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Abstract. In this paper, we present a characterization of social choice corre-
spondences which can be implemented in strong Nash equilibrium, stated in
terms of the power structure implicit in the social choice rule. We extend the
notion of an effectivity function to allow for simultaneous vetoing by several
coalitions. This leads to the concept of a domination structure as a generalized
effectivity function.

Using this concept and a solution known from the theory of effectivity
functions, the supernucleus, we give a characterization of strongly imple-
mentable social choice correspondences as supernucleus correspondence rela-
tive to an appropriate domination structure.

1 Introduction

Implementation theory is concerned with the construction of mechanisms or
game forms such that a particular behavior of individuals constrained by the
mechanism will result in outcomes prescribed by a given social choice function
or correspondence.

In this paper, we shall be interested in cooperative implementation, where
it is assumed that individuals cooperate in their strategy choices. Following
the tradition in this field, we consider strategy choices which are strong Nash

Paper presented at the conference “New Directions in the Theory of Markets and
Games, Toronto, October 1995. The authors stand in debt to a referee who pointed out
a flaw in our proof of the main result and suggested a correction which also consider-
ably improved the formulation of the result.
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equilibria: No coalition of agents can find a strategy array which will give a
better outcome for all its members given the choices of the agents outside the
coalition. Social choice correspondences which may be implemented in strong
Nash equilibrium are called strongly implementable.

A useful tool in the study of strong implementability is the effectivity
function, introduced by Moulin and Peleg [9], which describes the inherent
power structure of a social choice correspondence: For each coalition it
specifies subsets of alternatives such that the coalition by a suitable specifica-
tion of the members’ preferences can guarantee that output will be something
from this subset.

The information provided by the effectivity function is exactly what is
needed in order to determine whether a given social choice correspondence is
partially implemented in strong Nash equilibrium, that is whether there is a
strongly implementable social choice correspondence containing its values at
each preference profile. However, it does not carry enough information to
permit a full reconstruction of the social choice correspondence; several dif-
ferent social choice correspondences may have the same effectivity function.
In this paper, we propose a refinement called a domination structure. The
essential new feature of the domination structure as compared with the effec-
tivity function is that it describes also simultaneous effectivity, cases where
two or more non-disjoint coalitions may be simultaneously effective for par-
ticular subsets of alternatives.

This additional information provides a link between power structure
and social choice: We show that strongly implementable social choice corre-
spondences are characterized by their associated domination structures.

In the course of proving this result, we make use of a particular solution
concept for cooperative games, namely the supernucleus, introduced in
Fristrup and Keiding [3], cf. also Abdou and Keiding [1]. It turns out that
every social choice correspondence which is strongly consistent may be repre-
sented as a supernucleus correspondence.

The paper is organized as follows: We start with a short description of the
background and provide the necessary definitions in Sect. 2. In Sect. 3, we
introduce domination structures and some of their properties, and in Sect. 4,
we define the supernucleus with respect to domination structures. Section 5
contains the main result characterizing strongly implementable social choice
correspondences.

2 Definitions

In this section, we introduce the notational conventions and the basic concepts
to be used in the sequel. We are concerned with the standard situation of
social choice where a finite set of individuals have to make a common choice
from a finite set of alternatives. Individuals are endowed with preferences over
the set of alternatives, and society’s choice of alternative must be based on the
individual preferences.
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Let N be the set of individuals and A the set of alternatives, both assumed
to be finite and nonempty. The set of all subsets of N is denoted by P(N), and
2N = P(N)\{&} is the set of all the nonempty subsets of N; elements of 2V
are called coalitions. The set of all subsets of 4 is denoted by P(4), and we let
P?(A) = P(P(A)). Thus, P?>(A) consists of all families (including the empty
family) of subsets of 4.

By % we denote the set of all linear orders (complete, transitive, and
antisymmetric binary relations) on 4. Elements of % are written as R, Q, T,
etc., and for x,y € 4, x Ry means that x is at least as good as y (and actually
preferred to y if x # y) in the relation R. If B is a nonempty subset of 4 and
R € %, then (R|B) denotes the restriction of R to B, and max R is the unique
element x° in 4 such that x° Ry for all y € 4.

Let S €2V be a coalition. A map from S to .Z is called an S-profile and
written RS = (RY),.q, R'e . If S = N, then R is called a profile (without
explicit mention of the coalition). We identify the profile (RS, R¥\S) with RV
for any coalition S € 2”V. For nonempty subsets B and C of 4 and S € 2V we
write BRS C if xRy for all xe B, ye C, ie S. For simplicity, we write
xRSCif B={x}and BRSyif C = {y}.

A social choice correspondence is a map H: " — 24, We shall be
interested in social choice correspondences which are implementable in strong
Nash equilibrium. By this we understand that there is some mechanism for
decentralized choice so that when each individual chooses according to his
own self-interest, the final outcome will be as prescribed by the social choice
correspondence H. In order to state this formally, we need some more
concepts:

An n-person game form is an array G = (X',... 3" z), where for each
i, X' is a nonempty set of strategies for player i, and where 7: X"V =
Xl x ... x X" — Ais a surjective (outcome) function assigning to each array
oV = (a',...,0") of strategies an element n(c") of the set 4 of alternatives.
A game is defined as a pair (G, R"), where G is a game form and RY € £V is
a profile. For a game I = (G,R") we say that ¢ € 2V is a strong Nash
equilibrium if there is no coalition S € 2" and S-strategy t5 = (¢/),_¢ such
that

(5, M) RS n(aV), n(z5,a™M\S) # n(a™).

We say that the social choice correspondence H is implemented by the game
form G in strong Nash equilibrium, or strongly implemented by G, if for all
profiles R", the set of strong Nash equilibrium outcomes of the game (G, R")
coincides with H(R™). A social choice correspondence H is strongly imple-
mentable if there exists a game form G so that H is implemented by G.

If the social choice correspondence H : ¥~ — 24 is strongly implement-
able, then it satisfies the following condition called strong positive association:
For all RY, 0V e #" and xe 4, if xe H(RY) and {i|xR'y} = {i|x Q'y},
all y € A\{x}, then x € H(Q") (see e.g. Peleg [11], lemma 6.5.1).

A useful tool in the study of strongly implementable social choice corre-
spondences is its associated effectivity function. An effectivity function is a
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map E : P(N) — P%(A) (where E(S) is interpreted as the collection of subsets
B of A for which S is effective, i.e. S can restrict society’s choice to something
from B) satisfying the following four conditions: (i) VS € 2V, 4 € E(S), (ii)
VS e P(N), & ¢ E(S), (iii) VYBe 24, Be E(N), and (iv) VB € P(A4), B ¢ E(J).
An effectivity function E : P(N) — P?(A) is maximal if for all Be 24, S e 2V,
if B¢ E(S), then A\B e E(N\S) (if a coalition is not effective for B, then the
complement of S must be effective for the set of alternatives not in B), and E is
A-monotonic if for all B,B' €24 with B< B’ and all Se2V, Be E(S)
implies B’ € E(S).

Effectivity functions can be constructed from either game forms or social
choice correspondences. Let G = (X!,..., X" n) be a game form. Then the
a-associated effectivity function EC is given by

EC(S) = {Be21|36% vi"\5 : n(a5,7M\) € B}

for S €2V, and ES(Z) = . Similarly, if H: £ — 24 is a social choice
correspondence which is non-imposed in the sense that for each x € A, there is
RY € 2% such that H(R") = {x}, then the a-effectivity function associated
with H, E¥  is defined by

EJ'(S) = {Be P(4)|30° VRV : H(Q®, RYS) < B}

for S €2V, Ef() = . Other constructions than the one given here are
possible, but in the situations to be considered in this paper, where H is
strongly implemented by G, most of them coincide. For further material on
this, the reader is referred to e.g. Peleg [11], Moulin [8], Abdou and Keiding

[1].

We shall need the notion of the core: Let E : P(N) — P?(A) be an effec-
tivity function, and let RN € #% be a profile. We say that B € 24 dominates
x € A via S € 2" in the profile RV if B e E(S), x ¢ B, and B RS x. The core of
E w.r.t. the profile R", written as ¥(E, R"), is the set of alternatives x € 4
which are not dominated in the profile R". The effectivity function E is stable
if ¥(E, R") # & for all profiles RN € &V,

The fundamental result of Moulin and Peleg [9] links all the concepts
introduced above together: If H is strongly implementable by the game form
G, then

Ef —ES—E,

E is maximal and stable, and H(R") = 4(E, R") for all profiles R". Con-
versely, if E is a maximal and stable effectivity function, then %(E,-) is
strongly implementable, and

EYE) — E.

o

Thus, there is a canonical effectivity function associated with a strongly
implementable social choice correspondence, and conversely, if we are given a
maximal and stable effectivity function, then there is a particular strongly
implementable social choice correspondence, namely the core correspondence,
which has exactly this effectivity function associated with it.
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As it was shown by Holzman [4], there may be several strongly imple-
mentable social choice correspondences associated with the same effectivity
function. In order to be able to distinguish social choice correspondences with
the same associated effectivity function, we need further information about
the implicit power structure, and in the following section, we introduce a way
of formalizing this information.

3 Domination structures

In this section, we introduce the notion of domination structures. As before, N
is a set of individuals and A4 a set of alternatives. A domination structure & on
(N, A) is a nonempty set of domination patterns, where a domination pattern
is a finite (possibly empty) subset

D = {(Sy,x)|xe B}

of 2V x A4, with B a proper subset of 4. The domination structure is assumed
to satisfy the following two consistency conditions:

(i) {(N,x)|x e B} € Z for any proper subset B of 4,
(il) if De 2 and D' = D, then D' € Z.

A domination pattern may be interpreted as an agreement between coali-
tions on coordinated vetoing: The coalition S, can exclude x from being
chosen by society, and it might find this action worthwhile if it knows that S,
excludes y for y € B\{x}, so that the exclusion of x will not entail the choice
by society of any of those alternatives.

For D = {(Sy,x)|x € B} a domination pattern, the coalition supp(D) =
Uxe 5 Sx 1s called the support of D, and the set B is called the scope of D
and denoted sc(D). If D is the empty domination pattern, then it has empty
support and scope.

A domination structure & is superadditive if for each pair (D!, D?)
of domination patterns from % with supp(D')nsupp(D?) = & and
sc(D') nsc(D?) = &, we have that

D'uDeg.

9 is monotonic if for any D e %, (S,y) € D, and S’ € 2V with S = §’, the
domination pattern D’ = (D u {(S’,»)})\{(S,»)} belongs to Z.

If D is a domination pattern and S € 2" a coalition, then the restriction
of D to S, denoted (D|S), is the largest subset D’ of D such that the
supp(D’) = S. At a later stage, we shall need another operation on domina-
tion patterns: Let {Si,...,S,} be a partition of N, and for k =1,...,m, let
D* = {(S},y)|ye B*} € 7 be a domination pattern with supp(D¥) = S;.
Define

k@ DF = {(Sy,y) |ye kU Bk}
-1 et

=1
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m

where for each y € | J," |

S= U S5
k:y esc(Dk)
i.e. S, is the union of all sets S} with (S, y) e D* for some k. This family is
not necessarily a domination pattern from &; however, if & is superadditive
and monotonic, it does belong to 2.
If E: P(N) — P?(A) is an effectivity function which is 4-monotonic, then
E induces a family 2 of domination patterns

Dis,py = {(S,x) [ x € A\B}

for Be E(S), B # A. The family Zg clearly satisfies condition (i) for domi-
nation structures, and (ii) follows from A-monotonicity. We say that the
domination structure Z refines E if Y < 2. We shall be interested in domi-
nation structures refining a given effectivity function which is associated with
a strongly implementable social choice correspondence; such effectivity func-
tions are A-monotonic.

Just as it was the case with effectivity functions, domination structures arise
in a natural way from game forms or from social choice correspondences.

Lemma 1. Let G= (X',..., 2" ) be a game form, and let 2° be the set
of families {(S,,x)|x e B} for B < A, such that there is o € XV with the

property
n(o%, TV e A\ {x}

for any tN\Sx € ZN\S¥ Then 99 is a domination structure refining EC, and 9°
is monotonic and superadditive. Furthermore, if D = {(S¥ z)|z e B*},
k=1,...,m, belong to ¢ and have mutually disjoint supports, then there is
oV e 2N such that n(a5* V) € A\{z} for all TN\ € N\ each z e B
and k€ {1,...,m}.

Proof 2¢ is a domination structure: First of all we note that if
{(Sy,x) | x € B} belongs to 2, then B # A, since otherwise there would be
oV e TV with n(aV) # x for all x € 4, a contradiction.

Further, 2 satisfies (i) and (ii) for domination structures: (i) Choose
w € A\ B; by the surjectivity of 7, there is " € XV with n(¢") = w, and using
the definition of 2, we have trivially {(N,x)|x e B} € 2€. (ii) Let D e 2°
and let oV be a strategy array associated with D according to the definition.
Then any nonempty subset D’ of D belongs to 2 with the same associated
strategy array .

9 refines EC: For each (S, B) with Be E9(S), B # A4, if s € ¥ is such
that 7(a", N\S) e B for all VS e ZM\S then {(S,y)|y e A4\B} belongs to
2°.

Monotonicity of Z¢ is an easy consequence of its definition; for S, S’ € 2V
with S = S’ and any strategy array ¢ such that 7(¢, -) does not contain y in
its image, we have a fortiori that 7(¢%', -) never attains y.
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Superadditivity will follow immediately from the final statement of the
lemma, to which we turn: Suppose that D* = {(S¥,z) |z e B*}, k = 1 m,
belong to 2 and have disjoint supports then for each k there is ¢ in 2 N
such that 7(cS", tV\5) e A\{z} all tM\S*, for each z e B¥. Choose 2 strategy
array o" agreemg with ¢} on supp(Dk), k=1,...,m; then ¢" has the
desired property. O

The domination structure 2 is defined by the property that there is a
strategy array ¢V such that for each x, the coalition S, can avoid x no matter
what the complementary coalition chooses. Thus, it resembles the traditional
a-construction used in the definition of characteristic functions or effectivity
functions.

Our next step is to associate a domination structure with a social choice
correspondence. Let H : ¢ — 24 be a social choice correspondence, and let
7" be the family of all subsets of domination patterns D = {(S,,»)|y # x}
for which there is a profile RV € #* with x € H(RY) and S, = {i|xR'y}.
The family 2 may not be a domination structure (since (i) is not necessarily
fulfilled) for an arbitrary social choice correspondence H. However, in the
case where H is strongly implementable, we show below that 2 is indeed a
domination structure.

A domination structure & is called regular if for each D e &, there is
D' € 9 with D < D’ such that the scope of D contains exactly [4|—1
elements.

Theorem 1. Let H : ¥V — 24 be a social choice correspondence which is
strongly implemented by the game form G = (X',..., X" n). Then

9% = 9% =g,

and 9 is a regular domination structure satisfying monotonicity and
superadditivity.

Proof. Let D' € '; by definition, D’ may be extended to a domination
pattern D = {(S,,») |y # x} such that for some profile RN € ¥V xe H(RV)
and S, = {i| x R"y}, each y # x. Since H is strongly implemented by G, there
is a strategy array ¢ € 2V with n(¢") = x which is a strong Nash equilib-
rium in the game (G, R"Y). In particular, for each y # x the coalition N\S,
consisting of all individuals 7 with y R’ x cannot achieve y. But this means that
o has the property that for each y, n(6,-) does not contain y in its image,
thus D e 2. By property (ii) of domination structures, we conclude that
D' e 96,

Next, we show that 2 is regular. Let D = {(S,,x) | x € B} € 2° be arbi-
trary, and let ¥ € XV be such that

(oS, V) e A\ {x}

for all t¥\Sx e ZN\Sx x e B; further, let w = n(c"). Then the domination
pattern DU {(N,x)|x e A\[Bu {w}]} trivially belongs to 2, which there-
fore is regular.
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Now, let D' € 99; by regularity of 2, we may extend D’ to a domination
pattern of the form D = {(S,,y) |y # x} for some x € 4. Using the definition
of 9, we know that there is a strategy array o such that 7(¢") = x and
n(a%,-) does not contain y in its image, each y # x.

For each ie N, let A; = {y|ieS,,y # x}, and let RV € #" be a profile
such that 4\A4; R' x R’ A4; for each i € N. By our construction, ¢ is a strong
Nash equilibrium of (G, R"), and since G strongly implements H, we have
xe 1-2 (RM). But this means exactly that D, and consequently D', belongs
to 2.

Since 21 = 2¢, monotonicity and superadditivity follow from Lemma 1.

O

4 The supernucleus of a domination structure

In analogy with the classical approach to partial implementability, where the
implementable correspondences were characterized as core correspondences
with respect to the associated effectivity function, we now introduce a solution
concept for games defined by domination structures. However, we shall use
not the core but the supernucleus, a concept introduced for effectivity func-
tions by Fristrup and Keiding [3], where an alternative x belongs to the
supernucleus at a given profile R if there exists another (“‘associated”) profile
OV such that y is dominated at Q" via {i| x Ry}, each y # x.

In the extension of the supernucleus to domination structures, we have no
need for the associated profile but work directly with domination patterns: Let
RY e 2V, the supernucleus of Z at RV, denoted sNuc(Z, R"), is the set of
alternatives x for which there is a domination pattern D = {(S,,y) |y # x},
said to be associated with x at R", such that x RS y. The domination struc-
ture & is said to be supernucleus-stable if sNuc(Z, RV) # & for each profile
RN e V.

Intuitively, the supernucleus at RV is obtained by vetoing under a suitable
misrepresentation of preferences, so that each alternative is vetoed by a
coalition sincerely preferring the chosen alternative to the vetoed alternative.
In the context of domination structures, the associated domination pattern
represents a joint vetoing strategy rather than a profile, so that the interpre-
tation as misrepresentation is less direct.

The next lemma gives us a convenient property of a suitably chosen asso-
ciated profile:

Lemma 2. Let & be a domination structure satisfying monotonicity, and let
x € sNuc(Z, RY). Then there is a domination pattern D = {(S,,y)|y # x}
associated with x at R" such that

S, = {ilxR'y)
forall ye A and i € N. In particular, if 9 is regular and supernucleus-stable,
then

@SNUC(@,J —g.
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Proof. For xesNuc(Z,RY), choose a domination pattern D' =
{(S),») |y # x} associated with x at RY. Choose y # x arbitrarily; we have
S}’, < {i| xRy} by the definition of the supernucleus. By monotonicity, for
each y # x the domination pattern

(D" U {{i| xRy}, »)IN(S), )}

belongs to . Repeating the argument for each y # x we get that the domi-
nation pattern {({i|x Ry}, y)|y # x} is associated with x at RY.

From the first part of the lemma, we get that 2*N"(“+) = &. For the con-
verse inclusion, let D = {(S,,y) |y # x} € Z and choose a profile RY € £V
such that S, = {i|xR'y}, each y # x. Then x € sNuc(Z, R") trivially, and
De gsNuc(Q,<). 0

Lemma 3. Let H : £V — 24 be a social choice correspondence such that 2"
is a domination structure. Then H(R") < sNuc(2,R"N) for each profile
RN € &V in particular, 2" is supernucleus-stable. If H satisfies strong positive
association, then H(RY) = sNuc(2 R") for all RN ¢ £V

Proof. Let RY € #" be arbitrary, x e H(R"), and let D = {(S,,»)|y # x},
where S, = {i|xR'y}. Then D e 2", and x belongs to the supernucleus of
2* at RN with associated domination pattern D.

Suppose that H satisfies strong positive association, and let xe
sNuc(2#, RV). Then there is a domination pattern D = {(S,,») |y # x} € 2%
such that S, C {i| xR"y}, each y # x. From the definition of 2 we get that
there is 0V e % with S, = {i|xQ'y}, all y # x, and x e H(Q"). Using
strong positive association we conclude that x € H(RY). O

5 A characterization of strongly implementable social choice correspondences

We have seen in the previous section that a strongly implementable social
choice correspondence is a supernucleus correspondence. In order to apply
this in the characterization of strongly implementable correspondence, we
need a converse saying that the supernucleus correspondence of a domination
structure satisfying suitable conditions is indeed strongly implementable.

If 2 is a domination structure and D = {(S,, )|y € B} a domination
pattern (not necessarily belonging to ), then we denote by sNuc(Z, D) the
set of supernucleus elements obtained from profiles compatible with D, that is

sNuc(2, D)
={xeA\B|30" e £V : {i|xQ'y} = S,,y € B,x e sNuc(Z, 0")}.
If 2 is regular, then sNuc(2, D) is nonempty for each D e Z: D may be
extended to a domination pattern of the form {(S,,»)|y # x}, and
x € sNuc(Z, RY) for each RY with S, = {i|[ xRy}, y # x.

If an alternative z does not belong to sNuc(Z, D) for some D € &, then z
will not be chosen by the supernucleus correspondence at the profile OV even
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if z Q% y for each (Sy,») € D. Thus, the domination pattern D establishes an
indirect domination of the alternative z.

We shall need a property of domination structures assuring that indirect
domination translates to the existence of a suitable domination pattern in Z:
A domination structure & is said to satisfy property (P) if the following holds:
Let {Si,...,S,} be a partition of N, D', ..., D™ € & domination patterns, B
a subset of 4, and for each y € B, let S” be a subset of N. If for all y € B we
have that

y ¢ sNuc (@, é(DﬂSk\S}’))

k=1
then
{(N\S”,»)|ye B} e .

To see what property (P) is about, it might be helpful to consider a simple
case: Let the partition be {N} (the trivial one), and let D be a domination
pattern from 2. Suppose that z ¢ sNuc(Z, D) for some z not in the scope
of D. Let B=sc(D)u{z}, and choose sets S¥ = N\S, for yesc(D),
S = N\supp(D). Then y ¢ sNuc(Z, (D|N\S”)) since (S,,y) € (D|N\S?),
y€ B, and also z¢ sNuc(Z,(D|N\S?)). Property (P) now tells us that
(supp(D), z) may be added to the domination pattern D to give a new domi-
nation pattern belonging to &; the alternative z which was indirectly domi-
nated by D is actually dominated by an extension of D. Property (P) in its
general formulation covers also the case of several alternatives being indirectly
dominated and indeed gives exactly what we shall need later on.

Domination structures which are associated with strongly implementable
social choice correspondences have the property (P):

Lemma 4. Let H: ¥Y — 24 be strongly implementable. Then 2 has
property (P).

Proof. Let {Si,...,S,} be a partition of N, let D',..., D" e 2 and let
B < Aand S” = N, y € B, be such that

» ¢ sNuc (@’t éé(D"lSk\Sy))
k=1

for each y € B.

Let G=(2',...,2" ) be a game form implementing H. Since 2 is
monotonic and superadditive, the domination pattern (P, (D¥|Sy) as well as
each of the domination patterns (P, (D*|S;\S”) for y € B belong to Z*'. By
Theorem 1, 2 = 99, and using the last statement in Lemma 1 we get the
existence of a strategy array ¥ € XV such that n(rS:k ,-) does not attain z, for
each z with (S¥ z) e (D¥|Sk), k=1,...,m.

Choose y € B arbitrarily. Suppose that there were ¢V € XV with n(¢") = y
and such that (¢, -) takes values in 4\{z}, each (S-,z) e P, (D*|Sk\S”).
Let the profile RY € % be such that {i|yR'z} = S. for all such z and
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¥ RY x for all other alternatives x in A. Then oV is a strong equilibrium of
(G,R"); indeed, for ze B with (S.,z) e @, (D*|Sk\S”), the coalition
{i|zR"y} = N\S: cannot obtain z, and {i|xR'y} = & for all remaining
x€A, x#y. By strong implementability and Lemma 3, we get that
yeH (RN ) = sNuc(2, RY). However, this contradicts the fact that

y¢sNuc< 72", D (D*[SK\S?) )
=1

Thus, every oV such that n(c%,-) takes values in A\{z}, all z with
(S-,z) € @, (D¥[Sk\S*), has the property that #(¢™\5",-) never attains y.
Since 7V is such a strategy array, and y € B was chosen arbitrarily, we have
that {(N\S”,y) |y € B} belongs to 2% = 9%, so that 2 satisfies property
(P). O

Several of the properties considered previously follow from property (P):

Lemma 5. Let & be a domination structure which satisfies property (P).
Then sNuc(Z,D) # & for each D€ 2, and  is monotonic, regular, and
superadditive.

Proof. Assume that sNuc(Z,D) = for some D = {(S,x)|xe B} € Z;
consider the (trivial) partition {N} and the family {S¥|xe A}, where
= N\S, if x € B and S* = J otherwise. Then (D|N\S™¥) contains (Sy, x)
if xeB, so that x¢sNuc(Z,(D|N\S")), and for xe A\B we have
(D|N\S¥) = D and x ¢ sNuc(2 (D|N\S *)) by our assumption. By property
(P),
{(N\S*,x)|[xe A} e 2,

and we have exhibited a domination pattern from & with scope 4, a contra-
diction. We conclude that sNuc(Z, D) # & for each D € &.

