L32-5082 John W Advanced Computational Modeling

John W. Patty and Elizabeth Maggie Penn Winter 2012

Syllabus

1 Introduction

This graduate-level course explores advanced theoretical and methodological topics in computational modeling of social phenomena. Computational modeling allows us to explore topics – including complexity, emergence, and dynamics – that are difficult to study using traditional analytic methods. In addition, computational techniques offer researchers and analysts a method for systematic and efficient exploration of theoretical models. The course will meet once a week for two hours. Students will be evaluated based on presentations, class participation, and a final paper in which they design and implement their own computational model of a social, political, or economic phenomenon of their choosing.

Course Software. The required software for the course is *Mathematica*, which is available in a standard student edition as well as more inexpensive year-long and semester-long editions at the Wolfram website.

Course Readings. There is no required text for the course: we will use various assigned readings, available on the course website. However, two useful books include:

- Miller, John H., and Scott E. Page. 2007. Complex Adaptive Systems: An Introduction to Computational Models of Social Life, Princeton, NJ: Princeton University Press.
- Schelling, Thomas. 2006. Micromotives and Macrobehavior. New York: W. W. Norton.

Contact Information.

Professor	John Patty	Elizabeth Maggie Penn
Web page	http://patty.wustl.edu	http://penn.wustl.edu
Email	jpatty@wustl.edu	penn@wustl.edu
Office	Seigle 291	Seigle 286
Office Hours	Mondays, 3-4pm.	Fridays, 10-11

Graded Components. Each student's grade for the course will be based on the following:

- 1. Midterm Presentation: 25%
- 2. Class Participation: 25%
- 3. Final paper: 50%

Final Course Grading. The final course grade is based on the following 10 point scale:

Score	Grade	Score	Grade	Score	Grade	Score	Grade
≥ 94	А	≥ 83	В	≥ 73	С	≥ 63	D
≥ 90	A-	≥ 80	B-	≥ 70	C-	≥ 60	D-
≥ 87	B+	≥ 77	C+	≥ 67	$\mathrm{D}+$	<60	F

L32-5082		Winter 2012
John W. Patty and Elizabeth Maggie Penn	Syllabus	2

Academic Honesty. We strongly encourage you to review Washington University's policies regarding academic honesty.¹ In general, if you have *any* questions, please feel free to ask us.

Midterm Student-Led Discussions. Each student is expected to present an overview of his or her research project and lead a discussion about the project halfway through the course. One week prior to these presentations, each student is expected to circulate 2 related papers, as well as a rough draft describing his or her own project. All students (and instructors) are expected to read these before the presentations so as to facilitate discussion.

Class Schedule					
Class	Date	Topic			
1	(1/23)	Introduction & Course Logistics			
2	(1/30)	Foundations of Computational Modeling			
3	(2/6)	Justifications for the Computational Point-of-view			
4	(2/13)	Self-Organization & Criticality			
5	(2/20)	Simulation as a Tool	Midterm Readings Due		
6	(2/27)	Midterm Student-Led Discussions			
7	(3/5))	Midterm Student-Led Discussions			
8	(3/19)	Heuristics and Approximations, I			
9	(3/26)	Heuristics and Approximations, II			
10	(4/2)	Networks, I			
11	(4/9)	Networks, II	Final Paper Due		
12	(4/16)	Final Student Presentations			
13	(4/23)	Final Student Presentations			

 $^{^{1}} http://www.wustl.edu/policies/undergraduate-academic-integrity.html.$

3

- Week 2: The Foundations of Computational Modeling
 - Page, Scott. 1999. "Computational models from A to Z." Complexity 5(1): 35-41.
 - Epstein, Joshua M. 1999. "Agent-Based Computational Models and Generative Social Science." Complexity 4(5): 41–60.
- Week 3: Justifications for the Computational Point-of-view
 - Procaccia, Ariel D. 2008. Computational Voting Theory: Of the Agents, By the Agents, For the Agents., Chapter 1.
 - Chevaleyre, et al. 2007. "A Short Introduction to Computational Social Choice."
- Week 4: Self-Organization & Criticality
 - Brunk, G.G. 2001. "Self-organized Criticality: A New Theory of Political Behaviour and Some of its Implications." British Journal of Political Science 31(2): 427–445.
 - Miller, John H., and Scott E. Page. 2007. Complex Adaptive Systems, Chapter 9.
- Week 5: Simulation as a Tool
 - Johnson, Paul E. 1999. "Simulation Modeling in Political Science." American Behavioral Scientist 42(10):1509-1530.
 - Axelrod, Robert. 2003. "Advancing the Art of Simulation in the Social Sciences." Japanese Journal for Management Information Systems 12(3).
- Week 8: Heuristics and Approximations, I
 - Haupt, Randy L., and Sue Ellen Haupt. 2004. Practical Genetic Algorithms, 2nd ed., Chapters 1–3.
 - Kollman, Ken and John H. Miller and Scott E. Page. 1997. "Political Institutions and Sorting in a Tiebout Model." The American Economic Review 87(5): 977–992.
- Week 9: Heuristics and Approximations, II
 - Luke, Sean. 2011. Essentials of Metaheuristics: A Set of Undergraduate Lecture *Notes*, working paper, Department of Computer Science, George Mason University, Chapter 6.
 - Bednar, Jenna, and Scott E. Page. 2007. "Can Game(s) Theory Explain Culture?" Rationality and Society 19(1): 65–97.
- Week 10: Networks, I
 - Siegel, David A. 2009. "Social Networks and Collective Action" American Journal of Political Science 53(1): 122–128.
 - Scholz, John T., and Cheng-Lung Wang. 2009. "Learning to Cooperate: Learning Networks and the Problem of Altruism." American Journal of Political Science 53(3): 572-587.
- Week 11: Networks, II
 - Carpenter, Daniel, David Lazer, and Kevin Esterling. 2003. "The Strength of Strong Ties: A Model of Contract Making in Policy Networks with Evidence from U.S. Health Policies." Rationality and Society 15(4): 411-440.
 - Lustig, Ian S., Dan Miodownik, and Roy J. Eidelson. 2004. "Secessionism in Multicultural Settings." American Political Science Review 98(2): 209–229.