available at http://evals.wustl.edu towards the end of the semester. Students who submit the evaluation will earn one percentage point toward the participation grade.

Calendar

Please note: Due to the need to cancel certain class meetings due to conferences, talks, etc., there are Friday “Make-up meetings” scheduled here. Expect that we will meet those days, and that later meetings to be determined will not be held.

I. Introduction

A) Introduction and Definitions

27 August

Introduction, Notation, Sets, Functions, Computing

29 August

(No class meeting, APSA meeting in Chicago)

3 September

Functions, Logs & Exponents
PS 0 due

Required reading.

Jeff Gill. Essential Mathematics for Political and Social Research. Cambridge U Press, New York, 2006. §1.2-1.6, 7.3
5 September
Binary Relations

10 September
Relations, Subrelations, Proof, Maximal Elements
PS 1 due

12 September
Preferences, Choice, Utility, Rationality

13 September
(Make-up meeting: 9-10:30am, Seigle 104)
Limits: Definitions, at Infinity, One-sided, Properties. Continuity
PS 2 due

17 September
Secants, Tangents, Derivatives

Required reading.


19 September
Derivatives: Properties, Chain Rule, Higher Orders
PS 3 due

Required reading.

Jeff Gill. *Essential Mathematics for Political and Social Research*. Cambridge U Press, New York, 2006. §5.4.1-5.4.2, 6.4
20 September

(Make-up meeting: 9-10:30am, Seigle 104)

24 September

L’Hospital’s Rule, Mean Value Theorem

Required reading.

Jeff Gill. *Essential Mathematics for Political and Social Research*. Cambridge U Press, New York, 2006. §5.4.3-5.4.4

26 September

Implicit, Logarithmic, Parametric, and Partial Differentiation

PS 4 due


30 September

(Make-up meeting: 9:30-10:30am, Village House 14)

1 October

Review and Discussion

PS 5 due

3 October

Area under Curves, Integration

Exam 1 out

8 October

Integration by Substitution, Integration by Parts

Exam 1 due
Required reading. (Though you may postpone until Exam ends.)


10 October

Multidimensional Integrals


15 October

Vectors

Required reading.


17 October

Matrix Algebra
PS 6 due

Required reading.


21 October

(Make-up meeting: 9:15-10:30am, Seigle 103)

22 October

Matrix Geometry

Required reading.

24 October

Eigen Structures. Vector Calculus.
PS 7 due

Required reading.


29 October

Unconstrained and Constrained Optimization
No class meeting.

Required reading.


31 October

Constrained Optimization
PS 8 due
No class meeting.
Please submit PS8 online and to Tommy’s office or mailbox by 10am.

5 November

Counting, Probability

Required reading.


7 November

Bayes Rule, Independence, Odds
PS 9 due

Required reading.

12 November
Review and Discussion

14 November
Random Variables. Discrete Distributions
Exam 2 out

Required reading.

19 November
Continuous Distributions
Exam 2 due

Required reading. (Though you may postpone until Exam ends.)

21 November
Central Tendency, Dispersion, Expectation, Variance

26 November
Equality and Inequality of Random Variables. Balance.
PS 10 due

28 November
No class. Thanksgiving Break.

3 December
Covariance, Correlation, Properties, Moments
5 December
Final topics
PS 11 due

12 December
Final Exam out, 10.00am.

17 December
Final Exam due, 11.30am.