To show monotonicity, let D= {(Sy,x)|xeB}e2, and choose
(Sy,y) €D and S’ €2V with S, = S’. Let {N} be the trivial partition of
N and define the sets S¥= N\S, for xe B\{y} and S = N\S’. Then
x ¢ sNuc(Z, (D|N\S¥)) follows from (S, x) € (D|N\S¥), all x € B. By prop-
erty (P), the domination pattern

{(N\S*,x)[xe B} = (DU {(S", ) H\{(S), »)}
belongs to 2.

For regularity, let D = {(S,,y)|ye B} e Z. Choose xesNuc(Z,D)
(which is nonempty according to the first part of the lemma); then there is a
profile RN € #* with x € sNuc(Z, RY) and {i|xR'y} = S, for each y € B.
Using the definition of the supernucleus we get that there is a domination
pattern D' = {(S},»)|y # x} € Z such that S =S, for each ye B. By
monotonicity,

{(Sy,»)|ye By U{(S},»)|y ¢ B,y #x}

is a domination pattern from 2; it extends D and its scope is 4\{x}.
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To show that Z satisfies superadditivity, let D', D?> € 2 be domination
patterns with disjoint supports and scopes. Denoting the latter by B!, B>, we
choose a partition {S', S} of N such that supp(D’) = S, i = 1,2, and for
each ze B= B' U B?, we let S = N\S.. Clearly,

z ¢ sNuc(2, (D'|S1\S?) @ (D?|S*\S7))

for ze B!, i=1,2, and by property (P), {(N\S?,z)|ze B} =D'uD?
belongs to Z. O

By now we have shown that if the social choice correspondence H is
strongly implementable, then 27 is supernucleus-stable (Lemma 3), mono-
notonic (Lemma 1), regular (Theorem 1), and satisfies property (P) (Lemma
4). As it can be seen from Lemma 5, property (P) has a key role, and this
impression is confirmed by the following result, which together with the pre-
vious results gives a full characterization of strongly implementable social
choice correspondences.

Theorem 2. Let & be a domination structure on (N, A) which is supernucleus-
stable and satisfies property (P). Then the social choice correspondence
sNuc(2,-) : #V — 24 is strongly implementable, and gNe?) = g,

Proof. Define the game form G = (X!,..., X" ) as follows: For each i, X'
consists of all triples (D', Q', 1), where D' is a domination pattern from 2,
Q' e Z is a preference relation, and 7 € N is a natural number. The outcome
function 7 sends strategy n-tuples

O'N _ ((Dl,Ql,ll),...,(Dn,Qn,tn))

to alternatives; the definition of 7 is as follows:
Let {(S1,...,Sn)} be the coarsest partition of N into disjoint subsets such
that for each k&

i,jeSy = ol =a] = D%,

(where ¢! denotes the first component of the strategy o', i e N), so that
members of Sy agree on the first component of their strategies; {S1,..., S} is
called the partition induced by ¢”, and

_ m
D = @D (D[S
k=1
is called the domination pattern induced by the strategy array oV, by Lemma
5, 9 is superadditive and monotonic, so that D € &, and sNuc(Z, D) # (.
Now define the outcome as

n(e™) = max(Q"|sNuc(Z, D)),

where i° is the smallest index i of an individual with #/ = max;cy t/.

We show that the supernucleus at any profile may occur as strong
Nash equilibrium outcome in the game defined by G: Let RY € ¥V be arbi-
trary; since & is supernucleus-stable, there is x e sNuc(Z,R") with an
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associated domination pattern D = {(S,,y) |y # x} € Z. Choosing strategies

= (D,R,1), i=1,...,n, we get that the partition of N induced by this
strategy array is {N}, the induced domination pattern D is D itself, and
sNuc(Z, D) = {x}. It follows that 7(¢") = x.

Suppose that y # x and that S is a coalition with y RS x. If S were to
obtain y, it must choose an S-strategy 75 with first component of 7/ different
from D for some je€ S, giving rise to a new induced domination pattern
D # D. However, the partition of N induced by (5, ¢V\5) contains a superset
S’ of N\S and since S, < N\S, we have that y ¢ sNuc(2, D), ie.
y # n(tS,aM\%). Thus, ¢V is a strong Nash equilibrium of (G, RY).

Next, we show that all strong Nash equilibrium outcomes are supernucleus
elements: Let RY € #" be an arbitrary profile and let 6" be a strong Nash
equilibrium of the game (G, RY) with outcome x = n(a?). Let {Sy,...,Sn}
be the partition of N induced by ¢V, and let DS',..., D5 be the correspond-
ing domination patterns. For each y € 4\{x}, let ¥ = {i|y R x}. If for some
y # x we have

yesNuc( P DS‘|Sk\Sy>

then S¥ would be able to deviate from ¢ so as to obtain y, in contradiction
to oV being a strong Nash equilibrium. It now follows by property (P) that
{(N\S”,y)|y # x} € 2, and therefore x € sNuc(Z, R"), as required. ]

In order to use the characterization result for checking whether a given
correspondence H is strongly implementable, one has first of all to check
whether it satisfies strong positive association. Next one has to exhibit its
domination structure 2% (checking that it is actually a domination structure),
and then see whether it is supernucleus-stable and satisfies property (P). The
first task is in principle a simple one, since 2%/ can be obtained in a rather
mechanical way from H; supernucleus-stability follows from Lemma 3 once it
is known that 27 is a domination structure. However, showing that property
(P) is fulfilled may not be quite straightforward in applications.

Comparing the present characterization of strongly consistent social choice
correspondences using the supernucleus with respect to a domination structure
with the characterization by Dutta and Sen [2], or with the recent version of it
given by Suh [12], we employ a somewhat simpler family of implementing
game forms, but otherwise the two approaches are related, as it might well be
expected. In the present approach, the check for strong consistency consists in
building the associated domination structure and checking it for particular
properties; compared with the Dutta-Sen conditions, which are concerned
with existence of certain auxiliary sets, our proposed procedure looks simpler.
However, it amounts essentially to giving a more explicit description of the
abstract auxiliary correspondences which play an important role in their
characterization. Consequently, the present approach may be considered as
complementing the work of Dutta and Sen rather than as an alternative to
their result.
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1 Introduction

In this paper we consider the social choice problem as presented by Chi-
chilnisky and Heal [13]. We refer to their work for the motivation and the
interpretation and to [8], [23] for further discussion.

The fundamental work of Chichilnisky and Heal has been developed
further by Baryshnikov in [3].

We are given a topological space P, the preference space, and the number
of individuals n. A social choice rule is a continuous function @ : P" — P for
which the following two properties are verified:

(a) For any permutation (my,...,m,) of (1,...,n) one has @(p,,...,p,) =

@(pmlv" o) pmn)'
(b) For any p € P one has &@(p,...,p) =p.

Condition (a) is called anonymity and condition (b) unanimity.

An element of P” is called a society’s profile.

Here we assume that P is given with its topology. We are not concerned
with what the elements of P are, normalized gradients, complete continuous
monotonic preorders or other classes of preorders, and we do not ask how
natural the topology of P is.

The problem is to find conditions on the topological space P from which
one can prove that social choice rules exist.

Solutions have been given by Le Breton and Uriarte [23], and Allen [1].

The main theorem of [13], Theorem 1 on page 82, is stated as follows:

Theorem 1 (Chichilnisky-Heal). A necessary and sufficient condition for the
existence of a social choice rule for each n > 2 is that the space of preferences P
be contractible.



228 C. D. Horvath

Let us recall in which context it is stated.

Y is the unit sphere in R”, V(Y) is the space of all C! vector fields on Y
and P is the space of all locally integrable elements of 7 (Y) which have norm
one.

To prove their theorem, Chichilnisky and Heal assume that P is a para-
finite CW-complex whose convex hull in V(Y), which they note k(P), is also
a parafinite CW-complex. Furthermore, in the proof itself they use the fact
that the pair (k(P), P) is a relative CW-complex. That is not so obvious. We
restate the theorem in the following form, which is what their proof shows:

Theorem 2 (Chichilnisky-Heal). Assume that the preference space P is a con-
nected parafinite CW-complex. Then a necessary and sufficient condition for the
existence of a social choice rule is that the preference space be contractible.

The original proof by Chichilnisky and Heal uses tools from algebraic
topology. We will prove that contractibility is a sufficient condition for any
CW-complex, in fact for a much larger class. We will also prove that for a
large subclass contractibility is a necessary condition. Furthermore, we will
see that on a zero dimensional metrizable and separable space there is always
a social choice rule. Once we notice that the class of spaces for which there is
for each n a social choice rule is closed under arbitrary products and under
continuous retractions, we see that such spaces are many and that they might
have little to do with contractible CW-complexes.

Showing that a given space admits a CW-structure might not be easy, and
even more so if one has to exhibit a parafinite CW-structure. There is there-
fore some motivation for extending the result to a larger class.

There is another limitation to the result given by Chichilnisky and Heal.
Parafinite CW-complexes are countable dimensional, they can be expressed
as a countable union of finite dimensional spaces, (a finite CW-complex of
dimension n can be embedded in R?"*! and by definition a parafinite CW-
complex is a countable union of finite CW-complexes, its skeletons), therefore,
the theorem can only be applied to such spaces. Furthermore a parafinite
finite dimensional CW-complex is compact.

Consequently, IR” is not a parafinite CW-complex.

In their paper they give as an example of a space for which there is a social
rule a Hilbert space or the unit sphere in a Hilbert space. It is known that in a
Banach space which is not finite dimentional the unit sphere is homeomorphic
to the whole space. The existence of a social rule follows from the existence of
the homeomorphism but it does not follow from their theorem since a Hilbert
space which is not finite dimensional is not countable dimensional and there-
fore it cannot admit a parafinite CW-stucture.

There is also a problem with their characterization of contractible spaces
of preferences. The result is right but their proof does not work. The crunch of
their argument is that a subspace X of a space X which is homeomorphic to a
deformation retract X, of X is also a deformation retract of X. This is
unfortunately false. We will provide a counterexample in the appendix.

There are other spaces which admit an obvious social rule without being
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countable dimensional, for example a convex subspace of a topological vector
space, the Hilbert cube [0, 1], or [0, 1]* where E is an arbitrary infinite set. In
this last case the existence of social choice rules is a consequence of the fact
that the space is the product of spaces on which there are social choice rules.
Also [0,1]™ does not have a CW-structure since a compact space with a CW-
structure has to be a finite CW-space and therefore be finite dimensional.

The existence of a social rule is limited neither to infinite dimensional
spaces nor to contractible spaces.

Consider the following two spaces: (a) the space of rational numbers with
the topology induced by the topology of the real line, (b) the space of irratio-
nal numbers with the topology induced by the topology of the real line.

Neither of these spaces is contractible, both are finite dimensional and
have nontrivial topologies and both admit social choice rules. In the first case
because the average of n rational numbers is again a rational number and in
the second case because the maximum value of n irrational numbers is again
an irrational number.

Social choice rules on a topological space were studied maybe for the first
time in 1935 by G. Auman. They are known in topology as topological means,
or n-means if n is fixed. Aumann proved, [2], that there is no topological mean
on the sphere, that any retract of a space with an n-mean also has an n-mean,
and that each connected component of a space with an n-mean is also a space
with an n-mean. The fundamental result on the homotopy and homology
groups of topological spaces for which there is a social rule was established by
B. Eckman in 1954 [15]. It is this result that was rediscovered by Chichilnisky
and Heal in their proof of the necessity of contractibility.

Theorem 3 (Eckman). (a) Let n be a fixed integer and let G be a group. Then,
there is a group homomorphism @ : G" — G which respects the conditions of
anonymity and unanimity if and only if G is an abelian group and the function
X — n.x is a group isomorphism. In this case there is only one such function:

X1+t X,

(X1, .0, %) p,

(b) Let n be a fixed integer and X a topological space for which there is
a social choice rule on X". Then, the first homotopy group of X is abelian, and
on all the homotopy and homology groups of X, multiplication by n is a group
isomorphism.

Corollary 1. If for each positive integer n there is for the topological space X a
social choice rule and if the homotopy groups of X are finitely generated then
they are all trivial. The same holds for the singular homology groups.

That can be proved as in Chichilnisky and Heal, or as in Eckman.

Eckman uses these results to show that a connected polyhedron admits for
each n, an n-mean, if and only if it is contractible.

He also shows that contractibility is not a necessary condition for the
existence of an n-mean for a given n.
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Let us recall that a contractible space has trivial homotopy groups, but
there are spaces which are not contractible and have trivial homotopy groups.

In this work we will generalize the theorem of Chichilnisky and Heal to a
very large class of topological spaces and we will also generalize the notion of
social rule that they consider.

Let us be more explicit on the second point. We view a social rule as a
continuous function @ : X" — X which is subject to certain constraints, for
exemple unanimity and anonymity.

Each permutation o of the first n positive integers gives rise to a continuous
function ¢, : X" — X" and the condition of anonymity simply says that
®(g,(x")) = &(x") for any such function; here x" denotes a typical element
of X",

More generally we could consider constraints given by a set of continuous
functions ¢g; : X" — X" iel. A function @ : X" — X would then fulfil the
constraints if for each index i € I one has @(g;(x")) = &(x").

If the set of functions {g;;i € I} is a finite group of homeomorphisms of X"
or if it is a compact group acting continuously on X” then the binary relation
R defined on X" by (x", y") € R if there exists i € I such that g;(x") = y" is an
equivalence relation with closed graph, such that for any closed subspace F of
X" the set

({R(x") : x" € F}

is closed, where R(x") is the equivalence class of x". An equivalence relation
on X" having the previous property will be called an upper semicontinuous
decomposition of the space X". One can also formulate that property as fol-
lows: for any x” € X" and any open set U < X" such that R(x") = U there
is an open set W such that x” € W and for any y" € W R(y") < U. Such a
relation could be of the following form: (x", y") € R if p;(x") = p;(y") for
each i € I, where p; : X" — Z; are continuous functions sending closed sets to
closed sets. As a matter of fact, it is not hard to see that any upper semi-
continuous decomposition is of this form.
Now we state the generalized social choice problem:

(a): we are given an integer n, the number of individuals, and a topological
space P, the space of preferences.

(b): we are given an upper semicontinuous decomposition D < P" x P"
such that for any x € P, D(x,...,x) = {(x,...,x)}. D is interpreted as a
family of constraints. Referring to the last property we will say that D is
Unanimous.

A continuous function @ : P" — P which is unanimous and such that for any
pair (x", y") € D one has @(x") = @(y") will be called a D-compatible social
rule.
The question is then the following: given a unanimous upper semi-
continuous decomposition D of P”", is there on P”" a D-compatible social rule?
This paper is organized as follows:
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(a) In Sect. 2 we introduce the class of topological spaces in which the
social choice problem can be treated with great generality. That class contains
arbitrary CW-complexes and also arbitrary metric spaces. Theorem 4 shows
that the existence of a social rule is, when the space is contractible, a matter of
what the space is like locally. But even in the absence of contractibility the
local structure of the space might be nice enough to allow for the existence of
partial social choice functions. Throughout that section, contractibility is
assumed and one could ask to what extent it is a necessary condition for
spaces of a given class. We know, for example, from Chichilnisky and Heal,
that is necessary in the class of parafinite CW-complexes. We show that the
necessity of contractibility can be extended to a larger class. Majority rules
are a special class of social choice rules. It turns out that the existence of a
continuous majority function on the preference space when the number of
individuals is three and when the space is path connected imposes very strong
topological properties. We show also that when the preference space is con-
tractible any two social choice functions can be continuously deformed one
into the other while at each stage of the deformation the function remains a
social choice function. The generalized social choice problem is treated in
this section only. We leave it to the reader to see how the results of the other
sections can be modified to deal with the generalized problem.

(b) In Sect. 3 we look at noncontractible spaces and at the existence of social
choice rules which pick out one of the individual choices as the social choice.

(c) The results of Sect. 4 are of a more tentative kind. We address there the
following points:

(i) How to extend the model to an infinite space of individuals?

(ii) Given that the space of individuals is finite but that their number can
be arbitrary, is there a way to derive from a single function a social choice
function @,, for each n?

(iii) Is it possible to introduce some dynamic in the model, that would take
into account the change in the number of individuals over different periods
and the change in their preferences?

2 Social choice rules on contractible topological spaces

The class of CW-complexes does not behave very well when it comes to basic
topological constructions. For example a product of CW-complexes does not
have to be a CW-complex or a subspace of a CW-complex does not have to be
a CW-complex.

We introduce next a class of topological spaces which is, in that respect,
much better behaved.

For the terms from general topology which are not defined here the book
of Engelking is a good reference, for the more technical results one should
look at the references.

All the topological spaces under consideration are at least Hausdorff. For
a given topological space X let I'(X') be the family of its closed subspaces, and
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let Q(X) be the family of its open subspaces.
The topological space X is stratifiable, see for example [5], if for each n € N
there is a function G, : I'(X) — 2(X) such that:

(i) if F; € F, then G,(F}) < G,(F).
(ii) F = ), clx Gu(F).

The definition will not be used, what will be of importance to us are the
basic properties of the class of stratifiable spaces listed below.

(S1): A metric space is stratifiable.

(S2): An arbitrary subspace of a stratifiable space is stratifiable.

(S3): The topological product of a countable familly of stratifiable spaces is
stratifiable.

(S4): If f: X — Y is a continuous surjective map sending closed sets to
closed sets and if X is stratifiable then Y is also stratifiable.

(S5): Any CW-complex is stratifiable.

(Se): A statifiable space is paracompact, and therefore normal.

All of these results can be found for example in [5] or in [26].

Let us now introduce some useful concepts from topology. Some more
information can be found in the appendix and in the papers of Borges, Cauty,
and Hanner listed in the bibliography, or in the book of Hu, the terminology
of which we follow.

A topological space X is an ANE(Stratifiable), (Absolute Neighbourhood
Extensor for the class of stratifiable spaces), if for any stratifiable space Y, any
closed subspace 4 of Y, and any continuous function g : 4 — X, there exists
a neighbourhood U of 4 in X and a continuous function f : U — X whose
restriction to A is g. If one can always take U = Y then the topological space
X is an AE(Stratifiable), (Absolute Extensor for the class of stratifiable spaces).

If in the preceding definitions we replace the word stratifiable by metriz-
able, we get the classes of ANE(Metrizable) and AE(Metrizable) spaces.

As examples of spaces which are ANE(Stratifiable) we have:

(1) Any CW complex.
(2) Any convex subset of a locally convex topological vector space.

The first proposition is due to Cauty [10] Corollary 2.4, and the second is
due to Borges [5] Theorem 4.3.

From these two examples one can get a lot more from the following
properties of the class of ANE(Stratifiable):

(P1) Any open subspace of an ANE(Stratifiable) is also an ANE(Stratifiable).

(Py) If each point of X has a neighborhood which is an ANE(Stratifiable)
then X is an ANE(Stratifiable).

(P3) Any finite product of ANE(Stratifiable) is an ANE(Stratifiable), and an
arbitrary product of AE(Stratifiable) is an AE(Stratifiable).

(P4) An ANE(Stratifiable) is an AE(Stratifiable) if and only if it is con-
tractible.
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Property (P») is a consequence of Theorem 19.2 in Hanner [19], and the
fact that stratifiable spaces are paracompact. Property (P4) follows from
Theorem 12.3 of the same paper and the fact that paracompact spaces are
normal.

The same properties hold for ANE(Metrizable).

A stratifiable space which is also an ANE(Stratifiable) will be called an
ANR(Stratifiable), (Absolute Neighbourhood Retract for the class of stratifiable
spaces).

A stratifiable space which is also an AE(Stratifiable) will be called an
AR(Stratifiable), (Absolute Retract for the class of stratifiable spaces).

A stratifiable space will be an AR(Stratifiable) if and only if it is a
contractible ANR(Stratifiable). Replacing stratifiable by metrizable we get
ANR(Metrizable), and AR(Metrizable) spaces.

When the class of spaces is not specified it is understood that one is refer-
ring to the class of metrizable spaces, ANR stands for ANR(Metrizable), and
AR stands for AR(Metrizable).

In [1], Allen showed that the space of complete preorders on IR”, which are
continuous and monotonic is, for the topology of closed convergence, a met-
rizable space homeomorphic to a convex subset of a locally convex topologi-
cal vector space, namely the space of continuous functions from IRY into IR
with the compact open topology. She also shows that the same holds for the
set of continuous preorders on IR’ which are locally nonsatiated.

Consequently the space of complete preorders on IR” which are continu-
ous and monotonic, or the space of continuous preorders on IR” which are
locally nonsatiated, are AR for the topology of closed convergence.

The books of Borsuk [6], and Hu [20], are standard references for ANR
and AR theory. The book of Van Mill [28], is more recent but deals only with
separable metric spaces. See also the book by Bessaga and Pelczinski [4].

We come now to the main theorem of this section.

Theorem 4. If the preference space P is an AR(Stratifiable), then, for any n € N
and any unanimous upper semicontinuous decomposition D of P", there is a
social rule on P" which is D-compatible.

Proof. First, let P"/D be the quotient space of P" with respect to the equiva-
lence relation D, it has a natural topology, the quotient topology. Since D is
an upper semicontinuous decomposition of P”, the projection onto the
quotient space sends closed subspaces to closed subspaces and P"/D is
also Hausdorff, (this is a consequence of the normality of P" and of the
upper semicontinuity of the decomposition D). The space P"/D is therefore
stratifiable.

Since D is the identity on the diagonal, the space P is homeomorphic to a
subspace of P"/D. The homeomorphism is the composition of the projection
onto the quotient space with the function which identifies each point of P with
the corresponding point of the diagonal of P”. We will use the same symbol
for the space P and its homeomorphic image in P"/D.

If ¥ : P"/D — P is a continuous function which coincides with the iden-
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tity on the subspace P, then, by taking the composition with the projec-
tion from P" onto P"/D, we get a social rule which is D-compatible and
unanimous.

But P is a closed subspace of P"/D and the function P — P sending a
point to itself is obviously continuous. Since, by hypothesis, P is an absolute
extensor for the class of stratifiable spaces this function can be extended to a
continuous function ¥ : P"/D — P. [J

Corollary 2. Assume that P is a connected CW-complex. Then:

(A) If P is contractible, then, for any n € N and any unanimous upper
semicontinuous decomposition D of P", there is a social rule on P" which is
D-compatible.

(B) If the homotopy groups of P are finitely generated, or if P is simply
connected and the homology groups are finitely generated, then contractibility is
a necessary condition for the existence of a social choice rule on each P".

Proof.

(A) Borges has shown that CW-complexes are stratifiable, and Cauty
proved that they are ANE(Stratifiable), a contractible CW-complex is there-
fore an AR(Stratifiable).

(B) If for each n € IN there is a social choice rule on P”, then we know from
Eckman’s theorem that all the homotopy groups are commutative, and that
on each of them multiplication by » is a group isomorphism. A finitely gen-
erated commutative group in which, for each n € N, multiplication by » is an
isomorphism has to be the trivial group {0}. This follows from the structure
theorem of finitely generated abelian groups, in [18], page 79, for example.

From a theorem of Whitehead [27] page 89, it follows that a connected
CW-complex with trivial homotopy groups is contractible.

If the homology groups are finitely generated the same argument implies
that they are all trivial. By Hurewicz isomorphism theorem, [27] page 185, all
the homotopy groups are also trivial. []

Parafinite CW-complexes, they are also known as CW-complexes of finite
type, have finitely generated homology groups. Indeed a finite CW-complex
has finitely generated homology groups, and by definitinion the n-skeleton
of a parafinite CW-complex is finite. Furthermore, for any CW-complex, the
n-th homology group is completely determined by its (n + 1)-skeleton. A finite
complex also has finitely generated first homotopy groups. If there is a social
choice rule, that first homotopy group is abelian and finitely generated.
Therefore, is there is a social choice rule for each n, the first homotopy group
is trivial, by the argument used in the previous theorem. The space is therefore
simply connected.

Corollary 3. Assume that P is a connected ANR. Then:

(A) If P is contractible, then, for any n e N and any unanimous upper
semicontinuous decomposition D of P", there is a social rule on P" which is
D-compatible.

(B) If the homotopy groups of P are finitely generated, or if P is simply
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connected and the homology groups are finitely generated, then contractibility is
a necessary condition for the existence of a social choice rule on each P".

Proof. For the first part of the proof we proceed as previously, with the same
notation, but now the quotient space P”/D might not be metrizable so we
cannot use right away the fact that P is an AR.

Recall that a topological space is perfectly normal if any closed subset is
the intersection of countably many open sets.

Michael [25], proved that any AR is also an asolute extensor for the class
of paracompact and perfectly normal spaces.

Stratifiable spaces are paracompact and perfectly normal, Ceder [12], or
Borges [5].

But P"/D is the image of the metric space P by a closed map, the projec-
tion. P"/D is therefore stratifiable, and the identity can consequently be con-
tinuously extended to a map from P"/D onto P.

For the second part we proceed as before taking into account that a con-
nected ANR is contractible if and only if its homotopy groups are trivial, Hu
[20] Corollary 8.5, or Van Mill [28], page 212. []

If we only want to consider social choice rules then the proof is simpler
since the quotient space will be metrizable, and we do not have to use
Michael’s theorem.

Let us now give some examples of spaces to which the previous results
could apply.

Assume that P is paracompact and each x € P has a neighborhood U
which is homeomorphic to a retract of one of the following:

(a) an open subspace of a CW-complex.

(b) an open subspace of a normed space.

(c) a metrizable and locally contractible space of finite covering dimension.

(d) an open subspace of a topological cube [0, I]E where the set E is at most
countable.

In (a) we use the facts that a retract of an ANE(Stratifiable) is an
ANE(Stratifiable) and that a paracompact space which is locally an
ANE(Stratifiable) is also an ANE(Stratifiable), to conclude that P must be an
ANE(Stratifiable).

In (b) to (d) we use the same facts for ANR, and also that a paracompact
locally metrizable space is metrizable.

Topological manifolds, spaces in which each point has a neighbourhood
homeomorphic to an open subset of some IR”, or Banach manifolds, spaces in
which each point has a neighbourhood homeomorphic to an open subset of a
Banach space, fulfil one of the conditions (b) to (c).

Any locally contractible subset of IR” fulfils condition (c).

It is known that the set of unit vectors in a Banach space which is not finite
dimensional is an AR, more generally, if from a closed ball in an infinite
dimensional normed space one removes a family of disjoint open balls then
the resulting space is an AR [14], page 94.
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As a consequence of the previous theorems it follows that the unit sphere
in R”, or more generally, any noncontractible topological manifold cannot
have for any n > 1, a social choice rule.

Let us look a little bit more closely at metrizable spaces. Recall that con-
tractible absolute neighbourhood retracts are absolute retracts. At this point
one might wonder if the absolute neighbourhood retracts which have, for each
positive integer, a social choice rule are not exactly the absolute retracts. We
know that the answer is positive if the homotopy groups are finitely generated.
The next result, which is due to Van Mill and Van de Vel [29], implies that
connected metric spaces having a special kind of social choice rule have trivial
homotopy groups.

First, let us say that a continuous function x : X* — X is a majority func-
tion if it is invariant under circular permutation of its arguments, and if for
any x, y € X one has u(x, x, y) = u(x, y,x) = u(y, x,x) = x.

We will also need the following definition:

A metrizable space X is C", provided that for every 0 < m < n every con-
tinuous function f : §” — X from the m-dimensional sphere into X extends to
a continuous function g : B”*! — X on the unit ball. The space X is C*,
provided it is C" for every n.

It is known that an ANR is contractible if and only if it is C*.

Theorem 5 (Van Mill-Van de Vel). Let X be a space which is compact, metriz-
able and has an open cover by path connected sets. If there is a majority function
on X then X is C*.

Furthermore, if X is finite dimensional and path connected, then there is a
majority function on X if and only if X is an AR.

The result of Van Mill and Van de Vel implies that for some preference
spaces having a majority rule when the number of individuals is exactly three
is equivalent to having a social rule for any number of individuals. Before
stating this formally we recall that the class of absolute neighbourhood
retracts, ANR, is quite large. It contains open subspaces of normed spaces,
manifolds, locally compact CW-complexes, any open subspace of an ANR,
and is closed under finite products and continuous retractions.

Corollary 4. Assume that P is a pathconnected compact ANR. Then if P has
a majority function there is for each n € N and any unanimous upper semi-
continuous decomposition D of P" a social rule on P" which is D-compatible.

Proof. By the theorem of Van Mill and Van de Vell the space P is C*. An
ANR which is also C* is an absolute retract.
The conclusion follows from Corollary 3. []

Let us remark that proving the existence of a social choice rule on an AR is
straightforward:

Any metric space can be embedded as a closed subspace of a convex
subset in a normed space. On a convex set there is for each n a social rule, for
example the average of n elements. There is also a continuous retraction from
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the convex set onto the metric space, since it is an absolute retract. Now we
define for each n a social choice rule on the metric space by taking first the
average of n elements and then the image of that average by the retraction.

Corollary 5. Assume that P is a finite dimensional pathconnected compact
metric space. Then if P has a majority function there is for each n € N and any
unanimous upper semicontinuous decomposition D of P" a social rule on P"
which is D-compatible.

Proof. By the theorem of Van Mill and Van de Vell P is an absolute
retract. []

Now we look at possible interpretations of homotopy.

Contractibility could be interpreted as some kind of uniqueness of the
social rule and homotopy as some kind of dynamic transformation of one
social rule in another, but this might be open to questions. Indeed, an arbi-
trary homotopy can be a very wild function and not only are two social choice
rules homotopic, they are homotopic to any arbitrary continuous function
from P" into P, since if P is contractible then no matter what the topological
space X is any two continuous functions from X into P are homotopic. If two
social rules are homotopic but if the functions obtained during the deforma-
tion of one social rule in the other are arbitrary continuous functions it is hard
to see what kind of interpretation could be given to such a transformation.
What one at least needs is a homotopy for which at each stage of the defor-
mation we have a social rule. We show that under the conditions of the pre-
vious theorem this is always possible.

Theorem 6. Assume that the preference space P is an AR(Stratifiable). Let D be
a unanimous upper semicontinuous decomposition of P and let @y, @, : P" — P

be two social choice rules that are D-compatible. Then there exists a homotopy
O :[0,1] x P" — P such that:

(i) @() Z(D() and@l 2(151
(ii) For each t € [0,1] the function ©,: P" — P is a social rule which is D-
compatible.

Proof. As before let P"/D be the quotient space of P" with respect to D,
identify P with its image in the quotient space and let p : P" — P"/D be the
projection. There are continuous functions @, : P" /D — P,i=0,1 such that
@,‘ = éi op.

({0,1} x P"/D) u ([0,1] x P) is a closed subspace of [0, 1] x P"/D, call it
Z. Now define a continuous function A : Z — P in the following way:

(@) 4(0,y) = o(y)
(b) 4(1,y) = 01(y)
(c) A(t,x) =x

Since Z is a closed subspace of the stratifiable space [0, 1] x P"/D and
P is by hypothesis an absolute extensor for the class of stratifiable spaces
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the function A4 has a continuous extension @ from [0, 1] x P"/D into P. The

function @(¢, x1,...,x,) = O(¢t,p(x1,...,x,)) yields the homotopy 6. []

As in Corollary 3 the previous theorem holds if P is an AR.

Next we give two examples of social choice rules when the preference space
is an AR, a metrizable and contractible CW-complex, or a contractible mani-
fold for example.

The first examples shows that there is always for each n € N a social choice
rule @, that depends only on the underlying set of individual preferences and
not on the society’s profile.

The second example shows that in case P is finite dimensional we always
have a sequence of social choice rules @,,,n € N, such that @, and &,, coincide
on any two profiles having the same underlying set, and furthermore there is a
preference which is the social choice whenever it appears in the profile. That
preference can be chosen a priori.

The constructions are not restricted to AR or to finite dimensional spaces,
but they are simpler in this case.

(1) If the preference space is a compact absolute retract then there is for
each n a social choice rule @, : P" — P such @,(x1,...,x,) = @y(V1s---, Vy)
whenever the sets {x;:i=1,...,n} and {y; : i =1,...,n} are equal.

This can be seen by noticing that the space of non empty closed subspaces
of P is a metric space, with the Hausdorff distance, that it contains P as a
closed subspace and that there is therefore a continuous retraction from the
space of non empty closed subspaces onto P. The function which assigns to an
element of P”" the set of its components is continuous. Composition with the
previous retraction yields @,,.

(2) If the preference space is a finite dimensional compact absolute retract
then there is for each n a social choice function @, : P" — P such:

(@) Du(x1y...,x0) = Pu(yy,...,»,) whenever the sets {x;:i=1,...,n}
and {y; :i=1,...,n} are equal.

(b) If (x1,...,x,) has exactly k different components {x;,...,x;} then
@n(xla s 7xn) = ¢k(xi| g ;xik)

(c) There exists x*eX such that if x*e{xy,...,x,} then
Dy(x1,. .., x) = Xx*

The construction of @,(xy, ..., x,) is done as follows. First P can be iden-
tified with a compact subspace of some euclidean space E and since P is an
absolute retract there is a retraction r from E onto P. Now let ¥,(x,...,x;,)
be the projection of x* on the convex hull of {xj,...,x,} and let
®,(xy,...,x,) be the image under r of that projection. It can be shown that
@, (x1,...,x,) depends continuously on (xy,...,x,).

We close this section with a result on partial social choice rules.

A partial social choice rule on P" is given by a subset S < P" and a func-
tion @, :S — P such that for any permutation ¢ of {1,...,n} and any
(x1,...,x,) € S we also have (x4,,...,X;,) € S, (Sis invariant under the group
of permutations), (x,...,x) always belongs to S, and the function &, is
anonymous and unanimous.



Topological social choice 239

Theorem 7. Assume that P is an AR (Stratifiable) and that we are given a finite
SJamily (Fi, @, ;),i = 1,...,m of partial social choice rules on P" such that each
F; is closed in P" and such that for each pair of indices (i, j) the functions @, ;
and @, ; coincide on F; N F;. Then there exists a social choice rule on P" whose
restriction to F; is @, ; for each i€ {1,...,m}.

Proof. Let P"/S, be the quotient of P" under the action of the permutation
group and as before identify P with a closed subspace of P"/S,.

The projection of F; on P"/S, is a closed subspace, call it G;.

From @&, ; we get a continuous function ¥, ; on G;, furthermore ¥, ; and
¥, ; coincide on G; N G;. To see this take y € G; N G;. Then y = p(x1,...,x,)
and y = p(x{,...,x),) where (xi,...,x,) € F; and (x{,...,x;) € F; and p is the
projection.

Since y = p(x1,...,%,) = p(x{,...,x],) there is a permutation ¢ such that
(X150, %) = (x[,l,...,x(’m) and therefore (xy,...,x,) € F; 0 F;.
We now have ¥, ;(y) = @ i(x1,..., %) = D j(x1,...,Xs) = o ;(¥).

Let G= Uzﬂ G;, it is a closed subspace P"/S,, and by taking
(W”*O)|Gu_i = ¥, ; we get a well defined and continuous function ¥, : G — P.
Since P is an AR(Stratifiable) this function has a continuous extension
¥,: P"/S, — Ptoall of P"/S,.

The composition of @, with the projection of P” onto P"/S,, yields &,. []

Corollary 6. Assume that P is an AR(Stratifiable). Then for any open
neighbourhood U of P in P" and for any x* € P there is a social choice
rule @, :P"— P such that for any (xi,...,x,)€P"\U we have
D, (x1,...,%,) = X",

Proof. Let H = Pu (P"\U) and let F; be the set of all permutations of
elements of Hj, it is a closed subspace of P”.

Now define @, , on F| by taking it to be identically x* on P"\ U and apply
the theorem with m =1. [J

Of course the theorem and its corollary hold for the generalized social
choice problem and also if P is assumed to be an AR, see the proofs of 3.

The corollary could be given the following interpretation:

If the society’s profile is too far from unanimity, (if it is not in the open
subset U of P in P"), then the choice is imposed: it is x*.

For example if P is a metric space then U could be an ¢-neighbourhood of
P with ¢ arbitrarily small.

In conclusion if the preference space has a nice topological structure, a
contractible CW-complex, a contractible manifold or more generally an
AR(Stratifiable) or an AR then any social choice rule can be continuously
deformed into a social rule having very peculiar properties. The interpretation
of this is not so clear, at any rate translating contractibility of P as uniqueness
of the social choice rule does not in view of this seem very natural. Let us also
say that contractible spaces are very far from being topologically trivial and
that they can indeed have very strange structures, like being the common
boundary of three open disjoint sets in euclidean space.



240 C. D. Horvath

The last example of this section provides a space P which is metric
and contractible, but is neither a CW-complex nor an AR, so the results
of this section do not apply in this case, and has for each n a social choice
rule.

Let I =10,1], J, = {0} x I, and for each integer n > 0 let J,, = {,11} x 1.

Take C = (| J,_,” J;) U, it is the comb space, it is a contractible compact
subspace of the plane. Compactness is obvious since it is closed and bounded.
It is contractible since one can first retract C along the vertical segments onto
the unit interval, and then retract the unit interval to the origin. It is not an
AR since it is not even locally contractible, consider a point on J,, and
therefore it is not a CW-complex, a CW-complex is locally contractible.

Now let us construct a social choice rule on C”.

Let x; = (a;,b;),i = 1,...n be points of C, and define

D,(x1,...,x,) = (max(ay,...,a,), min(by, ..., by)).

What makes things work in that example is clear. We have a topological
space with an order structure for which the max and the min functions are
continuous. Any topological space on which we would have a partial order
with a continuous min function would support for each n a social choice rule.
We will see partial orders reappear naturally in the next section where we will
look for particular social choice rules.

Lastly let us say that there is an obvious drawback with the previous
results, they are purely existential. Take for example the theorem of Van Mill
and Van de Vel. From the theorem we know that there is a majority function
on any Banach space, proving this is actually quite easy, but as they notice
such a function has not been yet explicitly found.

So, on the one hand we know that there are social choice functions under
very general hypotheses on the structure of the preference space, we also know
that we can impose very general conditions on these social choice functions,
anonymity being only one such set of conditions. But on the other hand, in the
simple case of a majority function on a convex subspace of a Banach space we
might be unable to produce an example. A social rule on a convex subspace of
a topological vector space is easy to produce, take the average of the points.
In the general case we might have to compose with a retraction, and even
though for good enough spaces such retractions are plenty we might have little
to say passed their existence.

3 Social choice rules on noncontractible spaces

It is rather obvious that there exist noncontractible spaces on which there is a
social choice rule, just take any set with the discrete topology. A less trivial
example is given by topological semilattices. A topological semillatice is a
topological space with a partial order for which each pair of elements has a
least upper bound and the function which assigns to a pair its least upper
bound is continuous.
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We will be concerned in this section exclusively with social choice rules,
not with the generalized social choice problem.

Recall that in the introduction we gave two examples of non trivial and
noncontractible topological spaces on which there is a social choice rule, the
space of rational numbers and the space of irrational numbers. In one case
the construction used the order structure of the space. Beside being ordered
topological spaces the space of rationals and the space of irrationals are both
zero dimensional spaces. Also there is a social choice rule of a very particular
kind: if (xi,...,x,) € Z", where Z is either the space of rational or irrational
numbers, let @(xy,...,x,) = max{xy,...,x,}. So the rule @ picks out one of
the individual choices as the social choice. Let us ask on which topological
spaces such a social choice function does exist.

For a topological space X let #,(X) be the space of non empty subsets of
X of cardinality at most n. It is a topological subspace of the space of non
empty closed subspaces of X with the Vietoris topology.

The function from X” to %,(X) which assigns to the n-uple (xi,...,x,) the
set {x1,...,x,} is continuous, therefore any continuous function from Z,(X)
to X which picks out a member of the set will give through composition with
the previous function a social choice rule. Such a continuous function will be
called a selection of 7,(X). More generally a selection of a subfamily € of the
space of non empty closed subspaces is a continuous function f : ¥ — X such
that for any C € ¢ one has f(C) € C.

We will also denote by #°(X) the space of non empty compact subspaces
of the topological space X with the Vietoris topology.

At this point it is natural to ask the following question: Given the integer
n, for which topological spaces X is there a selection of %,(X)? When X is
connected the answer depends essentially on what happens for n = 2.

Theorem 8 (Michael). If X is a connected topological space there is either no
selection of 72(X) or there are exactly two selections.

Each selection of 7>(X) has for each n a unique extension to 7,(X) and also
an extension to A (X).

The implications of that result for the social choice problem are now given
as a corollary.

Corollary 7. If P is connected and if there is a social rule @, : P> — P such that
Dy (x1,x2) € {x1,x2} for any pair (x1,x2), then there is for each integer n a
unique social rule @, such that

(@) Du(x1y...,x0) = D(¥y,..., ¥,) wWhenever the sets {x;:i=1,... ,n}
and {y;:i=1,...,m} are equal.

(b) Dy(x1y...,xp) e{x;:i=1,...,n}.

Proof. On P" we define an equivalence relation by identifying two points
having the same set of coordinates. For Hausdorff spaces it is known that the
quotient space is homeomorphic to Z,(P), see for example [17] or [7]. Since
@, is compatible with the equivalence relation on P? and is continuous we get
a selection of 7, (P), call it ¥,. By the theorem that selection has for each n a
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unique extension to a selection ¥, of Z,(P). The composition of that selection
with the function which assigns to a point of P" the set of its coordinates is
@,,. The uniqueness of the rules @, is a consequence of the uniqueness of the
selections ¥, since (a) and (b) imply that each @, induces a continuous
function on the quotient space of P" which is a selection of ,(P) extending
¥, O

Compact connected metric spaces for which #,(X) has a selection are
known.

Theorem 9 (Kuratowski-Nadler-Young). If' X is metric compact and connected
and if there exists a selection of F>(X) then X is homeomorphic to the unit
interval [0, 1].

If X is metric locally compact and separable and if there is a selection of
F>(X) then X is homeomorphic to a subspace of the real line.

On the other hand, if the space is zero dimensional, for example the space
of rational numbers or the space of irrational numbers then there is a selection
of #,(X) for each integer n. More generally we have the following result.

Theorem 10 (Kuratowski-Ryll-Nardzeswki). If X is a separable zero dimen-
sional metric space then there exists a selection of the space of nonempty closed
subspaces of X.

The rationals and the irrationals are linearly ordered topological spaces.
It turns out that the existence of a selection of %,(X) is closely linked to the
existence of a linear order which is compatible with the topology of X.

Theorem 11 (Michael). Let X be a Hausdorff topological space. Then for a
selection of A (X) to exist it is sufficient, and if the connected components of X
are open in X it is also necessary, that there exists a linear ordering of X for
which the order topology is coarser than the topology of X.

We have seen how to obtain social choice rules by looking for selections of
Z.(P), such social choice rules elect one of the individual preferences as the
social preference and they are associated to linear orderings of the preference
space.

Now consider a social choice rule @, : P2 — P.

This is the same as a continuous retraction from %;(P) onto P. For
example if P is the circle then it is known that 4, (P) is homeomorphic to the
Moebius strip and that a retraction of %, (P) onto P would give a retraction of
the Moebius strip on its boundary and this is known to be impossible. This is
the argument that is used by Candeal and Indurain [8].

More generally we could look for a continuous retraction from ,(P) onto
P. Such a retraction composed with the function from P” to %,(P) sending an
n-uple to the set of its elements would yield a social choice rule.

It would be interesting to find necessary and sufficient conditions for such a
retraction to exist. It seems to be a difficult problem. A sufficient condition
that has been used in the preceding section is that the space be an AR.

The next result owes some of its inspiration to the theory of games.
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If a strategy space is not convex then by going from pure to mixed strat-
egies we introduce convexity and then the existence of Nash equilibria can be
established.

A similar idea will be used here. The preference space P will be replaced by
the space of probability measures on P.

We recall some known facts.

Let X be a topological space and % the g-algebra of its Borel sets.

Pr(X) will be the space of probability measures on (X, 4%). Recall that a
sequence of probability measures y, € Pr(X) converges to u € Pr(X) if for
any bounded continuous function f/ : X — R the sequence [f du, converges
to [fdu.

To an element x of X we can associate a probability measure, J, the Dirac
measure concentrated at x. One can see that J : X — Pr(X) is continuous.
The topological space will be identified with the set of Dirac measures on X.

Prp(X) will be the space of probability measures with finite support on X.

Now consider a probability space (2, .+, 1), and let L°(, X) be the space
of equivalence classes of measurable functions. If X is a separable metric
space, with metric d, recall that a sequence of measurable function f, : 2 — X
converges in probability to a measurable function f; if for every & > 0,
w{d(f,, fy) > &} converges to 0 as n goes to co. It is known that on L°(Q, X)
convergence in probability is metrizable, for example by the Ky Fan metric
dxr(f,9) =inf{e > 0: u{d(f,g) > &} <&}, here d(f,g) stands for the mea-
surable function w — d(f(w),g(w)).

To each element £ of L°(2, X) one can associate its law uo f~! e Pr(X),
moreover with respect to the Ky Fan metric on L°(2, X) and the Prohorov
metric on Pr(X) the function f +— g o f~! is continuous.

Theorem 12. Assume that P is a separable ANR. Then for each n € N there
exist a continuous function @, : P" — Pr(P), neighbourhoods W\ and W» of P
in P", and x* € P such that:

(@) For any permutation (my,...,my,) of (1,...,n) one has ®(xy,...,x,) =
D( Xy ey Xy, )-

(b) For any x € P one has ®(x,...,x) = x.

() (W) =P

(d) For any (xi,...,x,) € (P"\W>) we have ®&(xy,...,x,) = x*.

Proof. Since P is an ANR there is an open neighbourhood W, of P in P" and
a continuous function @ : W, — P which is a partial social choice rule.

To see this we first consider P"/S,, the quotient space of P" under the
group of permutations, it contains P as a closed subspace. Since P is an ANR
there is neighbourhood U of P in P"/S, and a continuous function f : U — P
sending each point of P to itself. Let I, be the inverse image of U under the
projection on the quotient space, and let @ be the composition of the projec-
tion with f.

Let W be a closed neighbourhood of P, which we can assume to be the
inverse image of a closed neighbourhood of P in P"/S,, contained in W;.
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Now we have two partial social choice rules, @, ; : W; — P which is the
restriction of @ to W; and &, : P"\ W> — P which is the constant function x*.

The space of measurable functions L°([0,1],P) is an AR, Bessaga and
Pelczinski [4] Theorem 7.1, and if we identify each point of P with the corre-
sponding constant function from [0, 1] into P we can identify the previous two
partial social choice functions with two functions @, ; : W; — L°([0, 1], P)
and @, : (P"\W,) — L°([0,1], P).

Now, as before we let P"/S, be the quotient space of P" under the group
of permutations, and as we deed in the previous section we match the two
functions to obtain a function @; : P" — L°([0, 1], P) for which (c) and (d) are
satisfied.

We let @,(x1,-,x,) = Ao (D(xy,... ,x,,))f1 where A is the Lebesgue mea-
sure on [0,1]. [

Here there is no contractibility. P could be any topological manifold, any
metrizable CW-complex, any open subset of a normed space, any finite prod-
uct of such spaces, or any retract of such spaces. For example any locally
contractible subset of IR”

That theorem says that we can always find a rule which is a social choice
rule as long as society’s profile is not too far from unanimity. If the profile is
far from unanimity then society’s choice is imposed. There is an in between
zone where to each society’s profile is associated a probability distribution on
the preference space P. It could be shown that the probability distribution can
always be chosen to have finite support.

4 Extension of the social choice problem to infinitely many individuals and
other generalizations

In this section we will consider exclusively social choice rules.

Once we have for each n € IN a social choice rule @, : P" — P it is natural
to inquire into the evolution of the society’s choice as the number of individ-
uals evolves along with their individual choices. We consider that time is div-
ided into periods, during each period the number of individuals is considered
constant as well as the corresponding social choice. The dynamic is therefore
represented by the parameters ny, the number of individuals in period k& and
(x1,...,xn), the individual choices in period k. Society’s choice in period & is
therefore the element &, (xi,...,x, ) of P. We have a discrete dynamical
system on P given by f (k) = @y, (x1, ..., Xy, ).

Within the purely abstract and topological framework offered by the pre-
vious theorems very little can be done, since there is no relationship between
the different @,,.

On the other hand we will show that for separable metric spaces a much
more satisfactory approach is possible. The construction will also show that
all the @, can be derived from a single function.

As previously if X is a topological space and % the g-algebra of its Borel
sets then Pr(X) will be the space of probability measures on (X, 4).
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To an element (xy,...,x,) of X" we can associate a probability measure
| N . .
an((X1,...,Xn)) ==D_/_| O, where Jy is the Dirac measure concentrated at x.
n

One can see that o, : X — Pr(X) is continuous.

Let X be the disjoint union of the topological spaces X", n € IN.

The function o : X — Pr(X) whose restriction on X" is a, is continuous.

The evolution of the society’s profile is represented by a function
y:IN — P®. For each k € N we have an integer ny, the size of the population
in period k and an element y(k) € P", the society’s profile in period k.

Theorem 13. Let P be a separable AR. Then there exist social choice rules
@, : P" — P such that the following holds:

If y:IN — P® is such that the sequence of probability measures a(y(k))
converges to a probability measure yu € Pr(P) then the sequence @, (y(k)) con-
verges in P.

Proof. Since P is metrizable and separable, convergence of laws in Pr(P) is
metrizable, by the Prohorov metric. The function ¢ : X — Pr(P) which sends
the point x € P to the Dirac measure J, is a continuous embedding of P
into Pr(P). Since P is an absolute retract there is a continuous function
¥ . Pr(P) — P such that ¥(J,) = x for any x € P.

Let @ : P — Pr(P) be the composition of ¥ with o and finally let @, be
the composition of @ with the embedding j, : P" — P®.

Now, let y : N — P be such that the sequence of laws a(y(k)) converges
to u € Pr(P). Then the sequence ¥ (a(y(k))) converges in P to ¥ (u).

But ¥ (a(y(k))) = @ (y(k)). To complete the proof one only has to see
that the functions @, are continuous, anonymous and unanimous. []

It is interesting to notice that within the previous context uncertainty can
be accomodated. Indeed, assume that there is some uncertainty on the number
of individuals and their individual preferences. That uncertainty can be rep-
resented by a probability measure on P® with finite support. We will see that
one can associate to such a random profile a preference in such a way that by
restriction to P”, which can be identified with a space of Dirac measures on
P®, we get a social choice rule on P”".

As previously let Pry(P®) be the space of probability measures with finite
support on P®.

Corollary 8. If P is a separable AR then there is a continuous function
A Pry(P®) — P such that Ao d, is a social choice rule for each n € N, where
d, is the embedding of P" into Pr(P®) which sends a point to the corresponding
Dirac measure.

Proof. If pue Prp(X®) then u= Zi’j” ti0,, where u;e X", 0<¢ and
Y ti=1 A

Now let A(u) = &(>°;Z}" t;o(u;)), one can see that A is a continuous func-
tion and that 4 o d, = @, where @, is the social choice rule constructed in the
previous theorem. []
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In case the number of individuals is fixed we can consider arbitrary prob-
ability measures. There are then two forms of uncertainties. There could be an
uncertainty on the society’s profile as a whole and that would be represented
by a probability measure on P" or there could be uncertainties on each indi-
vidual’s preference and that would be represented by an n-uple of probability
measures, an element of (Pr(P))". We show below that in each case there is
an appropriate social choice function. If u is a measure on P” and ¢ is a per-
mutation of the first » integers, y, is the image of the measure x under the
obvious function from P”" into itself associated to a.

Theorem 14. Assume that P is a separable AR. Then

(A) There is an embedding j, : P" — Pr(P") and a continuous function
@ : Pr(P") — P such that for each permutation o of {1,...,n} and each
€ Pr(P") one has ®(u,) = @(u) and d o j, : P" — P is a social choice rule.

(B) There is an embedding k, : P" — (Pr(P))" and a continuous function
@ : (Pr(P))" — P such that for each permutation o of {1,...,n} and
each (uy,...,p,) € (Pr(P))" one has ®(uy,....1,) = Pty 1, ) and
Dok, : P"— Pisa social choice rule.

Proof.
(A) jin assigns to (xi,...,x,) the Dirac measure dy, .,
Let S, be the group of permutations of the first » integers and denote by

. o 1
sy + Pr(P") — Pr(P") the operation of symetrization, s,(u) = ;Zae s, (t)-

Foreachie{l,...,n}let p; : P" — P be the corresponding projection and
for e Pr(P") let wo p; ! € Pr(P) be the image of the measure .
With ¥ : Pr(X) — X being the function from Theorem 13 let @(u) =

1 i=n —
v ((E T on ).

(B) k;, assigns to (xi,...,x,) the n-uple of Dirac measures (Jy,, .. .,0x, ).
The function @: (Pr(P))" — P is then given by @(uy,...,u,) =

1 i=n
T(Z > il ﬂi) - O

Now we presente a framework for the social choice problem which could
accomodate an infinite number of individual choices. There is some arbitrari-
ness in that model inasmuch as we have to pick a probability space for which
there is no natural choice. Nevertheless, that models captures the idea that
what matters in a society’s profile is the probability measure that it induces on
the preference space, this is anonymity, the measure of a subset of the prefer-
ence space could then be interpreted as the proportion of individuals whose
preferences are in that subset.

The space of individuals is a probability space (2, .o7, u), if the number of
individuals is finite, say n, Q2 is the set of the first # integers with the uniformly
distributed probability measure.

A society’s profile is then a random variable f' : 2 — P, P is of course a
topological space and we consider measurability with respect to Borel sets, or
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more exactly an equivalence class of measurable functions, two functions
being equivalent if they are equal almost everywhere with respect to u,
L°(Q, P) is the space of equivalence classes of measurable functions.

Now we have to introduce in this context the concepts of anonymity and
unanimity in such a way that they are compatible with the finite case and
uniform probability measure.

A social choice rule assigns in a continuous way a preference, an element
of P, to a society’s profile, an element of L°(Q, P).

Consider a continuous function @ : L°(Q, P) — P.

(a) @ is unanimous if for any constant function ¢,:Q — P one has
D(cy) = x.
(b) @ is anonymous if @(f) = ®(g) whenever pof~' = uog™'.

Theorem 15. If (P, d) is a separable AR and (Q, o/, i) an arbitrary probability
space then there exists a function @ : L°(Q, P) — P which is anonymous and
unanimous.

Proof. There is a continuous function % : L°(Q, P) — Pr(P) which assigns to
a random variable f'its law o f~!. Taking the composition with the function
¥ : Pr(P) — X from Theorem 13 we obtain the function @. [

If the metric space (P,d) is not only separable but also complete then, on
the one hand the spaces L°(2, P) and Pr(P) are also complete repectively for
the Ky Fan metric and for the Prohorov metric and on the other hand any
probability measure v € Pr(P) is the law of a random variable f : [0,1] — P
(this result is due to Halmos and Von Neumann). So if the preference space is
separable and completely metrizable we have at our disposal a universal space
of individuals, the unit interval with the Lebesgue measure. Notice also that
we can derive anonymous and unanimous social choice functions @, : P" — P
from the single function @ : L°([0, 1], P) — P.

Indeed, to (xi,...,x,) one associates the function f(,,  ,):[0,1] — P
imn 1
whose law is given by vy, ) (B) = > 1=} Zéx’ (B) for a Borel subset B of P. It

is clear that vy, . )= V(o Xo) for any permutation ¢ and that v, ) = d..
Now, let @,(x1,...,x,) = @(fixh__’x”)) = Y(V(xym))-

5 Conclusion

The topological social choice problem, at least as far as the existence of a
social choice rule is concerned, is a problem about continuous extensions of a
continuous function given on a closed subspace of a topological space. Spaces
for which this kind of problem has a solution with respect to a given class of
domains, the absolute extensors for the domains in question, have under mild
conditions to be contractible, see Hanner [19] or Hu [20]. This explains the
pervasiveness of the contractibility condition.



248 C. D. Horvath

On the other hand, if we restrict our attention to spaces which have a
particular structure, zero dimensional spaces, topological semilattices or
products or retracts of spaces thereof, contractibility is not needed.

Even when the space is quite general and not contractible something of
interest can be said, if P is an ANE(Stratifiable) then there is a partial social
choice rule.

Another possibility is to restrict the set of individual preferences. There is
no general framework for doing that, it is best understood on a particular
case.

Let us say that P is the m-dimensional sphere, choose an arbitrary point of
P and let W be the space obtained by removing that single point from P. Then
there is a social choice rule on W since it is homeomorphic to euclidean space.

It might be interesting to study the preservation of the existence, or non
existence, of social choice rules with respect to some kind of topological
modification of the preference space, the robustness problem. But the kind of
conclusion that one could expect is not quite clear. Indeed as we have just seen
by removing a single point one can go from nonexistence to existence. The
other direction is also possible, remove a single point from a euclidean cube or
a euclidean sphere, if that point is on the boundary then existence of a social
choice function is preserved, on the other hand if that point is an interior point
then there is no social choice function on the new space. On the other hand
remove any point from the Hilbert cube, there is still a social choice function.
The difference here comes from the specific topological properties of the
spaces under consideration, in one case we have a space that is not topologi-
cally homogeneous and in the other case we have a space that is topologically
homogeneous. One could also make “big holes”, for example by removing the
interior of the unit ball in a Banach space which is not finite dimensional then
one gets the unit sphere for which there is a social choice function since it is an
absolute retract.

Let us conclude by saying that we do not feel that there is anything para-
doxical in the results that have been obtained, quite to the contrary. If we
expect the social choice problem to have a solution within the class of CW-
complexes, or within the much larger class of absolute neighborhood exten-
sors for stratifiable spaces, then contractibility is natural, as a matter of fact it
is necessary if we want to go from neighborhood extensors to extensors, see
Hanner [19]. It also seems that anonymity and unanimity are not very strin-
gent restrictions. The generalized problem shows that one could had infinitly
many conditions of the same type and still have a compatible social choice
rule.

6 Appendix
If € is a class of topological spaces, for example the class of metrizable or

stratifiable spaces, a topological space X is called an absolute neighbourhood
extensor for the class € if for any space Y of 4 and any closed subspace
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A < Y, any continuous function f : 4 — X has a continuous extension to a
neighbourhood U of 4 in Y, if one can always take U = Y then X is called an
absolute extensor for the class €.

A space X of the class % is an absolute neighbourhood retract for the class €
provided it is a neighbourhood retract of every space Y in % containing it as a
closed subspace. If it is a retract of any space in % containing it as a closed
subspace then it is an absolute retract for the class € .

A subspace X of Y is a neighbourhood retract of Y if there is a neighbour-
hood U of X'in Y and a continuous function r : U — X such that r(x) = x for
any x € X, if one can take U = Y then X is a retract of Y.

If € is either the class of metrizable spaces or the class of stratifiable spaces
then a contractible absolute neighbourhood retract is an absolute retract and
the absolute neighbourhood retracts are exactly the absolute neighbourhood
extensors which belong to . This statement combines results of J. Dugundji,
for metrizable spaces, and C. Borges, for stratifiable spaces.

A metrizable space X is C" provided that for every 0 < m < n every con-
tinuous function f : S — X from the m-dimenional sphere into X extends to
a continuous function g : B! — X on the unit ball. The space X is C*
provided it is C" for every n.

The space X is LC" if for every x € X and for every neighbourhood U of x
and for every 0 < m < n there exists a neighbourhood V' of x such that every
continuous function f : $” — V has a continuous extension g : B”*! — U.

If the metric space X is of dimension at most n, with n < oo, then it is
an absolute neighborhood retract if and only if it is LC" and it is an absolute
retract if and only if it is C".

For the definitions of CW-complexes and relative CW-complexes one can
look at [27] page 65 and page 71.

Now we give an example of a space X and two subspaces 4 and B such
that A4 is a deformation retract of X, B is homeomorphic to 4 and B is not
a deformation retract of X. As a matter of fact we give two such examples,
the first one is rather simple but the spaces under consideration are not
contractible.

(1) X is the real line with the point zero removed, 4 = {—1,1}, B = {1,2}.
2) X =1[0,1] x [0,1]®, 4 = {1} x [0,1]® B = ([0, 1] x {0}) U ({0} x [0,1]®).
The function % :[0,1] x X — X defined by A(z,s,x) = ((1 - t)er%,x) is a
deformation retraction of X onto A.

[0,1]® is homeomorphic to [0,1]® x [0,1] and B is homeomorphic to
({3} x [0,11%) U ({3} x [0,1]), B is therefore homeomorphic to A. But B is not
a retract of X, see [20] proposition 12.6.
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Abstract. The purpose of this paper is twofold. One of the aims is to give a
view of P. C. Fishburn’s non-transitive expected utility through geometric
linear algebra. The other is to give an application of these ideas to a social
choice problem. Actually, the problem under consideration arises from the
theory of dynamical systems of structures in a society as studied in [All] and
[Oml]. A variation of this model as presented in [Om2] leads to the problem
of how macro structures of a society form coalitions. Their possible irrational
behaviour may be treated using non-transitive expected utility.

1 Introduction

Decision theory is one of the central sources of applications of mathematics in
the social sciences. One of the classic approaches to decision making uses von
Neumann-Morgenstern linear utility theory. This approach is based on some
assumptions including transitivity of the considered preference relation that
have been criticized during the last few decades (see [Fi2], [Fi3], [Ful], [Rap],
say). Besides statistically analyzed behavioral evidence showing that some
of the underlying suppositions are violated by preference relations of many
individuals, there may be other reasons for this dissatisfaction. Namely, appli-
cations in social choice theory lead to various impossibility results such as the
famous Arrow’s impossibility theorem [Arr], thus raising doubts about their
foundations.

We study here an approach that was proposed by Fishburn [Fi2]. Instead
of defining the preference relation > by letting p > ¢ for alternatives p, ¢ iff
u(p) > u(q), where u is a real function defined on the set of alternatives and
called a ““utility function”, he proposes to study a relation > given by a func-
tion @ defined on pairs of alternatives. Such a function represents the relation
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by p = qiff @(p,q) > 0. The von Neumann-Morgenstern assumption of “con-
vexity” or linearity which says that u(ip + (1 — 1)q) = u(p) + (1 — V)u(q)
for 2 € (0,1), where Ap + (1 — 1)g denotes a lottery yielding alternative p with
probability A and alternative ¢ with probability 1 — A, enables us to compute
“expected utility”. By this we mean the mathematical expectation of the
utility of any lottery p yielding alternative p; with probability 4;, where 4; > 0
fori=1,2,...,n and ), 4; = 1. Convexity yields E(p) = >_. Liu(p;) = u(p)
by induction. Extending this situtation, Fishburn assumes that the functional
@ is convex or linear in both factors thus giving an appealing formula for
the expected “paired” utility E(p,q) = >_; L®(p;, ¢))w; = P(p. q). Here, p
is a lottery yielding alternative p; with probability 4;, where 4; >0 for
i=1,2,...,nand ) ;4 =1, while ¢ is a lottery yielding alternative ¢; with
probability z;, where g, > 0 for j=1,2,...,m and Zj'uj = 1. He also gives
necessary and sufficient conditions, called axioms, on the relation > for the
existence of a functional @ that represents >~ as above.

The aim of our paper is to present a point of view on his approach which is
closer to linear algebra. Our considerations use slightly different axioms and
give the analogous result in a way that may be somewhat shorter. We believe
that this is a natural framework for that theory. Basic definitions and
assumptions as well as the comparison between the original axioms and our
axioms are given in Sect. 2, the consequences of the first two axioms in Sect. 3,
the main result in Sect. 4, and some applications in Sect. 5. Section 6 deals
with an application to a social choice problem arising from a model of
dynamics for power and control in society. The problem deals with the way
that macro structures of a society form their coalitions. We study their irra-
tional behaviour using the techniques presented in the paper.

2 Comparison of the two approaches

We call the convex combination of two points p and ¢ of a real vector space
any vector of the form Ap + (1 — 2)g for A € [0, 1]. The set of all convex com-
binations of these two points will be denoted by [p, ¢] and called a segment.
The set of all convex combinations of this kind for A € (0, 1) will be denoted
by (p,q). A subset of a real vector space will be called convex whenever it
contains the segment between any two of its points.

Let P be a convex subset of a real vector space. Assume that a binary
relation > is given on the set P. Using this relation we define two new rela-
tions on P. First, for p,q € P let p ~ ¢ whenever neither p > ¢ nor ¢ > p and
second, let p = ¢ whenever either p = g or p ~ ¢q. For a given p € P, the set
of all ¢ € P such that ¢ ~ p will be denoted by C(p). This set is sometimes
referred to as the contour set of p. Also, U(p), the upper contour set of p, is
defined as the set of all ¢ € P such that ¢ >~ p and L(p), the lower contour set of
p, is the set of all ¢ € P such that p > ¢. Notice that for any p € P the set Pis a
disjoint union of these three sets when the relation > is asymmetric. We are
asking for necessary and sufficient conditions for existence of a form @ on
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P x P such that

(a) @ is skew-symmetric, i.e., ®(p,q) = —P(q,p) for all p,q € P;

(b) @ is convex in the first argument, ie., P(Ap+ (1 —A)gq,r) =
2D(p,r)+ (1 — 2)D(g,r) for all L€ (0,1) and p,q,r € P;

(c) @ determines the relation > via p > ¢ if and only if @(p,q) > 0.

Observe that requirements (a) and (b) automatically imply:

(b’) @ is convex in the second argument, i.e., @(r,ip + (1 — 1)q) = 2@ (r,p) +
(1 =2)P(r,q) for all A€ (0,1) and p,q,r € P.

This approach was introduced in [Fi2]. There, it was shown that such a
function exists if and only if the following three axioms, called “continuity’,
“dominance”, and “symmetry”’, are fulfilled:

Axiom C. For any p,q,r € P such that p > q and q > r there exists a A € (0,1)
such that g ~ Ap + (1 — A)r.

Axiom D. For any given p € P the set C(p) is convex. Also, if g€ U(p) and
re C(p)u U(p), then (q,r) < U(p), and if g€ L(p) and r € C(p) v L(p), then

(q,7) = L(p).

Axiom S. For any given p,q,r€ P such that p>=gq, q~r, p>r, and
that q~ Sp+3ir, it is true that ip+ (1 —A)r~ip+31q if and only if
ar+(1=Mp~Lqg+1ir

We give a proof of a similar result using geometric aspects of linear algebra
more substantially. To this end we will find a bilinear extension of the form @
defined on the linear span of P. In order to be able to do so we will have to
require that the set P avoids the origin of the space. By this we mean that kP,
i.e. the set of all points kp when p runs through P, has empty intersection with
P, whenever k # 1. Further, we will suppose that the binary relation > on P is
non-trivial in the sense that the set of all points p € P having non-empty upper
and lower contour set spans the whole space. Our axioms will be somewhat
different from the original ones and the proofs may be somewhat shorter. We
will assume that the relation > (together with the corresponding relations ~
and ) satisfies the following conditions:

Axiom 1. For any p,q,r € P such that p = q and q > r there exists a unique
A e (0,1) such that g ~ Ap + (1 — )r.

The unique 4 of this axiom will be denoted by ¢,(p, r). We will also denote

1—¢([)7V) ¢(par)
by (p.r) =000 and gl (pr) = 2D
q( ) ¢q(p,l") q( ) 1_¢q(p7r)
these definitions to the case p ~ ¢ and g~ r by putting ¢,(p,r) =1 and
¢, (p,r) =0, and to the case p > ¢ and ¢ ~ r by putting ¢,(p,r) =0 and

. (p,r)=0.

Axiom 2. For any given p € P the set C(p) is convex.

. We can extend partially
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Axiom 3. For any given p,q,r,s€ P such thatp = q,q = r,r > s, p >=1, ¢ > S,
and such that the segment [q,r] is parallel to the segment [p,s), it is true that

¢4(p,1) + ¢,(q,5) = 1 if and only if ¢, (p,s) + ¢.(p,s) = 1.

The term “‘parallel” is used in Axiom 3 in the usual geometric sense.
Observe that these axioms imply that the relation > is asymmetric. Indeed, if
p > ¢ and simultaneously ¢ > p, Axiom 1 with r = p implies the existence of
a unique 4 such that ¢ ~ Ap+ (1 — 1)p = p, contradicting the definition of
relation ~. Note also that Axiom 1 is a simple consequence of Axioms C
and D as noticed in [Fi2], so that a relation > satisfying those two axioms is
asymmetric as well.

It seems to us that “most” of Axiom D is redundant. Indeed, we will show
in Sect. 3 that our Axioms 1 and 2 imply Axiom D for all p € P having non-
empty both lower and upper contour set (see Lemma 4). Although Axiom 2
contains only “one third” of Axiom D, the two triples of axioms are almost,
but not completely equivalent. Namely, at the end of Sect. 4 we will give an
(artificial) example of a relation satisfying Axioms 1, 2, and 3, which does not
satisfy Axioms C, D, and S. The idea of the example will be to take “many”
points with empty upper and lower contour set. However, if the relation is
non-trivial in the above sense, then the two triples of axioms are equivalent.
Axiom S seems to us the one that can be modified in the largest variety of
possible ways. Nevertheless, let us point out that the structure presumed for
our main theorem (see Sect. 4) is stronger than Fishburn’s, so in a sense the
original result is more inclusive.

3 Implications of continuity and dominance

We assume in this section that P is a convex subset of a real vector space
that avoids the origin of the space. Further, we suppose that there is a binary
relation > given on P. Using this relation we define two new relations ~ and
> on P in the usual way. We also assume that the relation > (together with
the corresponding relations ~ and >) satisfies Axioms 1 and 2 of Sect. 2.

It is not hard to see that U(p) u C(p) is always convex. Namely, let ¢, r be
any two points in this set. If both belong to C(p), so does the segment [g, 7] by
Axiom 2. Thus, assume that at least one of them, say ¢, belongs to U(p), and
suppose that a point from (g, ), say s, is not in U(p) u C(p), so it is in L(p).
It follows by Axiom 1 that a point from (g,s), say ¢, belongs to C(p). Now,
re C(p) yields s € [r,q] = C(p) by Axiom 2 in contradiction to s € L(p). So,
re U(p), and by Axiom 1 a point from [s,r], say u, belongs to C(p). This
implies by Axiom 2 that [z,u] belongs to C(p), contradicting the fact that
it contains s which is in L(p). Similar arguments show that L(p) u C(p) is
convex. Under certain conditions we can actually show more.

Lemma 1. If for some p € P the set L(p) is non-empty, then U(p) is convex. If
U(p) is non-empty, then L(p) is convex.
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Proof. Choose a point s from the non-empty set L(p). If U(p) contains less
than two points, it must be convex. So, assume there are two different points
q,r € U(p). To show that this set is convex, it suffices to see that the segment
[¢, 7] is its subset. Let us confine ourselves to the case in which P is the triangle
generated by the points ¢,r and s. Notice that the points from the segment
[q, 5] of the form g; = 4q + (1 — A)s with 4 > ¢,(q,s5) belong to U(p). Indeed,
if this were not so, a point of the kind would belong to C(p) (since
C(p) v U(p) is convex), contradicting uniqueness of / in Axiom 1. Similarly,
9; € [g,s] with 4 < ¢,(¢, s) belong to L(p). Now, C(p) contains a point, say ¢,
from (g,s), and also a point, say u, from (r,s). Thus, it contains [u,?] by
Axiom 2. However, the segment [r, ¢;] has exactly one intersection with C(p)
for every 4 going from 0 to ¢,(q,s). So, these intersections all lie on [u, 7] and
consequently, [u, 7] = C(p). Therefore, the segment [g, r] belongs to U(p). [

Recall that a functional 6(p), defined on a convex set, is called convex
whenever 0(1p + (1 — A)q) = 20(p) + (1 — 2)0(q) for all 2 € (0,1) and all p, ¢
from the domain of 0.

Lemma 2. Let p € P be such that U(p) and L(p) are both non-empty.

(a) For any s e L(p), the functional §,(q,s) is convex for g € U(p) v C(p).
(b) For any s € U(p), the functional ¢;r(s, q) is convex for g € L(p) v C(p).

Proof. Let us rewrite the two assertions of the lemma using the above defini-
tion of convexity of a functional.

(@) If g,re U(p) u C(p) and s € L(p) then for every 4 € (0, 1) it is true that
¢, (Aq+ (1 =Nr,s) = i, (¢,5) + (1 = A)g, (r,5).

(b") If g,r e L(p) v C(p) and s € U(p) then for every 1 € (0, 1) it is true that
$y (s, 29+ (1 = 2)r) = i, (s,q) + (1 = )4, (s,7).

The assumption in (a’) together with the above notation shows that
¢,(q.5)lq + 4, (q.5)s] ~ p

and
$p(r,9)lr+ ¢, (r;5)s] ~ p.

Multiply the left-hand side of the first of these relations by vg,(r,s)4 and the
second one by v¢,(q,s)(1 — 4), where positive v is chosen in such a way that
the sum of these two coefficients equals 1. By Axiom 2 it follows that

vy (q,8)8,(r,9)[(Aq + (1 = )r) + (49, (¢,9) + (1 = 2)g, (r,5))s] ~ p,
which gives the desired conclusion. Assertion (b’) is proved similarly. ]
Lemma 3. For any q,r € U(p) and s,t € L(p),

by (4.5)8, (q,1) = ¢, (r,5)8, (1, 1).

Proof. For any A,z € (0,1) we have
1= ¢, (Ag+ (1 = Dr,us + (1 = w)0)g, (Ag + (1 = 2)r, ps + (1 = w)2),
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and by Lemma 2 we have

L= [, (2q+ (1 = Dr.s) + (1 = )¢, (Ag + (1 = )r, )]

x [, (¢, s + (1 — )1) + (1 = )¢, (r, s + (1 — p)1)].

Use Lemma 2 again to see that

[ Il N (1—u)

iy (q,8) + (1= 2)¢, (r;5) ~ 2g, (q,0) + (1 = 2)¢, (r,1)
A N (1-2)

udy (q,8) + (1= @dy (q, 1) ugy (r;s) + (1= @, (0|

Insert A= pu :% into this equation and denote «=4¢,(q,s), B=¢,(r,s),
y=¢,(q,1) andd = ¢, (r,1) to get

1 1 oy o
1= + + .
[oc-i—ﬂ y—i—é} [fx—H/ ﬁ+(5}
Let us rearrange this equation into
(a+B)(y+0) o+ ) (B+0) — (¢ + f+y+0)(afy + afd + ayd + fy5) = 0.
The left-hand side of this equation may be viewed as a quadratic polynomial

in o. Its coefficient at o2 is (y 4+ 0)(f +0) — (fy + o + y0) = 6°. Its coefficient

at o equals (B +7)(y +0)(f+0) — o — (B+7y+0)(By + o+ y0) = —2)0.
And, its constant coefficient is fy(y + ) (B + ) — (B + 7 +6)pyd = (By)*. The
equation therefore simplifies to («d — ﬁy)2 = 0. The definitions of « through ¢
yield the desired conclusion. ]

X

Lemma 4. For any p € P such that L(p) and U(p) are both non-empty, there
exists a linear functional vy, defined on the linear span of P, such that v,(q) > 0,
respectively v,(q) = 0, respectively v,(q) <0, if and only if q € U(p), respec-
tively q € C(p), respectively q € L(p). If w is any linear functional with this
property, defined on the span of P, then there exists a positive constant ¢ such
that w = cv, on the span of P.

Proof. Choose a point ¢ € U(p) and a point s € L(p). Define v,(1) = ¢, (,5)
forte U(p), v,(t) = 0forte C(p), and v,(1) = —¢;(q, )¢, (¢,s) for t € L(p).
By Lemma 2 the partial definitions of v, are giving convex functionals for
te U(p)u C(p) as well as for t e L(p) u C(p). Moreover, the third partial
definition is independent of the choice of ¢ € U(p) by Lemma 3. We show that
the functional v, is convex on P. Choose any r,t € P. We would like to show
that v,(Ar + (1 — A)t) = Av,(r) + (1 — A)v,(¢) for all 1€ (0,1). If the points r
and 7 simultaneously belong to either U(p) u C(p), or L(p) v C(p), then this
equation is satisfied automatically by the above. Let us now consider the case
in which one of them, say r, is an element of U(p), while the other, say ¢,
belongs to L(p). It follows that

¢,(r,s)r + (1 = @,(r,8))s ~p and  @,(r,t)r + (1 — ¢,(r, 1))t ~ p. (%)
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Fix Z€(0,1) and let r; = Ar+ (1 — A)t. If r; € C(p), we have 4= ¢,(r,1),
so that Av,(r) + (1 = 2)v,(2) = @,(r, )¢, (r,8) — (1 = $,(r, 1))y (r,0), (r,5) =
0 =w,(r;). Next, consider the case of r;e U(p). This implies that
4> ¢,(r,t). Multiply the left-hand side of the first relation of (x) by
v(A—(1- A)(/ﬁ;(r, 1))/$,(r,s) (which is necessarily positive as soon as v
is positive) and the left-hand side of the second relation in (%) by
v(1 = 2)/(1 = ¢,(r, 1)), where v is chosen in such a way that the sum of these
two coefficients is 1, and sum them up. By Axiom 2 we have that

W+ (1= 2)0) + v(id (r,5) = (1 = 2)65 (1, )6 (r,5)s ~ p

and the desired conclusion follows. It remains to consider the case of
r, € L(p). In this case rewrite the second of the two relations in (x) as

¢p(1rai)/l_ /1}’4- 1 _1¢_p(;a [)

By definition of v, we get Au,(r) + (1 = A)v,(t) = ¢, (r,5) (2. — (1 = )¢, (r, 1)) =
¢, (r,5) (2 — ¢, (r,1)) /(1 = 4,(r, 1)) = vp(r;) and the convexity of v, on P is
proved. The linear span of P clearly equals the set of all vectors of the
form ag — fr when ¢ and r run through P, and « and f run through positive
reals. Define v,(ag — fr) = av,(q) — pv,(r). If og — fr =ys—3Jt, we must
have (o +0)(Ag + (1 — A)t) = (B +y)(ur + (1 — u)s), where 2 = o/ (o + 0) and
u=p/(f+y). Since P avoids the origin of the space, it follows that
o+ 0 = f+ y and that therefore aw,(q) — fuv,(r) = yv,(s) — ov,(t). This shows
that v, is well-defined. Since it is necessarily additive, positively homogeneous
and homogeneous in —1, it is linear. Uniqueness up to a multiplicative con-
stant now follows easily. O

(Ar+ (1= )1t) ~p.

Lemma 5. Let p,q,re P be such that p>gq, q~r, and r>p. Then
¢ (r, Q)5 (p, )4 (q,p) = 1.

Proof. Assume with no loss of generality that P is the triangle generated by the
points p, ¢,r. By Lemma 4, C(p), C(q) and C(r) are segments of straight lines
connecting corresponding vertices with the opposite sides. We will show that
the three segments have a common point of intersection and the lemma will
then follow by an exercise in elementary geometry. Denote by ¢ the point of
intersection of C(r) and C(gq) and by s the point of intersection of C(p) with
the side [g,r]. By definition, ¢ ~ ¢ and ¢ ~ r, and, by Axiom 2, C(z) contains
the triangle generated by ¢, r, ¢, so that s ~ ¢, since s belongs to this triangle.
On the other hand s € L(g) and s € U(r), so that U(s) and L(s) are both non-
empty and Lemma 4 tells us that C(s) is a segment. Hence, C(p) = C(s) and
it contains ¢, as was to be proved. ]

4 Implications of symmetry

In this section we assume that Axiom 3 holds in addition to Axioms 1 and 2.
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Lemma 6. For any given p,q,r,s € P such thatp = q,q > r,r =S, p=1,q > S,
and such that the segment [q,r] is parallel to the segment [p,s), it is true that

g ;)8 (4,5) = ¢(p,5)/(1 = 4,(p,5))-

Proof 1f o.:= ¢,(p,s) + ¢,(p,s) = 1, the lemma follows easily from Axiom 3.

Thus, we need only consider the cases of « < 1 and o > 1. Assume o < 1 first

and define u=op+ (1 —a)s. Then, g~ t:=¢,(p,s)p+(1—¢,(p,s))s=

¢q(p,s) ¢,,(P,S) ¢r(pas) ¢l[(p’s)
o x o

u+ s, and similarly r ~
o

+ s, so that @, (u,s) +

¢,(u,s) = 1. Now, C(q) meets the segment [u, s] in the point ¢ that is further
away from p than u. So, we have u >~ ¢ and similarly u > r. Axiom 3 with p
interchanged by u then tells us that

¢, (q.5) = ¢, (u,). (%)

Now, p,te C(q) v U(q) and u is clearly a convex combination of p and ¢,

¢r(p75) + l -«

namely, u = t. Use this convex combination in (x
Y 1_¢q(pas)p 1 _¢q(p7s) ( )
and apply Lemma 2 to see that ¢ (¢, s) = ¢, (u,r) = %qﬁq (p,r) and
—¢,(p.

the lemma follows.
The case of « > 1 goes similarly. This time, let v = (a— 1)p+ (2 — «)s
11— p 1- 95 - ¥y )
and observe that ¢ ~ $:(p,5) P+ #y(p.5) u, and r ~ Mp +
2—uo 2—u 2—uo
l— ¢r(pa S)
2—u

u, so that ¢,(p,u) + ¢,(p,u) = 1. Apply Axiom 3 with s replaced

_ 1—« I - ¢ (pvs)
by u to see that 1) = ¢ (q,u). Insert u = t+ 1
Y Pulpon) = 0y ase) 609" " 009
t=¢.(p,s)p+ (1 —¢,(p,s))s ~ r, into this equation and apply Lemma 2 to
_ 1 - ¢q(p>s)
get ¢, (p,r) = )

as well. O

s, where

qﬁ;(q, s), so that Lemma 6 follows in this final case

Lemma 7. For any fixed p,r € P such that p = r the function ¢;(p,r) is a
continuous function of q such that p = q and q > r.

Proof. Fix p,q,r € P as in the lemma and let (g,) be a sequence of points from
P converging to the point ¢ and such that p >~ ¢, and ¢, > r. Let u denote the
point in which C(g) meets the segment [ p, r]. Moreover, let (u,) denote the
sequence of points in which C(g,) respectively meet the segment [ p, r]. To get
the Lemma it suffices to see that u, converges to u. Now, choose any s € (p,u)
and any 7 € (u, r). Since s lies on the same side of C(g) as p, we have s > ¢ and
similarly ¢ > ¢. Since p > ¢, we have s > u. Hence C(s), being a (subset of a)
hyper-plane by Lemma 4, does not meet the segment [g, s]. Thus, the terms of
(¢x) that are close enough to ¢ are on the same side of C(s) as g. Therefore, the
corresponding terms of (u,) lie in [s,u]. Similarly, the terms of (u,) with large
enough indices lie in [u, f]. The lemma now follows by letting s and ¢ go to u.[]
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Lemma 8. For any given p,q,r,s,t € P such that p = ¢q, ¢ = t, t =r, r > s,
Pt g1, 15 p-rand q>s, it is true that ¢; (p,0)d; (q,r)¢, (t,5) =

bs (0,197 (4,5)-

Proof. Assume at first that the segment [g, r] is parallel to the segment [p, s],
the segment [g, #] is parallel to the segment [p, r], and the segment [¢, 7] is par-
allel to the segment [g, s]. Use Lemma 6 once with r replaced by ¢ and once
with ¢ replaced by ¢ to get

¢;r(p7 l)¢:r(q’ r)¢:r(lv S) = ¢: (l], S)¢; (p, V)¢t+(q7 r)¢j(p7s) ¢r(pas)

1 - ¢q(p7S) .

¢.(p.5)
1 - ¢q (p S )
application of Lemma 6 finishes the proof of this case.
Consider now the general situation. Rewrite the desired equation as

)by (p.0)
¢ (4,94, (t.5)
We first show that we may assume with no loss of generality that the points ¢
and r belong to the interior of the set P. Namely, by Lemma 2, the denomi-
nator of the right-hand side of (x) is a convex and therefore continuous func-
tional of ¢ € U(r). Similarly, the left-hand side is continuous in ¢ € U(#). By
Lemma 7 the two functions in the numerator of the right-hand side are con-
tinuous in ¢. Thus, if Eq. () holds for all the appropriate points ¢ in the in-
terior of P, it must be true for a boundary point ¢ as well. Similar arguments
apply to the point r. So, assume from now on that points ¢ and r belong to the
interior of P. Similar continuity arguments show that  may be assumed not to
belong to the segment [g, ], so that the points ¢, f and r generate a plane.
Observe that by Lemma 3 the numerator of the right-hand side of Eq. (x)
is independent of the choice of p € U(g). Since ¢ is an interior point of P, it
follows that U(q) has non-empty intersection with the plane determined by
¢,r and ¢. So we may and will assume that the point p belongs to this plane.
Similarly, apply Lemma 3 to the denominator of the right-hand side of Eq. (x)
to see that it is independent of the choice of s € L(r), and assume with no loss
of generality that s belongs to the same plane by the fact that L(r) has non-
empty intersection with that plane. So, we may restrict ourselves to the case in
which P itself is a subset of that plane. Now, denote by u the point of inter-
section of C(z) with the segment [g¢,r]; actually, we can write it down:
u=¢,(q,r)qg+ (1 — ¢,(q,r))r. Thus, if we replace ¢ in the right-hand side of
Eq. () by u and apply Lemma 2, we get ¢, (¢, r). Observe by Lemma 2 that
the right-hand side of (x) is a fraction of two convex functions in 7. Hence, if
(*) is true, the right-hand side of () has equal values at the endpoints of the
segment [f,u] and is therefore constant on this segment. The same conclusion
holds if 7 in the right-hand side of (x) is replaced by any point from (z,u). So,
after we fix the segment [¢,u], it suffices to prove (x) with 7 replaced by any
point from (z,u). Finally, let the point 7 go towards u (in the direction of this

Lemma 3 now tells us that ¢, (p, 1), (¢, )4, (,5) = , and another

¢/ (q.7) (%)
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fixed segment). Then the line parallel to segment [q, 7] through the point r
rotates towards the line containing segment [g, r]. Since C(g) is a line meeting
this segment only in the point ¢, the rotating line must eventually meet U(q)
in a point, say p. Similarly, the line parallel to segment [z, r] through the point
g rotates towards the line containing segment [g, r]. Since C(r) is a line meet-
ing this segment only in the point r, the rotating line must eventually meet
L(r) in a point, say s. Going with ¢ even further towards u, if necessary, we
may rotate the two lines even more, so that we may assume that the segment
[p, s] is parallel to the segment [g, r]. Thus, we have reduced the general case to
the particular case from earlier in the proof. O

In the following lemma let p, ¢, r € P be such that each of them has non-
empty upper and lower contour set. Then, by Lemma 4, there exist linear
functionals v,, v,, v, defined on the linear span of P that are positive exactly on
the respective upper contour sets and negative exactly on the corresponding
lower contour sets. Moreover, assume that none of these points belongs to the
contour set of any other and that P spans the whole vector space.

Lemma 9. If p,q,r € P are as above, then

0(a) o) 0(p) _
vp(r) vg(p) vr(q)

Proof. Notice that each of the functionals v,, v,, and v, appears both in a
numerator and in a denominator on the left-hand side of the equation to be
proved. So, that expression is independent of the choice of these functionals.
Actually, we may and will choose to define them as in the proof of Lemma 4
with the obvious choice of defining points. Assume at first that p > ¢, g > r,
and r > p and observe that v,(q)/v,(r) = — ;(r, q). By cyclically permuting p,
g, and r, we get v,(r)/vy(p) = —¢, (p,r) and v,(p)/v,(q) = —4; (¢, p). This
case of the lemma now follows easily from Lemma 5. Next, assume that
p = ¢, q = rand p > r. Observe that it now suffices to prove this case since all
the other possible cases follow from this one and the above by cyclically per-
muting p, ¢, and r. To this end we first show the existence of a z € P such that
P,q,r € L(t). The assumption ¢ ~ ¢ for all € U(p) leads to a contradiction
since the non-trivial functional v, cannot annihilate U(p), which spans the
whole vector space. So, for ¢ € U(p) with ¢ = ¢, there is exactly one point of
the segment [7,p] in C(g) by Axiom 1. Hence, this segment contains also
points from U(g), so that we may suppose with no loss of generality that
p,q € L(¢). Since U(p) n U(q) is non-empty, it spans the whole space and
it cannot be annihilated by the non-trivial functional v,. Thus, for any
te U(p) nU(q), the segment [z, p] contains again points from U(r). The
existence of a ¢ € P such that p, ¢, r € L(¢) now follows and similar arguments
show the existence of a u € P such that p,q,r € U(u). Using the appropriate
definition of functionals v,, v,, and v,, we obtain the following equations:

0(q) b (:4)  v,(r) v (p) _ ¢ (q,u)

vp(r) B ¢;(l» r) ’ vg(p) v (q) B ¢,~+(p7“)'

:_¢;—(p7r)a and
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Multiply the three equations and apply Lemma 8 with p,q, ¢t r,s replaced
respectively by ¢, p, ¢, r,u to get the desired conclusion. O

Denote by P* the set of all p € P such that their upper and lower contour
sets are both nonempty. Recall that the relation > on P is called non-trivial
whenever P* spans the whole vector space.

Theorem. Let P be a convex subset of a real vector space that avoids its origin.
Then a non-trivial relation ~ satisfying Axioms 1, 2, and 3 exists on P if and
only if there is a skew-symmetric bilinear form @® on the space such that

D(p,q) >0 iff p-q, forp,qe P

Proof. Assume at first that a form @ of the kind claimed exists. To show that
Axiom 1 is satisfied, choose any p, ¢, r € P such that &(p,¢) > 0 and &(g,r) > 0.
For any Ae0,1], we have @(Ap+ (1 — A)r,q) = A®(p,q) — (1 — 1)D(q,r)
D(q,r)
D(p,q) + P(q,r)
(1 — A)r ~ q. Axiom 2 is clear, since for any given p € P the set of all g € P
such that p ~ ¢ is exactly the intersection of the convex set P with the linear
subspace {¢q|®@(p,q) =0} and is therefore convex. For Axiom 3, choose
P:q,1,s € P as stated therein. By the above computation, we have ¢,(p,r) =

so that A = is the unique element of (0,1) for which 1p +

D(q,r) . D(r, s) .
———————— and similarly ¢,(¢q,s) = ————————. Permute the points
B(p-4) + 2.7 9= 541 + 009

D(g,5) D(r, 5)
to get ¢,(p,s) =—————— and ¢,(p,s) = —————— Hence,
73) D(p,q) + (g, ) (7:9) D(p,r) + D(r,s)
D(g,r) D(q,r)

by(p.1) + ¢(¢,5) =1 if and only if D(p.q) + D(q,r)  D(q,r) + D(r,s)

which is true if and only if @(p,q) = ®(r,s). A similar computation gives
$,(p,s) + ¢.(p,s) = 1if and only if
Plgs) _ P(pr)

P(p,q) + P(q,5)  P(p,r) + P(r,s)’ *
The supposition that the segment [g, r] is parallel to the segment | p, s] tells us
that any linear functional which is constant on one of the segments is also
constant on the other. Since the functional x — &(x,r) — ®(x,q) is constant
on the segment [g, r] by the fact that @ is skew-symmetyric, it is constant on
[p, s], showing that

D(p,r) + D(r,s) = D(p,q) + (g, ). ()

Thus, Eq. () reduces to @(q,s) = ®(p,r), so that ¢,(p,s) + ¢.(p,s) =1 if
and only if @(g,s) = &(p,r). Using (xx) we see that this is true if and only if
@(r,s) = d(p,q) and together with the above we derive Axiom 3.

Let us now prove the Theorem in the opposite direction. For any p € P*
choose a linear functional v, as in Lemma 4. Fix an r € P* and for any g € P*

(0]
and any vector p define @(p,q) = 0g(P) @EZ?Z))

Ug(1)

v-(q). It follows that
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vg(p) vr(q) vp(r)
vg(r) v:(p) vp(q)
points belongs to the contour set of any other. Thus, ®@(p,q) = —®(q,p) for
any p, q of the kind. Since p — @(p, q) is linear by definition for every such ¢,
so is ¢ — @(p, q) for any such p by this equation. It follows that this equation
extends to all vectors p,q. The fact that p > ¢ if and only if &(p,q) > 0 now
follows by the definition of @ and by Lemma 4. O

= —1 by Lemma 8 for all p, g, € P* such that none of these

We now give a simple but somewhat artificial example showing that
Axioms 1, 2, and 3, are not equivalent to Axioms C, D, and S in general. Take
for P the segment connecting the points (0, 1) and (1,0) of the real plane. Let
the relation on this segment be defined so that the point (0, 1) is preferred to
every other point of P, while indifference holds between any other two points.
It is clear that P avoids the origin of the plane, that it spans the plane, and
that the relation satisfies Axioms 1, 2, and 3. However, observe that Axiom D
fails for this example. So, it is not surprising that there is no non-transitive
utility function @ that would yield this relation.

5 Applications

Assume that we have a finite set of outcomes or prizes X = {x,x2,...,X,}.
Let u; measure the relative utility of the preference of prize x; over the
prize x;. Thus, in particular, u; > 0 means that prize x; is preferred to
prize x;, while u; < 0 means the opposite. Actually, it makes sense to take
uj = —u;. Now, assume two lotteries p = {py,X1;p2,X2;...;Pn,Xny and
q =<4q1,X1;92,%2; - .. ; qn, Xny. The notation means that lottery p yields prize
x; with probability p; for i = 1,2,... n. What is the expected relative utility
for the preference of lottery p over lottery ¢? One attractive possibility is
n n

Z Pitiiqj, (*)

i=1 j=1
and we consider it henceforth.

We write the relative utilities u; in matrix form as

Uir Uiz oo Uln

Upp Uy -+ U
A =

Upl Up2 - Upn

and think of lottery p = {p,X1;p2,%2;...;Pn,Xny as the n-tuple
(py,P2,---,Pn). Denote by P the set of all n-tuples such that p; > 0 for all
i=1,2,...,n,and > ", p; = 1. Then the relative expected utility of Eq. (*)
can be written as ®@(p, q) = pAq", where ¢ denotes the transpose of ¢.
Observe that a permutation of prizes yields a matrix permutationally con-
gruent to the matrix A4, i.e., a matrix Q¥4 Q for some permutation matrix Q.
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If the sequence of prizes can be rearranged as x; > xp > --- > Xx,, then the
corresponding matrix 4 has positive entries above the main diagonal (and
necessarily negative entries below it). This will clearly give rise to a transitive
preference relation on P. On the other hand, if there is a cycle among prizes,
say, x| = X = X3 = X, this will be seen from matrix 4 by the fact that entries
u1» and up; above the diagonal are positive and u3; below the diagonal is
positive. It is clear that no matrix permutationally congruent to this matrix
can have all the entries above the diagonal nonnegative and all the entries
below the diagonal nonpositive.

This application extends to any set of prizes X equipped with a structure
of a measurable space, i.e. an arbitrary set together with a g-algebra of its
subsets. The non-transitive utility function is represented in this case by a
bounded, measurable, skew-symmetric function @ : X x X — R, while the
role of lotteries is played by random variables on X via their probability
measures. The underlying vector space in this case is the Banach space of all
real-valued finite measures. Function @ extends to a skew-symmetric bilinear
functional on this space via @(p,q) = [[ ®(x,y)dp(x)dg(y) for any finite
measures p and ¢. If the two measures represent ‘“‘lotteries”, i.e., they are
probability measures, this formula reduces to the formula of mathematical
expectation of the random variable @(U, V'), where U and V are independent
(generalized) random variables with values in the set X of prizes with respec-
tive distribution laws equal to p and q.

6 Applications to a social choice problem

In [All] a model is proposed for the dynamics of political power and control
in a social system. The paper introduces various socio-political phenomena
such as coalitions, alliances, anarchy, and revolutions. In [Om1] the model is
studied from the point of view of hierarchical relations between the macro
structures of the society. It is a surprising feature of the extended model that
the equilibria always exist although the asymptotic behaviour of the system
may get slower as the number of hierarchical levels grows. We give here
briefly Allen’s macro viewpoint. There is a finite number of structures in the
society, i.e. its control holding, power wielding categories, which possess
relative independence of the others. These categories exercize power through
substructures. Allen’s axioms on socio-political power and control read:

Axiom 1. Each of the structures attempts to exert power to control the others.

Axiom 2. Each of the structures accedes to the others a certain fraction of its
complete control.

Axiom 3. Each structure acts to align the fraction of control that another
structure has over a third according to an intrinsic control matrix,
which may vary from structure to structure.

Let n be the number of identifiable structures, denoted by S;,i = 1,2,...,n.
For any indices i and j let p;; denote the fraction of power (exercized over a
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particular fixed structure) that structure S; accedes to structure ;. The matrix
P= py) of power fractions is called the power profile matrix. It follows
from this definition that >_"" | p; = 1, for j = 1,2,...,n, so that this matrix is
column-stochastic. For any structure S; we further define x; as its fraction of
control. We have

Y xi=1, (%)
i=1

in order to preserve the total amount of control. Each structure has certain
resources or powers at its disposal to achieve its goals. Denote by r; the pri-
mary or direct power of structure S;. Allen’s model may be represented by

n

).C,' = er(pij — X,’)Xj. (**)

J=1

Introduce the resource matrix R = diag(ry,r2,...,r,), and the power fraction
vector x = (x;). In addition, let e denote the n-tuple of 1’s, and define the
resource vector r = Re. Denote by <x, y) the usual scalar product of the real
n-tuples x,y € R”, and let x ® y denote the linear mapping of rank one
defined for z € R" by (x ® y)z = {y,z)x. Using this notation, model (%) can
be rewritten as

X=(PR—x®r)x, (k)

and condition (x) as {x,ey = 1. Thus, we want to find a solution x(z) of the
system of differential Eqs. (sx) satisfying a given initial condition x(0). It
turns out that condition {x, e} = 1 is satisfied by any solution of this system as
soon as the initial condition x(0) satisfies it.

In [Om?2] this model was modified into a model with additive resources. It
was supposed there that in addition to Allen’s axioms the following axioms
are satisfied.

Axiom 4. Every structure has its individual resources.

Axiom 5. The resources of any structure in a coalition equal the sum of the
individual resources of its members, but it accedes all the gained
power to the other members of the coalition.

Axiom 6. The goal of the structures is to increase maximal possible control in
the long run.

Each of the two models may be viewed as a decision model. From this
point of view the columns of the power profile matrix become strategies of the
macro structures. Through these strategies they decide how much of their
power they want to accede to other structures and to which ones. The out-
come of their decisions is the eigenvector # which represents the fractions of
control that the structures gain in the long run. It turns out that in these
models the control is given to some coalitions of structures called coalitions in
power. In both models, the aim of the structures can be considered to max-
imize their individual fractions of control in the long run. However, it turns
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out that there is a substantial difference between the two models in how to
achieve this goal. Namely, the original model as presented in [All] and [Om1]
behaves antagonistically since a structure can only gain some power at the
expense of some other structure, while in the model with additive resources,
as presented in [Om?2], there is an advantage in forming a coalition since the
individual powers of structures add up to the power of a coalition.

The question of what kind of coalitions the structures will choose to form
reduces to a social choice problem. In [Om2] some suggestions were given to
treat the question, including the one using utility functions. Denote by w;(%)
the utility of the structure S; to enter the coalition 4. Then, a posssible way to
get a social welfare function, or at least a social choice correspondence in the
sense of [Mou], is to introduce a “‘social choice utility” such as w(%) =
S wi(%). This way we are taking care of the behaviour of the macro
structures only as long as it is rationally explainable via their resources and
their greed for power and control. We now propose to add to this a term that
would take care of their irrationality as well. Let the relative “irrational util-
ity” w;(%,2) measure the amount of irrational preference that the structure S;
has for coalition ¥ over coalition & and assume that this function is skew-
symmetric on the set of all possible coalitions in power. The irrational part of
the social choice utility is then naturally defined as (%, 2) = >, wi(%, 2),
while the total relative utility is &(%,2) = w(€) — w(2) + (%, 2).

In [Om2] the social choice utility was computed for a possible utility
function. Let r; denote the resources of the structure S;, fori =1,2,...,n, and
assume that > ", r; = 1. It turns out that the fraction of control u;(%) that the
structure S; gains in the long run whenever it decides for a coalition % equals

if S; e % and p(C) > p(D)

u(6) = { p(C)
0 otherwise
where
p(C)=3"r, andsimilarly (D)= r.
jel Jjel

Here and below, 7 is the set of indices of structures in the coalition 4. The
condition p(%) > p(2) means that the coalition % is in power. If we decide for
the utility function w;(%) = u;(%)?, we get

P2(C)
w(®) ={ p(C)’

if p(C) > p(D)

0 otherwise
where
p(C)=> 1, p(C)=>_r}, and p(D)=) 1.
jel Jjel JEl

As an illustration consider three structures with respective resources r, s,
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and ¢, such that r > s>t and s+ ¢ > r. The possible coalitions in power
are .o/ = {S1, S}, B ={S1,S3}, € ={S,,S3}, and the “big” coalition & =
{81, 82, S3}. The social choice utilities of these coalitions are clearly

2,2 2 p 2,2
W(&/):LSZ’ W(g):r + . w((é):r —|—s2’
(r+s) (r+1) (r+s)

2.2 p2

and W(@):%.

(r+s+1)

We now introduce irrationality into this example. Assume that structure S;
hates cooperating with S, and strongly prefers to join its forces with S3. This
implies existence of a relative utility w (%, .o/) = «, where o is a fixed positive
value measuring the level of this preference. To get this utility function skew-
symmetric, we have to define w; (.7, #) = —a. Let all other values of w; be
zero. Similarly, assume that structure S, prefers to cooperate with S| more
than with S3, and that structure S3 prefers to unite its resources with S, rather
than with S;. This implies w, (7, %) = f, w2(¥, ) = —f, w3(¥¢, %) = y, and
w3(%B,%) = —y, with all other values of w, and w3 equal to zero. Here, § and
y are fixed positive values measuring values of the level of respective prefer-
ences. Using the above we get the matrix of relative social choice utilities

0 w(B)—w(d)+o w(@)—w(L)—f w(D)—w(A)
w(el)—w(B)—a 0 w()—w(B)+y w(D)—w(B)
w(Z)—w(@)+f w(B)—w(E)—y 0 w(2)—w(%)

w(et)—w(D) w(B)—w(D) w(%)—w(2D) 0

Now, if r=s=1t= %, then the rational part of the utilities become
w(e/) = w(#) = w(%) =1 and w(Z) = L. Thus the above matrix reduces to

0 o —y f%
-« 0 p -1
y =B 0 —5
SRR

In this case, the structures have equal power and rational reasons give no clear
outcome since all the coalitions of two structures are to occur equally likely
and the “big” coalition will happen less often. So, the outcome depends solely
on the irrational causes. Since structure S| likes to cooperate with S, they
may form the coalition %. However, this creates dissatisfaction on the side of
the structure S3 as they would prefer to be in a coalition with S, rather than
with S]. They may therefore break the coalition % and form the coalition %.
However, now structure S, is not satisfied, so it breaks ¥ and forms .oZ.
Clearly, this behaviour may create a cycle of coalitions exchanging their
positions in power.
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We have thus seen that irrationality can be introduced in the model of
dynamical interactions of socio-political structures. The above example shows
that when irrational causes are not adequately compensated by rational rea-
sons, they can prevail and create a high level of instability. This aspect of the
model may be useful in some applications. It is an interesting question
whether this kind of irrationality can be introduced into the dynamical model
directly to obtain the cyclic behaviour of the model in terms of time ¢.
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Abstract. This paper offers a model of individual well-being that takes into
account cognitive factors. It postulates that individuals compare payoffs to
aspiration levels. The latter are determined by past experiences (adaptation),
by other people’s performance (interpersonal comparison), as well as by rea-
soning (justifications and excuses). We axiomatize a measure of well-being
defined on real-valued vectors of various lengths. It is a linear combination of
differences between payoffs and aspiration levels, where the aspiration level at
each instance is a linear function of past payoffs.

1 Introduction

Modern microeconomic theory is behavioral in nature. For the most part, it
relies on the neo-classical utility function, which is in principle derived from
observed preferences, for both descriptive and normative applications. Fur-
ther, this utility function is often defined on product bundles, disregarding
psychological factors that individuals seem to relate to in describing their
well-being.

For descriptive purposes, this approach is consistent and it may be tested
for empirical validity. By contrast, it is doubtful that a behaviorally-defined
utility function is sufficient when normative considerations are involved.
Welfare economics ultimately deals with cognitive concepts such as “well-

We wish to thank Elchanan Ben-Porath, Eva Gilboa-Schechtman, Daniel Kahneman,
Edi Karni, Dan Levin, Donald O. Parsons, James Peck, Andrew Postlewaite, Drazen
Prelec, Peter Wakker, an anonymous referee, and an associate editor for discussions
that influenced this work, as well as for comments and references.
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being,” “happiness,” and “satisfaction.”” These relate to notions such as aspi-
rations and needs, contentment and disappointment. The literature does not
seem to offer a convincing justification for substituting revealed preference
for these concepts. Moreover, the notion of “well-being” involves too many
cognitive variables to allow us to infer their values from choice data. For
instance, if we accept the view that one’s satisfaction is determined by one’s
consumption relative to one’s needs, we are faced with two subjective, cog-
nitive variables, namely, “needs” and ‘“satisfaction,” that cannot be disen-
tangled based on objective consumption data alone.

The goal of this paper is to suggest a model of individual well-being that
explicitly introduces some of the relevant cognitive variables. Specifically, the
key assumption is that an individual’s well-being depends on her aspirations,
where these are endogenously determined. One may identify three major
factors that participate in the determination of an individual’s aspiration
level for a given experience at a given time. First, people adapt to circum-
stances. Hence the individual’s own history of payoffs affects her aspira-
tions. For instance, when an individual is accustomed to a certain standard of
living, her well-being depends mostly on deviations from it. Second, people
compare themselves to others in what they perceive to be their peer group.
Thus, other people’s payoffs are also determinants of an individual’s aspira-
tions. An increase in one’s income may make one worse off if it is accom-
panied by a decrease in one’s income ranking in society. Finally, various facts
that do not directly relate to any single agent’s performance may give an in-
dividual reasons to expect higher or lower payoffs. For instance, if the econ-
omy is predicted to boom, individuals may be led to expect higher income.
The fact that one grows old may decrease one’s aspirations regarding one’s
health. Aging is a fact that directly (and negatively) affects one’s well-being.
But it also helps one to accept, say, a decline in one’s physical fitness. Simi-
larly, being discriminated against has a direct negative impact on an individ-
ual’s well-being. But it can also account for perceived failures. By this process
of “psychological accounting” an excuse can adjust the individual’s aspiration
level, and thereby mitigate the impact of low payoffs.

These considerations call into question some of the accepted tenets of
welfare economics. For instance, it is not obvious that more choices or more
opportunities necessarily make an individual better off. Choice comes with
responsibility, and it may result in regret. Opportunity generates expectations,
and may lead to low self-esteem. More generally, welfare analysis should take
into account subjective aspirations as well as objective performance. While
having more choices and opportunities may improve the latter, it also tends to
raise the former. Its net effect therefore need not always be positive.

For a concrete example, consider an integrative educational system, in
which children of different neighborhoods and of different socio-economic
status (SES) are put in the same school class. Such a system presumably
allows children of lower-income families to have the same level of education
as those of higher-income families, thereby giving them an equal opportunity
to succeed in their future careers. Undoubtedly, some children may benefit
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from the system in terms of their objective performance. However, many may
experience a reduction in their subjective well-being for two reasons. First, the
mere exposure to lifestyles of higher-income families may make lower SES
children view their life differently. Their neighborhood, house, and consump-
tion opportunities are likely to be seen as less satisfactory than prior to their
exposure to those of high SES children. Second, the semblance of “equal op-
portunity”” deprives them of potential justifications for low performance on
objective scales. Should a child end up with a low-paying job, believing that
she indeed had “equal opportunity” leaves her with no one but herself to
blame for her “failure.” Overall, it is not clear that such a system does more
good than harm. It does seem clear, however, that economic theory lacks the
language to address this question.

A clarification is due before it becomes too late. We do not intend to sug-
gest that people are better off in slavery than in liberty, that competition
should be abolished, or that all students should always get “A” grades. Our
goal is merely to offer a theoretical framework within which some of the
above phenomena can be discussed.

To this end, we suggest the following model. An individual’s history con-
sists of a sequence of facts. Some are events that have a temporal aspect. Some
are atemporal, such as religious or national identification. Each fact ¢ has
an ‘“objective” payoff attached to it, denoted x,. The individual’s instanta-
neous payoff is defined as x; — a,, where «, is the individual’s aspiration level
pertaining to that fact. Overall well-being is defined as a weighted sum of
these instantaneous payoffs. However, the aspiration levels a, are themselves
linear functions of preceding objective payoffs. Explicitly, given a history
x = (x1,...,x7), the measure of well-being is

U(x) = Z wi(x, — ay)

for given weights w,, where

t—1
ap = E SitXi
i=1

for given coefficients s;;.

Suppose that x is the individual’s income stream. An increase in income at
period i has a direct effect on the individual’s well-being. The larger is w;
(assumed positive), the happier will be the individual. However, with positive
coefficients s;, for ¢ > i, the aspiration levels in future periods will be higher. If
the individual will not experience high payoffs in these periods, she may be
disappointed. Moreover, if the aspiration level is an average of recent periods’
payoffs, a permanent increase in income will have an effect mostly in the first
periods, whereas in later ones the aspiration level will be correspondingly
adjusted and the instantaneous payoff will diminish.

Assume now that x describes experiences of consumption of various goods,
including meals, entertainment, social life, and so forth. Within each category,
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similar logic applies. Many of the coefficients s; may be null, reflecting the
fact that the individual’s aspiration level for a certain experience depends only
on experiences of the same kind. Yet, the measure of overall well-being is an
aggregation of all such experiences.

Note that, in the present formulation, current payoffs only affect future
aspiration levels. The individual does not re-assess past experiences in view of
current payoffs or aspirations. Thus, an individual who has a constant high
income will still be better off than one who has a constant low income, even
though both have become adjusted to their respective circumstances. One may
wish, however, to consider a more general model, according to which aspira-
tions are adjusted retrospectively as well.

To capture the impact of interpersonal comparison, we incorporate into
the model facts involving protagonists other than the individual in question.
For instance, assume that we are measuring the well-being of an individual A,
who knows that another individual, B, has a certain annual income. Suppose
that fact i is that B has income x;. The weight w; assigned to this payoff in the
measurement of A’s well-being reflects A’s attitude toward B. Should it be
positive, A would rejoice at B’s successes and lament her failures. Naturally, a
negative w; would reflect a less benevolent attitude. Finally, if w; is zero, B’s
income has no direct impact on A’s well-being.

However, even if w; is indeed zero, or if one maintains that, for normative
purposes, w; should be assumed zero (see Harsanyi (1992)), B’s income may
affect A’s aspiration level, and thus his well-being, via the coefficients s;. A
positive value of s; would make A aspire to have a higher income, the higher
is B’s income. Further, this social aspect may interact with the process of
adaptation discussed above. Assume that every two weeks both A and B get
their pay checks, and that A knows B’s previous payoffs. We obtain a se-
quence of facts, in which the odd-numbered ones are, say, A’s salary, whereas
the even-numbered ones reflect B’s salary. Assume that A’s salary is lower
than B’s, and that the aspiration level is a weighted average of past period’s
payoffs. If left alone, A would have adjusted to his income, and his U measure
would tend to zero. However, in the presence of the constant reminder of B’s
higher income, A’s U measure remains negative.

Observe that our interpretation of ““aspiration level” is emotional rather
than rational. That is, the aspiration level does not attempt to capture the
individual’s reply to “What do you think you will get?” but rather ‘“What
would make you content?” In the example above, A cannot fail to notice that,
pay period after pay period, B gets a higher salary. If asked, A would certainly
be able to correctly predict his next paycheck. However, to the extent that A
has not come to terms with this salary difference, to the extent that he is
bothered by it, feels that he is discriminated against, and so forth — his aspi-
ration level is affected by B’s income.

Next consider examples of psychological accounting. An old woman finds
that her mental capacities are becoming limited. She faces problems remem-
bering names, numbers, tasks, and so forth. Of course, this is not good news.
However, she might not be as unhappy about it as she would have been had



Cognitive model of well-being 273

these phenomena occurred when she was young. In our model, “growing old”
would be one of the facts in the woman’s memory. This fact is associated with
a low payoff and thus reduces well-being. But, to the extent that the woman
comes to terms with aging, this low payoff also reduces her aspiration levels
regarding her memory’s performance. This would make future failures less
painful, and mediocre successes — a source of joy.

Psychological accounting also applies to one’s self-esteem. Consider a pro-
spective student who belongs to a minority group, say, defined by religion. He
is not admitted to a top school, and he suspects that he might have been dis-
criminated against. Being denied admission is not good news. As in the pre-
vious example, discrimination also means that the student suffers from unfa-
vorable interpersonal comparison. Every equally qualified candidate who was
admitted makes the rejection more painful. Moreover, the injustice of discrim-
ination is infuriating in and of itself. However, given that one is not admitted,
there may be some consolation in the fact that this failure is not a reflection of
one’s true merit. As far as responsibility and self-esteem are concerned, the
student may ‘““deduct’ his religion from his objectively poor performance. He
is only responsible for the unaccounted part of this low payoff.

The phenomena we attempt to capture in our model have been discussed in
the past. Indeed, some of these discussions date back to religious thinkers of
previous millennia, and some have pervaded popular culture to the point of
banality. To the extent that this paper makes a contribution, it is in offering a
simple, formal model that allows a discussion of well-being and that captures
the various determinants of aspirations in a unified way.

The rest of this paper is organized as follows. Section 2 presents the model
and an axiomatization of the evaluation rule. The main goal of the axiomatic
treatment is to show that theoretical concepts such as ““aspiration level” can
be derived from a more primitive and presumably observable preference rela-
tion. Section 2 also discusses monotonicity. Section 3 discusses the relation-
ship of our model to existing theories, and the extent to which it can describe
some empirical psychological findings. We devote Sect. 4 to a discussion of
welfare economics in light of our model. Section 5 concludes.

2 Model and result

A “fact” is a pair, of circumstances and payoff. To simplify notation, we
assume that the circumstances are ordered, and identify them with the natural
numbers. It should be borne in mind that they are not necessarily repetitions
of identical situations. For instance, “‘circumstance’” 3 may be belonging to a
minority group, ‘“‘circumstance” 5 may be having a meal, and so forth.

The objects of comparison are histories, represented by real-valued vectors,
with generic notation x” = (x{,...,x}). Since histories of different lengths
are involved, we will use superscripts to denote their lengths. Thus, a symbol
such as x7 denotes a real-valued vector of length 7 > 1, with generic com-
ponent x/. We will use this notation also for real-valued vectors that are not



274 I. Gilboa, D. Schmeidler

interpreted as histories (for instance, vectors of coefficients). Finally, (x”, y7")
denotes vector concatenation.

When considering different values of x!, we refer to different possible
facts, all of which share the circumstances, and vary only in the objective
payoff. For instance, x] may take a low value if the individual in the example
above was discriminated against because he belonged to a minority group. It
would take a high value if the individual still belonged to the same group, but
benefited from this identification. In the sequel we assume that any real-valued
payoff can be attached to any circumstance, generating a meaningful fact.

Implicit in this notation is the assumption that all possible histories agree
on the order of circumstances. That is, for any two histories, the vector of
circumstances of the shorter history is a prefix of the corresponding vector for
the longer one. The model can be extended to deal with functions on arbitrary
sets of circumstances. Yet, the present set-up contains sufficient information to
derive the functional form we are interested in, and its notation is simpler.
Further, no loss of generality is involved in assuming that facts are linearly
ordered, as opposed to partially ordered.

o0
Thus the set of objects of comparison is X = () R’ and > will denote a

T=1
binary order on it. x” > y7" is interpreted to mean that a history x7 makes an
individual at least as happy as a history y”". Our primary interpretation of >
is cognitive: it should reflect an individual’s responses, based on introspection,
to questions of the type “what life history would make you happier?” It is also
possible to interpret the preference relation behaviorally, provided that choice
data are given not only between outcomes but also between entire histories.
For instance, major life decisions can be viewed as choices between life paths,
for oneself or for one’s children. But it is hard to imagine that the preference
between any two life histories may be revealed by actual choices. Be that as it
may, we emphasize that the preference between life histories can not be sub-

sumed by revealed preferences between single outcomes.

One may wonder, how can histories of different lengths be compared? For
instance, if 7 < 77, x” may appear “better”” than y”" simply because we are
not told what happens in history x after 7. Shouldn’t we first find out what x
entails? The answer is no. If the interpretation of > is cognitive, there is no
difficulty in comparing well-being or happiness at different times. Indeed,
many people feel that they were happier in their youth than in old age. But
even if > is behaviorally interpreted, “facts” in our model need not be tem-
porally defined, nor are they required to be complete descriptions of one’s life.
Rather, they are the subjectively relevant facts.

We are interested in the following axioms on > (<, >, <, and ~ are
defined as usual):

Al: > is a weak order.

A2 (Continuily) For every T, T’ > 1, and every x7, the sets {yT |xT > T}
and {y7'|xT < yT'} are open (in the standard topology) in ‘J{

A3 (Additivity): Forevery T,T' > 1, and every x7, y7', zT wT' if xT > y7
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(xT>ypT)and zT > w”' then xT + 27 > pT" 4w (xT + 27 > pT" 4w,
A4 (Neutral Continuation): For every T > 1 and every x” there exists a € R
such that x7 ~ (x7, a).

Al and A2 are standard. A3 is a straightforward additivity assumption. It
makes sense mostly when the payoffs are interpreted as if they were measured
in “utiles.” Finally, A4 guarantees that for every history there is a continua-
tion that does not affect its desirability. Intuitively, the value a reflects the
individual aspiration level following the experience x”. Should the individual
now experience the payoff a, she would be just as content as before. In the
presence of A2, one can derive A4 from the assumption that any history can
be continued in a way that would improve it, as well as in a way that would
impair it.

Our main result is
Theorem. The following are equivalent:

(i) > satisfies A1-A4;
(ii) There are real numbers (w;),~ and (si) ;- such that for every T, T' > 1,

’
and every xT, yT',

X2 y" o) = u(y")

where

U") =D wila] = a(x"))
=1

and
-1
a;(xT) = Zs,-,x,-T.
i1

Furthermore, in this case the weights (w;),. | are unique up to a multiplication
by a positive number, whereas, for every t > 1, (sit),~;> are unique whenever
w; # 0 (and arbitrary otherwise ).

The proof is relegated to an Appendix.

Under A1-A4, U need not be monotone with respect to the instantaneous
payoffs. Indeed, since some of the payoffs may reflect other agents’ experi-
ences, there is no need to assume that U is always monotone. However, if we
restrict attention to facts that relate to the individual under consideration, lack
of monotonicity may be theoretically troublesome. For instance, it allows
that an individual be better off not to get a one-time increase in income, due
to future disappointments. Similarly, an individual might be better off when
discriminated against, or at least when believing he is. While such rankings
may be observed, most people would not consider it ethical to rely on them in
decision making regarding other people’s welfare. For example, it is not very
convincing to argue that one should not give charity to homeless people, in
order not to expose them to future disappointments, or that all cases of dis-
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crimination are made up by weaklings who cannot confront their own inad-
equacies. We are therefore interested in the following:

A5 (Monotonicity): For every T > 1 and every x7, yT, if xI > pI for all
t < T,then xT > yT.
Observation: Under the assumptions of the Theorem, > satisfies AS iff

T
w; > Z syw, foralli<T (%)
=it+1

(in particular, wr = 0 for all 7).

Condition (x) states that the direct (positive) impact a payoff x; has out-
weighs the potential indirect (negative) impact it has on future aspiration
levels. In view of the uniqueness result in the Theorem, this condition does not
depend on the specific numbers chosen to represent >.

Monotonicity does not imply that the coefficients s; are nonnegative. On
the contrary, the lower are the s;;, the larger is the cone of (w;),. | that define
a monotone relation. A negative value of s;; may result from several reasons.
First, payoff in circumstance i may be perceived to be negatively correlated
with performance in circumstance ¢. For instance, one may be happy that one
is honest, but consequently one may not expect to be considered very polite.
Second, an individual may experience satiation. In this case, high payoffs in
some early circumstances may reduce her aspiration level in later ones. (This
may also result in changing the coefficients wz. Such dependencies are beyond
the scope of the linear model.)

3 Psychological evidence and related theories

The term “aspiration level” is borrowed from Simon (1957), who argued that
people ““satisfice,” rather than optimize in decision making. A payoff that
exceeds the aspiration level makes the decision maker “satisficed,” and there-
by prone to retain the status quo, whereas a payoff that falls below it prods
her to experiment. Gilboa and Schmeidler (1995, 2001) suggest a model of
decision under uncertainty that provides a behavioral definition of “aspiration
levels.” However, we do not focus on the decision-making aspect in this pa-
per, and the present interpretation of “aspirations’ differs from the behavioral
one. A rational decision maker may behave as if she were satisficed because
she knows that she has no better option than her current choice. Yet, if she is
unhappy, she is below the “emotional” aspiration level we use in this paper.
Adaptation level theory, developed by Helson (1964), suggests that people
adjust to various stimuli. The theory deals with phenomena ranging from
perception to happiness and to learning and creative thinking. It postulates
that the adaptation level is a geometric average of a ““background” level and a
series of stimuli. (These terms are borrowed from the case of visual percep-
tion.) Since we focus on aspiration level adjustments, the formal concept of
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“aspiration’ in our model bears kinship to adaptation level. Specifically, on a
logarithmic scale, Helson’s formula for the adaptation level becomes very
similar to the linear one we use for the aspiration level.

Adaptation level theory focuses on the measurement of an instantaneous
sensation, rather than on the concept of overall well-being. It thus corresponds
to expressions of the type x; — @, in our model, and does not deal with aggre-
gation thereof. In contrast, our overall measure of well-being, U, is cumulative
in nature. It attempts to measure how happy an individual is throughout a
sequence of experiences, or how desirable such a sequence is. Correspond-
ingly, two individuals who are fully adjusted to their respective income levels
might be equally happy according to adaptation level theory, while the richer
individual would still have a higher U value in our model. Still, the assessment
of instantaneous payoffs relative to an adapting aspiration level finds support
in the psychological literature on adaptation level theory. (See Appley 1971)

Brickman et al. (1978) studied lottery winners and their self-reported hap-
piness. They found that recent winners were not happier than were control
subjects. They explain this phenomenon using adaptation level theory, by the
concepts of contrast and of habituation: shortly after the lottery, in contrast to
the moment in which the winners were informed of their gains, they were no
longer as happy. Similarly, it is postulated that they became habituated to
their new wealth level. In our model, habituation is captured by the adjust-
ment of the aspiration level. In order to satisfactorily model contrast, how-
ever, one may wish to extend the model by allowing the s;, to depend on the
instantaneous payoffs: a single period in which the payoff was exceptional
may, because of this payoff, play a more major role in the determination of
future aspiration levels. (Other studies relating to aspiration level adjustments
include Payne et al. 1980, 1981; March 1988, and Mezias 1988.)

There is ample evidence that subjective well-being can hardly be approxi-
mated by real income. Campbell (1981) argues that “people react to the world
as they perceive it, not as it objectively is” (p. 23), and studies self-reported
happiness across various income and education levels in the US over time. For
instance, from 1957 to the early 1970’s, the proportion of American popula-
tion who were prepared to describe themselves as ““very happy” declined from
35% to 24%; by 1978, it had risen to 30%. These shifts ““are in direct opposi-
tion to the national economic trends” (p. 28). Perhaps more significantly,
these proportions are at a very low correlation with income and with educa-
tion levels. (See also Schoemaker 1982, Diener 1984, Duncan 1975, and
Easterlin 1974) This evidence is consistent with our model: a high-income in-
dividual is likely to be better off than a low-income one, but, since the aspi-
ration levels of both adjust over time, measures of their long-run well-being
need not be drastically different.

Kahneman and Varey (1991) discuss adaptation level theories, and suggest
that utility may be derived from transitions no less than, and perhaps more
than from states (see also Kahneman 1994). Relatedly, Fredrickson and
Kahneman (1993) find that the way people retrospectively evaluate affective
episodes (viewing film clips in their studies) is barely related to their duration.
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They dub this phenomenon ‘“‘duration neglect.” Moreover, Kahneman et al.
(1993) have found that, due to duration neglect, people may choose more pain
over less. They exposed subjects to a painful experience (60 seconds of holding
one’s hand in water at 14 °c), and then to the same experience followed by a
better, but still painful, end (additional 30 seconds of holding the hand in
water that gradually warmed up to 15°c). A significant majority of the sub-
jects preferred to repeat the longer experience.

Duration neglect is captured by our model if the aspiration level is
adjusted fast enough. Fredrickson and Kahneman (1993) also report that
individuals’ retrospective evaluations of affective episodes significantly depend
on the peak and the end levels of affect. End effects are compatible with our
model." However, modeling peak effects (as well as modeling the concept of
“contrast” mentioned above) calls for a generalization according to which the
weights w, and s; may depend on the instantaneous payoffs. It should be
noted that Kahneman and his colleagues discuss the effects of memory, as well
as one’s ability to predict one’s taste. It is not clear that the way experiences
are remembered is the yardstick by which well-being should be measured. Yet,
the evidence provided by these studies supports the principle on which our
model is based.

Kahneman et al. (1997) suggest a normative model for the evaluation of
experiences. Their normative suggestion is to avoid duration neglect. By con-
trast, our model is more descriptive in nature. As discussed below, we tend to
be more agnostic on normative questions. When histories consist solely of past
consumption, our model bears resemblance to other models such as Ryder
and Heal (1973), Abel (1990), and Becker’s (1996) model of addiction, in that
preferences are history-dependent.

Interpersonal comparisons of income, status, and utility have probably
received economists’ attention more than other determinants of an individu-
al’s aspiration level. Veblen (1899) has already discussed conspicuous con-
sumption (see also Leibenstein 1948). Duesenberry (1949) has formulated the
relative income hypothesis, stating that saving rates depend on a family’s
percentile position in the income distribution. Hirsch (1976) further empha-
sized the role of relative social status. Hayakawa and Venieris (1977) discuss
the consumer’s “‘reference group’ in this context. Interpersonal comparisons
are also at the basis of the concept of “envy-free” allocations introduced by
Foley (1967) (see also Schmeidler and Vind 1972, Pazner and Schmeidler
1974, and Varian 1974). Frank (1985a, 1985b, 1989) argues that an indi-
vidual’s consumption is compared to that of others, as well as to past
consumption, thus combining adaptation with interpersonal comparisons.
Kapteyn et al. (1980) and Kapteyn and Wansbeek (1982, 1985) argue that
utility is completely relative. Ng and Wang (1993) present a model that cap-
tures aspiration level and interpersonal comparisons effects, as well as envi-

! This may be more clearly seen from an equivalent mathematical representation of
the evaluation functional. See Appendix.
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ronmental factors. (Other studies include Rainwater 1974, Layard 1980,
Tomes 1986, Seidman 1987, Congleton 1989, and Persky and Tam 1990.)

In the context of existing literature, the present paper suggests a formal,
axiomatically-based model that captures the effects of past consumption and
of interpersonal comparisons, as well as other factors affecting aspirations, in
a unified way.

Another phenomenon our model attempts to capture is that one’s well-
being depends on reasons, justification, and excuses one may have for objec-
tively poor performance. When pushed to an extreme, this cognitive phe-
nomenon may be reflected in behaviorally observed preference for situations
in which one is constrained, or “objectively”” disadvantaged. Such preferences
are called “self-handicapping’ in the psychological literature. For instance,
Berglas and Jones (1978) have conducted an experiment in which subjects
were administered a drug prior to engaging in a problem-solving task. The
subjects were asked to choose between two drugs. One was described as
enhancing performance, whereas the second was allegedly interfering with
performance. Some subjects (mostly male) chose the drug that was alleged to
induce poorer performance. According to Berglas and Jones, the only plausi-
ble explanation for this choice is to provide oneself with an excuse for failure
to solve the problem. (See also Tice and Baumeister 1990). In our model, such
a choice is explained by a higher U value in the presence of a fact that may
serve as an excuse. (Note, however, that this type of preference violates the
monotonicity axiom.)

Berglas and Jones also allowed subjects to choose the level of difficulty
of the task. They found that “subjects high in fear of failure show a ten-
dency to prefer either very simple or very difficult tasks, tasks typically
low in diagnosticity” (pp. 405-406). McClelland (1961) has argued that
not everyone wants to have ‘“‘concrete knowledge of results of choices and
actions” (p. 231). (See also Sedikides 1993 and Trope 1979 regarding prefer-
ence for diagnosticity.)

The tendency to choose a task that would not provide much information
regarding one’s abilities may be explained by our model: failing on a task that
is known to be difficult is less painful than failing on one that is supposed to be
manageable. The fact that the task is difficult reduces one’s aspiration level
regarding one’s performance on it. Thus, in case of failure, the resulting U
value would be higher in case of a difficult task than it would be in case of a
simpler one.

4 Welfare economics

Measuring well-being by a ‘““utility’’ index introduces the temptation to adopt
various axioms that are well accepted in the context of the neo-classical utility
function, or of income. For instance, Pigou (1920) has introduced an axiom of
social welfare, according to which a transfer of income from a high-income
individual to a low-income one, that does not reverse their income ranking,
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enhances equality. Applying this axiom to our model verbatim may result in
the suggestion that a satisficed individual be taxed in order to subsidize an
unsatisficed one.

Such a suggestion is patently absurd as a general principle. The satisficed
individual may be much poorer than the unsatisficed one. In this case, the
transfer, which is Pigouvian on a subjective scale, is clearly non-Pigouvian
on an objective one. It hardly seems just to tax someone simply because
they happen to have a low aspiration level. Further, this policy is easily
manipulable, since it provides individuals with an incentive to overstate their
aspirations.

However, in some cultures it is not uncommon to observe transfers from
elderly parents to adult children that follow this pattern, and appear to be
viewed as morally acceptable by both sides. Especially if the parents have
consumption habits and aspiration levels that were shaped in less affluent
periods, they may find that they “have no use” for part of their income,
whereas their children, despite their higher income, can easily spend more.
(For a related phenomenon regarding consumption patterns, see a front-page
story in the Wall Street Journal of July 8, 1996.) Our model is not designed
to explain the phenomenon of intergenerational transfers. It only attempts
to show that such transfers may not be viewed as unfair even when they are
non-Pigouvian.

Moreover, any reference to a “status quo’ as a basis for a moral right or
claim may be viewed as an implicit recognition of (adjusted) aspiration levels
as an ethical reference point. Specifically, the legal system appears to accept a
divorced spouse’s claim for a certain standard of living, a tenant’s right to a
certain bound on rent increase, and so forth.

Aspiration levels in their original psychological meaning may be too sub-
jective and too easily manipulable to serve as a basis for normative arguments
in interpersonal interactions. But they do seem to capture some intuitive
notions of “what is fair” that economic theory tends to ignore.

Another dangerously simplistic conclusion that may be associated with our
model is that, since aspirations adapt, there is no point in attempting to im-
prove objective conditions of human life. Indeed, based on adaptation level
theory, Brickman and Campbell (1971) make a similar point, and argue that
“there is no true solution to the problem of happiness” but “getting off the
Hedonic Treadmill.” (See also Thurow 1971, 1973, 1975, 1980 and Ittleson
et al. 1974.)

While many philosophers and religious preachers have offered similar
arguments over the years, this is a rather dangerous position for a social sci-
entist. First, as noted by Kahneman and Varey (1991), not all experiences are
subject to adaptation. On the contrary, some aversive experiences escalate
with time. Examples such as hunger and other forms of physical deprivation
illustrate. Second, adaptation and habituation are constrained by the social
context. An agent may never be satisficed with a given level of income should
all around her enjoy higher levels of income. Finally, a distinction should
be drawn between a normative recommendation for an individual and for a
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society. An individual may choose to step off the “Hedonic Treadmill’’; but
one can hardly be excused for pushing others off it, leaving more space for
oneself.

Yet, aspiration levels can be modified by education, exposure to informa-
tion, and adaptation. Further, it is sometimes easier to reduce aspirations than
it is to improve objective payoffs. The psychological literature provides evi-
dence that people typically are not fully aware of potential effects of adapta-
tion and of aspiration level adjustments. Studies such as Kahneman and Snell
(1990, 1992), and Loewenstein and Adler (1995) conclude that, partly due to
these processes, many individuals are poor predictors of their own future
tastes. It follows that normative economics should take these considerations
into account. (See also Scitovsky 1976 who argued that consumers need not
know ‘““‘what’s best for them.”)

In our model, the lower are an individual’s aspiration levels, the happier
she is. One may conclude that, given the choice, as, say, in the case of edu-
cating a child, we should select the lowest aspirations possible. But this would
be premature. First, due to adaptation and interpersonal comparisons, aspi-
ration levels are never fully controlled. Hence we cannot claim to have found
a “‘shortcut to happiness” that is independent of objective payoffs. Second, the
latter are not independent of the aspiration levels. Specifically, higher aspira-
tion levels prod experimentation, which may lead to objectively higher pay-
offs. Indeed, Gilboa and Schmeidler (1996) shows that ambitious but realistic
aspiration level adjustments lead to objectively optimal choice. (See also Gilboa
and Schmeidler 2001) Thus, reducing a person’s aspiration level makes her
happier given the same objective payoffs, but may also negatively affect the
payoffs she is likely to get. Striking the balance between the positive and the
negative effects of ambition is therefore a delicate matter.

Our model highlights welfare implications that information might have.
For example, information about other agents’ income may have direct effects
on one’s well-being. Moreover, if aspiration levels are more readily adjusted
upward than they are downward, one may argue that, on average, people are
better off knowing less; or that a more segregated society would allow more
people to feel that they are “Number One.” This is a dangerous idea. It may
serve various political causes. As explained above, it may also hinder objective
progress. But it would be wrong to pretend that information has no subjective
cost.

Similarly, one may argue, with various degrees of honesty, that segregation
and even discrimination are beneficial to disadvantaged, or discriminated-
against populations. Again, an outrageous notion. Yet, it is a mistake to avoid
such arguments by choosing a theoretical model that does not even allow their
formalization.

To conclude, there appear to be many more claims that we are not willing
to make than that we are. It is entirely possible that, from a normative point
of view, little can be said at this level of generality. We hope, however, that
the model presented here may be of help in discussing some specific normative
issues.
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5 Concluding comments and further research

5.1 According to cognitive dissonance theories (Festinger 1957), people tend
to provide post-hoc explanations for various facts. For instance, when a cer-
tain activity results in a low monetary payoff x,, the individual may attempt to
believe that there were other reasons to engage in this activity. In our model,
this can be viewed as an adjustment of the coefficients s; for i < ¢. Assuming
that preceding facts should have decreased the aspiration level for fact ¢, the
individual’s current well-being increase. (See also Shafir et al. (1993) on pref-
erences for choices that can be more readily justified.)

5.2 When facts involve other agents as protagonists, they may be ordered
in more than one way. In particular, one may wish to list a temporal fact
according to its time of occurrence, rather than the time in which it became
known to the agent. Alternatively, one can use an extension of the model in
which, as above, the coefficients s; may be adjusted retrospectively.

5.3 Another extension of this model would differentiate between upward
and downward adjustments of the aspiration levels. It appears that people
“get used” to higher payoffs more readily than to lower ones. In particular,
this assumption may partly explain such economic phenomena as wage rigid-
ity. Also, under the assumption that aspiration levels adjust upward faster that
they do downward, applying utilitarian criteria to our measure of individual
well-being would result in preference for equality.

5.4 Modeling justifications explicitly allows capturing some aspects of
regret theories. For instance, having fewer options may serve as a justification
for a given choice and for its outcomes. Correspondingly, it can reduce regret.

5.5 With normative applications in mind, one might wonder to what extent
our theory describes “rational” evaluation of well-being. For instance, can
such phenomena as minimization of cognitive dissonance be part of a rational
evaluation model?

We tend to answer this particular question in the negative. Knowingly
adjusting one’s beliefs to match actual performance has a flavor of irrational-
ity. Specifically, such an exercise may fail should the individual be fully aware
of the analysis of her cognitive processes. (See Gilboa 1991 and Gilboa and
Schmeidler 2001 for a related definition of “rationality.””) However, there
appears to be nothing irrational in an individual taking into account her
future habituation to, say, high income.

Our approach is to start out with a cognitively plausible descriptive theory,
and to study within it the boundaries of rationality, and of practical normative
recommendations.

5.6 The term “normative science” is used with more than one meaning.
Should a normative scientist devise algorithms to obtain goals that were dic-
tated to her, as would an engineer? Or should she tell people what goals they
should have, as a moral preacher might do? We find it useful to define the role
of the normative scientist as separate from that of the engineer, as well as from
that of the preacher. Rather than taking goals as given, or determining what
they should be, we focus on the scientist’s task of modeling and analyzing the
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moral and ethical preferences of decision makers, such as the preferences over
societies one might belong to.> To the extent that our model might have
normative implications, it is in this light that they should be construed.

Appendix
Proofs and related comments

Proof of the Theorem. The necessity of the axioms and the uniqueness result
are straightforward. We therefore prove only sufficiency, i.e., that (i) implies
(ii). It may be convenient to prove this result in two steps. Noting that U is a
linear functional, we first derive a more explicit linear representation. We then
show that this representation is algebraically equivalent to U. Specifically, we
state two propositions:

Proposition 1. Assume that > satisfies AI-A4. There exist real valued vectors
(ﬁT)Tzl such that:

(a) for every T > 1, BE #0 or [f1 = BI~" for all t < T);
(b) for every T,T' > 1, and every xT, yT',

T T pp pT T T T
xtxyt gt xt =By
where - denotes inner product.

Proposition 2. For every T > 1, define wr = /3;. For T > 1, ifﬁ; # 0, define
g — gl

SiT =~
pr
and if B1. = 0, define sit = 0.
Then, for every T > 1, and every x7,

U()CT) _ ﬂT . xT
where

UxT) = i w,(xtr — a,(xT))
=1

and

—1
a,(xT) = Z s,-tx,-T.
i=1

Thus Proposition 2 guarantees that the numerical representation of Propo-
sition 1 and that in part (ii) of the Theorem are equivalent.

2 In this sense, normative theories are descriptive.
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Proof of Proposition 1. Assume that > satisfies A1-A4. The proof proceeds in
several steps.

Lemma 1. For every T >1, and every xT,yT, and zT :xT >yT iff
xT 427 ZyTJrZT.
Proof. A repeated application of A3.

Lemma 2. For every T > 1 there exists a vector 7 such that for every xT, yT,
T T o pT T T T
xt =yt odff preoxt =Byt
Moreover, each BT is unique up to a multiplication by a positive number.

Proof. Note that the restriction of > to R’ is a continuous weak order (by
Al and A2). In view of Lemma 1, the proof is standard.

Select a sequence of vectors (ﬁT)TZl provided by Lemma 2. We wish to
show that each can be re-scaled such that together they represent preferences
across different R7’s as well. To this end, we use a few auxiliary lemmata.

Lemma 3. For every T,T' > 1, the set {(xT, yT")|xT > yT'} is open (in the
standard topology) in RT+T".

Proof. Endow the set X = U RT with the topology whose base is the union

T=1
of the standard topologies on each R . (Convergence in this topology requires
that a net consist of vectors of identical lengths from some element on, and
that they converge in the corresponding topology.) X is a separable metric
space; a metric for it can be defined by

, T-T| ifT#T

d T Ty | ,

oo = e Ly el

where /(a) = min(a, 1) and | - | denotes the Euclidean distance in the appro-

priate space. Hence, by Debreu (1983) (Chapt. 6, Theorem II, p. 109), >
admits a continuous real-valued representation. This implies the desired
result.

In the following, 07 denotes the origin in R7.
Lemma 4. For every T >1:07 ~07+!,

Proof. If not, consider a pair x” and y7*! such that x” ~ yT*!. (The existence
of which is guaranteed by A4.) Using A3, one obtains a contradiction.

Lemma 5. For every T, T' > 1, and every xT,yT" : xT > pT" iff —xT < —pT".
Proof. Otherwise, A3 would lead to a contradiction to Lemma 4.

Lemma 6. For every T,T' > 1, every xT, y"", and every ). >0:xT > yT" iff
axT > jpT.

Proof. 1t is sufficient to prove the “only if” part. Inductive application of A3
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proves if for a natural 1. Similarly, A3 proves that x” > y7" implies
nxT > nyT'. Thus the “only if” part follows for every positive rational .
Lemma 3 concludes.

Lemma 7. For every T > 1, if BT # 07, then T+ # 07+,

Proof. Otherwise, there is x” > 07, but for all ae R, (x7,a) 07 ~
07 < xT, contradicting A4.

Completion of the Proof of Proposition 1. We now turn to define the vectors
(BT) ;- as positive multiples of the respective (7). . If all the 47 vanish,
then, by Lemmata 2 and 4, all vectors in X are equivalent, and the proof is
complete. Let Ty be the first number for which T does not vanish. By Lemma
7, BT # 07 for every T > Ty as well.

For T < Ty, BT =BT is uniquely defined (as the origin). For Ty, set
pTo = pT. We now wish to show by induction on T > T that there exists
o > 0 such that, by defining 7 = af”, the vectors (' ); < 7 Tepresent > for
all vectors of length T or less (where representation is defined as in part (b) of
Proposition 1). Note that this claim holds for 7.

Assume that the claim is true for 7(>Tj), and we prove it for T+ 1. In
view of A4, it suffices to find o > 0 such that 77" = «87+! would satisfy

XT ZyT+1 iff ﬁT'xTZﬁT+1'yT+lo

Choose x7 > 07. Let y7*! satisfy x” ~ j7*!. (Again, existence of such y7*!

is guaranteed by A4.) By Lemmata 2 and 4, f7+!. y7+! > 0. We can there-
fore define

ﬁT')_CT

- ﬁ’TH - yT+l >0,

so that p7 . x7 = pT+1. pT+1,
Let there be given x7, y7*!. Distinguish among three cases:

(i) If xT 20T 207+ ie., p7-xT =0, then x7 > (=, <)yT+! iff 07+ >
(=, <)yT*!. By Lemma 2, this is the case iff f7 - x7 =0 =7 .07+ >
(= <)ﬂT+1 'yT+l-

(i) If x”>0T~07*" ie, p7-xT >0, there exists A>0 such that
xT =~ xT. By Lemma 6, x” > (~,<)yT™iff ixT > (=, <)ApTH ie.,
iff 71 > (~,<)ipT*!, which (by Lemma 2 again) is equivalent
to ﬁT-H ')7T+1 > (:7<);LﬁT+l . yT+l. Since ﬂT+l .yTJrl :ﬂT 3T =
BT - xT it follows that x7 > (=, <)y THiff g7 . xT > (=, <)pT 1. pT+1,

(i) Finally, if x7 <07 ~07*! e, pT-xT <0, by Lemma 3,
xT > (=, <)pTHiff —xT < (=,>) — yT*!. Using case (ii) above, this is
equivalent to —f7 - x7 < (=,>) — 7. »T+! and therefore also to
ﬂT xT s (:7 <)ﬁT+1 _yT+1.

Finally, we prove that the vectors (f T)TZl satisfy part (a) of the Proposi-
tion. Forevery T > 1, ifﬁ% # 0, we are done. If, however, ﬁ; =0, use A4 to
conclude that y” ~ (yT,a) for every 7 and every a € R. By the representa-
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tion of > as in part (b),

T T
T2y"x (e it Y BN = Z [y
=1 =1

for every x”,yT. This implies that /™" =pT for all 1< T, and thus
completes the proof of Proposition 1. <&

Proof of Proposition 2. For every ae R, U(a)=wja=fla. For T > 1,
assume that U(x’) = B’ x' has been proved for every ¢ < T and every x'.
Consider x7, and denote its (7 — 1)-long prefix by x”~!. Then

T-1 T-1

= ,B[TxiT TxT = Z:BT lsz + (ﬂlT ﬂ ) +ﬁTxT

= U(xT). O

Remark 1. By definition, wr are linear functions of (f ( g Conversely, it can

T>1
be seen that (ﬂT)Tzl are uniquely defined by p* - xT = U(xT), and are linear
Sfunctions of (wr) . Explicitly,

T

T
B =wi— E SitWr.

t=i+1

may rank vectors lexicographically, first by length, and then according to p*
within each R” .

Further, A4 cannot be replaced by assuming, say, that 07 ~ 0T+! for every
T. To see this, define > by the following function:

Remark 2. In the absence of A4, the Theorem does not hold. For instance, >

U(x)=x forallxeR
UxTy=2x]" forall x" with T > 1.

> satisfies A1-A3, and the condition 0T ~ 0T+, but does not satisfy A4.
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Abstract. Uncertainty aversion is often modelled as (strict) quasi-concavity of
preferences over uncertain acts. A theory of uncertainty aversion may be
characterized by the pairs of acts for which strict preference for a mixture be-
tween them is permitted. This paper provides such a characterization for two
leading representations of uncertainty averse preferences; those of Schmeidler
[24] (Choquet expected utility or CEU) and of Gilboa and Schmeidler [16]
(maxmin expected utility with a non-unique prior or MMEU). This charac-
terization clarifies the relation between the two theories.

1 Introduction

A large body of work has recently emerged in economics and decision theory
with the goal of representing behavior in the face of subjective uncertainty
that may violate the independence axiom of subjective expected utility theory.
One branch of this literature, and the one that will be the focus below, con-
siders preferences that may violate independence by displaying a preference
for facing risk (or “objective” probabilities) as opposed to uncertainty. This
preference is known as uncertainty aversion. One motivation for examining
these preferences are the well-known problems posed by Ellsberg [10] and the

I thank Mark Machina, Michele Cohen, Edi Karni, Paolo Ghirardato and other par-
ticipants in the 21st Seminar of the European Group of Risk and Insurance Econo-
mists for stimulating discussions that motivated me to begin this work. Eddie Dekel
and Massimo Marinacci provided very helpful comments on a preliminary draft. An
anonymous referee provided useful suggestions. All errors are my own.
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huge experimental literature that has followed, in which many individuals
behave as if they were uncertainty averse.

There are several ways that one could imagine defining uncertainty aver-
sion. The definition that I will use here, and the one that has dominated the
literature so far, is due to Schmeidler [24]". It states that for any two acts that
an individual is indifferent between, a mixture over these two acts is at least as
preferred as either act.” One may interpret this requirement as saying that the
individual likes smoothing expected utility across states. This smoothing has
the effect of making the outcome less subjective, and therefore such a mixing
operation could be called “objectifying”®. Thus, in a natural sense, such an
individual is displaying an aversion to uncertainty. An equivalent way of
stating this characteristic is to say that preferences are quasi-concave (f = ¢
and o € (0, 1) implies of + (1 — a)g > g). In particular, observe that if f ~ g
then quasi-concavity allows af + (1 — a)g = ¢g while independence requires
af +(1—a)g~g.

From this viewpoint, a theory of uncertainty averse preferences may be
characterized by the set of violations of independence in the direction of strict
preference for mixture that it allows. The goal of this paper is to provide a
characterization of this kind for two leading axiomatic theories of uncertainty
aversion, the Choquet expected utility (CEU) theory of Schmeidler [24] and
the maxmin expected utility (MMEU) theory of Gilboa and Schmeidler [16].
Such a characterization is useful not only from the point of view of theoretical
understanding, but also as a guide to the design of experiments testing one
theory of uncertainty aversion against another. For example, the results in
Sect. 3 allow the easy identification of pairs of acts over which an MMEU
decision maker may have a strict preference for mixture, while a CEU deci-
sion maker cannot. Furthermore, in the emerging literature applying these
theories (e.g., Dow and Werlang [7], Klibanoff [17], Lo [19], Eichberger and
Kelsey [9], Marinacci [21] on game theory; Wakker [25] on optimism and
pessimism; Dow and Werlang [6], Chateauneuf et al. [3], Epstein and Wang
[12] on financial markets; Mukerji [22] and Ghirardato [13] on contracting;
and others) too often one theory or the other is adopted without much recog-
nition of the ways in which the theories differ.

The next section introduces the CEU and MMEU theories and points out
the known, yet frequently ignored, fact that under uncertainty aversion,
MMEU is a strict generalization of CEU. Section 3 presents the main theo-
rems characterizing the acts for which no convex combination is ever strictly
preferred to both acts themselves under MMEU and under CEU respectively.
Section 4 concludes.

! Until the recent work of Epstein [11] and Ghirardato and Marinacci [15],
Schmeidler’s was essentially the only definition used in the literature.

2 A mixture over two acts is formally defined in Sect. 2.1 below.

3 T thank Mark Machina for suggesting this term.
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2 Two models of uncertainty aversion

2.1 Notation and set-up

Throughout the paper, preferences are a binary relation, >, on functions (acts)
f S — Y where S'is a finite set of states of the world, X a set of prizes, and Y
the set of all probability measures with finite support (lotteries) on X. Thus, in
each state of the world an act yields a lottery over prizes (as in Anscombe and
Aumann [1]). Lotteries are evaluated according to an affine utility function
u:Y — R. Denote the probability of prize x € X in state s € S induced by
act f by f(s)(x). For any « € (0,1), define the a-mixture over f and g,

af + (1 —a)g, by
(of + (1 —a)g)(5)(x) = af (s5)(x) + (1 —a)g(s)(x), forallxe X, seS.

One interpretation of the mixture of + (1 — o)g is a randomization over the
acts fand ¢ with probabilities « and 1 — « respectively. Under this interpreta-
tion a preference for mixtures implies a preference for randomization. Such a
preference for randomization is controversial in the literature. An issue is
whether randomization is a way of making mixtures feasible in particular
settings.* The correctness and (in large part) interpretation of the analysis
below is independent of one’s position in this debate. The objects of study
are acts, and mixtures are simply particular acts. If one does not accept the
randomization interpretation, preference for mixtures may be read as simply a
statement about preferences over pure acts whose utility payoffs happen to be
related through convex combinations.

2.2 Two models

A leading representation of uncertainty averse preferences is the CEU repre-
sentation axiomatized by Schmeidler [24]. Here preferences are represented by
the Choquet integral of a utility function with respect to a capacity or non-
additive measure. One of the properties which characterizes such preferences
is comonotonic independence. Two acts, fand g, are said to be comonotonic if|
for no pair of states of the world s and s, f(s) = f(s") and g(s") = g(s).”
Preferences satisfy comonotonic independence if, for any acts fand ¢, f = g if
and only if af + (1 — )k = ag + (1 — o)/ for all o € (0,1) and all /2 such that
f,g,h are pairwise comonotonic. This is simply a restriction of the standard
independence axiom (e.g., Anscombe and Aumann [1]) to pairwise comono-
tonic acts. From this axiom, the following is immediate:

4 For two contrasting views of the impact, in the context of uncertainty aversion
and randomization, of using a model with an Anscombe-Aumann-style mixture space
of acts (as here) rather than Savage-style acts, see Eichberger and Kelsey [8] and
Klibanoff [18].

5 f(s) should be understood as an act which gives the lottery that act f gives in state s
no matter which state occurs.
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Result 1. Suppose that preferences satisfy comonotonic independence. Then for
any comonotonic acts f and g, for each a € (0,1), either f = af + (1 — a)g or
g = of + (1 —a)g or both.

Thus, strict preference for mixtures cannot occur with comonotonic acts.
Notice that this observation derives from comonotonic independence alone
and is in no way implied by uncertainty aversion per se.

Now consider a second common representation of preferences incorpo-
rating uncertainty aversion, namely the MMEU representation axiomatized
in Gilboa and Schmeidler [16]. In this work, the axiom of comonotonic
independence is replaced by an alternative axiom, denoted C-independence.
C-independence requires the independence axiom to hold only when the act
h used to form the mixtures gives the same expected utility in every state of
the world.® Intuitively, acts which yield the same expected utility in every
state leave no room for uncertainty about which state will occur to matter.
C-independence is the assumption that mixing with such an act will not
change either the way in which the decision maker perceives her uncertainty
or the way in which she allows her attitude towards uncertainty to affect her
preferences.

Gilboa and Schmeidler [16] showed that C-independence and the standard
assumptions of weak order, continuity and monotonicity together with un-
certainty aversion imply that preferences can be represented by the mini-
mum expected utility of an act, where the minimum is taken over a closed,
convex set of probability measures. Notice that an act which yields constant
expected utility across states is comonotonic with any other act. In fact,
comonotonic independence, weak order, continuity, and monotonicity imply
C-independence. This means that, under the assumption of uncertainty aver-
sion, any preferences that can be represented by CEU can also be represented
in the MMEU framework (Schmeidler [23], [24]). The converse is not true,
however, as the following example makes clear.

S K 53
f 15 2 35
g 0 21 4
h 075 2.05 3.75

3
Set of measures: B = {(pupz,ps) lpr=p3y ,  pi=1,0<p < 1}

Example 1

6 Technically the axiom is more restrictive, requiring /4 to give the same lottery over
outcomes in each state of the world, but together with the assumptions of weak order,
continuity and monotonicity the axiom as described is implied. Note that the assump-
tions of weak order, continuity and monotonicity were also assumed in the Choquet
expected utility theory of Schmeidler [24].
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In Example 1, an individual must choose over two possible pure acts, f'and
g, which give the expected utilities indicated above in the three possible states
of the world. Observe that f and g are comonotonic. Suppose that the indi-
vidual’s preferences can be represented by minimum expected utility over the
set of measures B (i.e., the set of all probability measures which assign equal
weight to s; and s3). Straightforward calculation shows that f'and g each give
a minimum expected utility of 2, while, for example, 4, a half-half mixture
between f and g, gives a minimum expected utility of 2.05. Therefore, this
uncertainty averse individual will strictly prefer the mixture /#, compared to
either f or g. Since this violates comonotonic independence it shows that these
preferences cannot be represented in the CEU framework, and also demon-
strates that comonotonicity is not enough, in general, to guarantee that an
uncertainty averse individual will not strictly prefer to objectify by mixing
over acts. What is the right condition to guarantee no strict preference for
mixtures in the MMEU representation? Is the comonotonicity condition a
necessary as well as sufficient condition for no preference for mixing under
CEU? The next section provides results to answer these questions.

3 Characterizing preference for mixtures

In examining when strict preference for mixtures is possible (or impossible)
under the two theories, it is helpful to consider a previous result characterizing
preference for mixtures under MMEU for a specified set of probability mea-
sures. While such results are of more interest in a setting where certain beliefs
are focal (e.g., equilibrium beliefs in game theory), they will be used in proving
the theorems to follow that apply to the whole domain of the respective
theories.

Theorem 1. (Klibanoff [17]) For any acts f and g such that f = g, no mixture
over these acts will be strictly preferred to either alone if and only if there exists
some measure q in the set of measures such that ¢ minimizes the expected utility
of f over the set and such that the expected utility of f with respect to q is at least
the expected utility of g with respect to q.

For acts which the decision maker is indifferent between this simplifies to:

Corollary 1. (Klibanoff [17]) For any acts f and g such that f ~ g, no mixture
over these acts will be strictly preferred to either alone if and only if there exists
some measure q in the set of measures such that ¢ minimizes the expected utility
of both f and g over the set of measures.

Now we characterize the set of acts for which no MMEU decision maker
would have a strict preference for a mixture. This result and the corresponding
result for the CEU case are provided in the next two theorems.

Theorem 2. Fix acts f and g. No convex combination of [ and g will ever be
strictly preferred to either alone (given MMEU preferences) if and only if (i) f
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weakly dominates g or vice-versa (i.e., u(f(s)) = (<)u(g(s)), for all s€ S.) or
(ii) there exists an a > 0,b € R such Zhal either u(g(s)) = au(f(s)) + b for all
seSoru(f(s) =au(g(s ))—I—bforallseS.

Proof. The difficult direction is to show that no strict preference implies (i)
or (ii). (The opposite direction is left for the reader to verify.) The key step in
the proof is to show that the conditions for a convex combination to reduce
uncertainty are equivalent to the existence of a pair of probability vectors
satisfying a set of linear inequalities. This is done in the lemma below. The
only task remaining is then to characterize existence. To do this I apply a well
known result from the theory of linear inequalities, Motzkin’s Theorem of the
alternative (see e.g., Mangasarian [20]). The existence of a solution to the
resulting alternative system is then (after a bit of rearrangement) shown to be
equivalent to the conditions of the theorem.

Let the vector of utility payoffs to the act f be denoted 7 (= {u(f(s))})
and similarly for %. The following lemma reduces the conditions for a convex
combination of f and g to possibly reduce uncertainty to a question of exis-
tence of probabilities satisfying certain linear inequalities.

Lemma 1. Fix & and 4. There exists a non-empty, closed, convex set of mea-
sures B for which some mixture of & and ¥ is strictly preferred to either alone if
and only if there exist probability vectors pl and p2 satisfying:

i) F-p2—-7F-pl>0

(i) #-pl—-9-pl <0

(i) 9-pl—%-p2>0
and

(iv) 9-p2—F -p2<0

Proof.

(<) Suppose such pl and p2 exist. Let B be the set of all convex combi-
nations of pl and p2. Either f = g or g = f or both. If f > g then by (i) and
(i), p1 is the only minimizer in B of the expected utility of f'and the expected
utility of f under pl, & - pl, is less than the expected utility of g under pl,
% - pl. Therefore, by Theorem 1, there exists a mixture which is strictly pre-
ferred. If g = f then by (iii) and (iv) and Theorem 1 the same conclusion
holds.

(:>) Suppose such a B exists. Consider the set Ay ={p|pe
argmin, .z # -p} and A, = {p|p € argmin, ;% - p}. Consider pl € 4, and
pe A By definition of these sets we must have

(a) # -p2—7 -pl >0
and
(b) 9-pl—%-p2>0.
Suppose that (a) holds with equality for some such pl and p2. Then if
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g=f, 9-p2>%-p2 which implies that the condition in Theorem 1 is
satisfied and no mixture is strictly preferred. If f > g, then # -pl =
F -p2 > % - p2 and again appealing to Theorem 1 no mixture is strictly pre-
ferred. Similar arguments show that if (b) holds with equality for some such
pl and p2 then no mixture is strictly preferred. Thus for there to be a mixture
that is strictly preferred it must be that for all pl € Ay and p2 € 4,

i) F-p2—F-pl >0
and
(i) %-pl—9-p2>0.

Can it be that & -pl —%-pl > 0? This and (iii) would imply % -pl —
% - p2 > 0 which implies /' > ¢ and thus by Theorem 1 and the hypothesis no
mixture would be strictly preferred. Therefore,

(i) #-pl—-9-pl <0

must hold. By an analogous argument,
(iv) 9-p2—-F -p2<0

must hold as well and we are done. QFED

Now that the lemma has been proved, the next step in proving the theorem
is to combine conditions (i)—(iv) with the restrictions implied by the fact that
pl and p2 must be probability vectors. To this end, let n be the number of
states in S. Then #, %, pl and p2 are n-vectors. Let % and ¥ be row vectors
and pl and p2 be column vectors. Let e be a row n-vector of 1’s. Let

and

4 -9
0 F -9

Observe that (i)—(iv) is equivalent to Ap > 0. Furthermore the requirement
that p1 and p2 be probabilities is equivalent to p > 0 and

o oL ®

Equivalently, we can replace the normalization (1) with the condition
e —elp=0
and the condition p > 0 with the equivalent

Ip>0
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where [ is a 2n x 2n identity matrix. To summarize, we would like to charac-
terize when there exists a p such that

(a) 4p>0
(b) Ip=0
and

© le —ep=0.

By Motzkin’s Theorem of the alternative (Mangasarian [20]), either (a), (b)
and (c) has a solution p or

(%) <A,J/1+1'y3+[€ _e]'y4:O>
»n>0,y3=20

has a solution y1, y3, ya, but never both. (Note that y; > 0 means that each
element of y; is greater than or equal to zero with at least one element strictly
positive. y3 > 0 means almost the same thing except that it allows all elements
to be zero.)

All that remains is to rewrite system (%) to get an interpretable condition
(namely the one in the theorem.) First notice that since the elements of y3 are
all non-negative, (x) has a solution if and only if

(s¢) <A/J’1 +le —e'ya< 0>
»>0

has a solution y;, y4. Adding up the inequalities determined by the first line of
() yields

(% —7) (y3 —y4y) <0,

where
J’111
1
y
yi= 211
31
J’il

This implies that either y211 = yil or one of fand g is weakly dominated by
the other. So, a solution to (x) exists if and only if either weak dominance
between f and g holds or (xx) is satisfied with y}, = y},. Imposing the latter
restriction and disaggregating the inequality in () we obtain the system

Gy +y3) = F (i +y3) +eya <0
%' (yy +y3) + 7 (¥, +yy) —eya <0
yn>0
which is equivalent to

(%) <g/(J’%1 +131) = F (3l +y21) + ey =0>.
>0
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Observe that without loss of generality yi, can be set to zero since it can be
incorporated into y}, and yi;. Now, suppose that one of y{, or y}, is zero.
Then a solution will exist if and only if either g or f'or both are constant utility
acts. Finally, consider the remaining case where both y}, and y}, are positive.
Here a solution exists if and only if there exists an « > 0, f > 0, and y4 such that

0% — BF' +eys = 0.
This last condition is equivalent to
4 =aF' +be’, forsomea >0, beR.

Now note that the case where @ = 0 corresponds to the cases where ¢ is a
constant act. If only f'is a constant act, simply reverse the roles of fand g and
again set ¢ = 0.

Pulling the different possibilities together, we have that a solution to ()
exists if and only if either f'and g are ordered by weak dominance or

4G =aF' +be’, forsomea>0, beR
or,
F' =a%' +be', forsomea>0, beR.

Our application of Motzkin’s Theorem now yields the desired conclusion.
QED

The analogue for CEU is given in the next theorem. Note that this result
is related to the prior work of Bassanezi and Greco [2] who show that the
Choquet integral is additive for all capacities if and only if the functions being
integrated are comonotonic.

Theorem 3. Fix acts f and g. No convex combination of [ and g will ever be
strictly preferred to either alone (given CEU preferences) if and only if (i) f
weakly dominates g or vice-versa (i.e., u(f(s)) > (<)u(g(s)), for all s€ S.) or
(ii) f and g are comonotonic.

Proof.

(<) It is straightforward that (i) implies the weakly dominant act will be at
least as good as any mixture. Result 1 stated earlier says that (ii) implies no
mixture strictly preferred.

(=) We will show that Not ((i) or (ii)) implies there exists a mixture that
may be strictly preferred to both f and g. Not ((i) or (ii)) implies f, g not
comonotonic and no weak dominance between them. Since the two acts are
not comonotonic, there exist states sr,s, € S such that f(sy) > f(s,) and
g(sy) > g(sr). Consider the restriction of f'and g to {ss,s,}. There are two
possible cases:

Case I. Neither restricted act weakly dominates the other. In this case, without
loss of generality assume that f(sy) > g(s,) > g(sy) = f(sy). Consider the
capacity v such that v({ss,s,}) =1 and v(4) =0 for any set 4 such that
{87,584} & A. Relative to this capacity, we can calculate the Choquet expected
utility (CEU) of f and g: CEU(f) = u(f(sy)) and CEU(g) = u(g(sr)). By
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continuity of preferences, there exists an a* € (0, 1) such that
a’g(s,) + (1= o) (s,) = glsy)-
Taking the CEU of this convex combination with respect to v yields,
CEU(a"g + (1 —a")f)
= minfo“u(g(sy)) + (1 — " )u(/(s7)), & u(g(sq)) + (1 — o )u(f (5))]
> u(g(sr)) = u(f(sy))-

Therefore a*g + (1 — a*)f > f and a*g + (1 — a*)f > ¢ for this v.
This proves the claim for the case where neither restricted act weakly
dominates the other. Now we examine the remaining possibility:

Case II. One restricted act weakly dominates the other. Without loss of gen-
erality assume f(sy) > f(sy) = g(sy) > g(s7). Since, over the whole space, S,
we assumed neither act weakly dominates the other, there must exist an s’ € S
such that g(s") > f(s').

There are several possibilities. First, suppose that g(s’) > g(s,). Then
g(s’) > f(s") implies f(sy) > f(s") so that f and g are not comonotonic on
{s4,5'} and Case I applies to the restriction of fand g to {s,,s}.

Another possible ordering of the states by g is g(s,) > g(s’) = g(sr). Here
g(s") = f(s") implies f'(sr) > f(s") and Case I applies to the restriction of f'and
g to {s,s'}.

Finally, assume (the only remaining possibility) that g(s;) > g(s") > f(s").
Consider the capacity v such that v({sy,s,,s'}) = 1, v({ss,s,}) = k, and for all
other sets v assigns the lowest nonnegative value consistent with monotonicity
of the capacity. Choose k € (0, 1) to satisfy

ku(f(sg)) + (1 = k)u(f(s")) = ku(g(sy)) + (1 = k)u(g(s")).
Such a k exists under our ordering assumptions. Using the capacity v,

CEU(f) = ku(f(sy)) + (1 = k)u(f(s)),

and
CEU(g) = ku(g(sy)) + (1 = k)u(g(s")).

Thus for this capacity v and utility u, f ~¢g. Now, using the fact that
we can represent the CEU preferences under v as the maxmin expected
utility over the set of probability measures that are in the core of v (i.e.,
{p] plsy) + plsy) = k,p(sy) + pls,) +p(s’) = 1}) (Schmeidler [23], [24]), we
can apply Corollary 1 to show that some convex combination will be strictly
preferred to both f'and g.

To summarize, in each of the possible cases where Not ((i) or (ii)) holds the
above has shown that there exists a convex combination that may be strictly
preferred to both fand g. QED

To facilitate a comparison with Theorem 2 the following corollary is
provided:



Uncertainty aversion 299

Corollary 2. Fix acts f and g. No convex combination of f and g will ever be
strictly preferred to either alone (given CEU preferences) if and only if (i) f
weakly dominates g or vice-versa (i.e., u(f(s)) > (<)u(g(s)), for all s€ S.) or
(ii) there exists an act h and weakly increasing functions w and x on R such

that, for all s € S, u(f(s)) = w(u(h(s))) and u(g(s)) = x(u(h(s))).

Proof. By Denneberg [5, Proposition 4.5], two functions d,e: S — R are
comonotonic if and only if there exists a function z:S — R and weakly
increasing functions w, x on R such that d = w(z) and e = x(z). Letd = uo f,
e=uog, and z=uoh and the result follows from theorem 3 and the fact
that fand g are comonotonic if and only if uo f and uo g are. QED

To see how this result compares to Theorem 2, observe that if we require w
and x to be affine then condition (ii) of the corollary is equivalent to condition
(ii) of Theorem 2. While CEU prevents strict preference for mixture for acts
that are weakly increasing tranformations of the same utility payoffs, MMEU
does so only if the transformations are affine. Intuitively, this says that
MMEU decision makers may care about the cardinal properties of the dis-
tribution of utilities across states when evaluating whether one act is more
uncertain than another, while CEU individuals must consider distributions of
utilities that (roughly) order states the same way as representing equivalent
levels of uncertainty.

Remark. As the results above concern strict preference for mixture, the reader
may wonder whether this addresses all the relevant possibilities for strict
quasi-concavity of the preferences. Specifically, can there exist acts f and g
satisfying (i) or (ii) of the appropriate theorem above such that indifference
curves over mixtures are strictly quasi-concave, yet no mixture is strictly pre-
ferred? It is easily seen that the answer may be yes only if (ii) is violated. To
see this note that if (ii) is satisfied then for any MMEU preferences the same
probability measure will be used to evaluate all mixtures, generating linear
indifference curves. Conversly, if (ii) is violated then u(f) and u(g) are not
related by a positive affine transformation and therefore order probability
measures distinctly. Given one minimizing measure for f'and another for g, it
follows that the measure used to evaluate af + (1 — o)g must generate more
than the minimum expected utility level for one of the two acts, producing
strict quasi-concavity of preferences. Arguments similar to the ones above
could be used to show this more formally and demonstrate it for the Choquet
case as well.” There is then no essential loss in limiting our analysis, as we
have, to preference for mixtures. Furthermore, by examining the preference
for mixtures case, we see that only weak dominance limits the extent of the
quasi-concavity permitted by a violation of (ii).®

7 See Ghirardato et al. [14] for elaboration.

8 An alternative reason for interest in preference for mixtures per se is that such pref-
erences correspond precisely to violations of the analogue for uncertain acts of the
betweeness property for preferences under risk (e.g., Dekel [4]).
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Thus we have a characterization of the uncertainty aversion (as expressed
through strict preference for mixtures) that the two theories allow. It is
hoped that this will further understanding of what distinguishes these two
representations.

4 Conclusion

Theories of uncertainty aversion may differ in the circumstances under which
they allow violations of independence, and in particular strict preference for
mixtures. This paper has provided a characterization of those acts which may
never admit such a strict preference for the two leading representations of
uncertainty aversion: maxmin expected utility and Choquet expected utility.
The fact that these characterizations are substantially different has implica-
tions for empirical testing of the theories as well as for those trying to apply
one or the other model and wondering what the consequences of the model-
ling choice are. Fundamentally, CEU decision makers view uncertainty in
terms of (roughly) how states are ordered by an act’s utility payoffs. Given a
set of acts which all induce the same ordering, a CEU decision maker acts
exactly like an expected utility (and thus uncertainty neutral) decision maker.
MMEU decision makers, in contrast, may view uncertainty not only in terms
of ordering of states, but also in terms of how much better the payoff is in one
state as opposed to another. MMEU allows the decision maker to be averse to
such cardinal variations across states even among acts that order states in the
same way.
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Abstract. In Nachbar [20] and, more definitively, Nachbar [22], I argued that,
for a large class of discounted infinitely repeated games of complete informa-
tion (i.e. stage game payoff functions are common knowledge), it is impossible
to construct a Bayesian learning theory in which player beliefs are simulta-
neously weakly cautious, symmetric, and consistent. The present paper estab-
lishes a similar impossibility theorem for repeated games of incomplete infor-
mation, that is, for repeated games in which stage game payoff functions are
private information.

1 Introduction

Consider a discounted infinitely repeated game in which, prior to the start of
repeated play, each player is privately informed of his payoff function for the
underlying stage game. 1 will refer to this as a repeated game of incomplete
information. In such a setting one can ask whether, in some sense, Bayesian
players eventually learn from their repeated interaction to play an equilibrium
of the realized game. The literature on this topic originated in Jordan [10] and
has continued with Kalai and Lehrer [14, Sect. 6], Koutsougeras and Yanellis
[15], Nyarko [23], Jordan [12], Lehrer [17], and Nyarko [25, 24]. Jackson and
Kalai [8, 9] and Conlon [4] conduct similar analyses for recurring, rather than
repeated, games.

Much of the research reported here was conducted while I was attending the Warwick
Summer Research Workshop on Repeated Games and Their Economic Applications. I
wish to thank two anonymous referees. And I wish to thank the Center in Political
Economy at Washington University for its support.
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In most of the literature on Bayesian learning in games of incomplete
information, prior beliefs are degenerate in the sense that each player knows
his opponent’s incomplete information strategy, which gives the opponent’s
repeated game strategy as a function of the opponent’s payoff parameter. (For
simplicity, I will restrict attention to two-player games.) A degenerate prior
rules out strategic uncertainty about how the opponent will play conditional
on the realized stage game, even for repeated games, such as repeated coor-
dination games, in which the set of pure equilibria is uncountable. In the
present paper, I will consider instead learning theories in which players have
nondegenerate priors.!

In Nachbar [20] and, more definitively, Nachbar [22], I argued that, for a
large class of repeated games of complete information (i.e. stage game payoff
functions are common knowledge), it is impossible to construct a Bayesian
learning theory in which prior beliefs over repeated game strategies are
simultaneously weakly cautious, symmetric, and consistent. Loosely, weak
caution means that if a repeated game strategy is in the support of a player’s
belief then so are computationally trivial variants of that strategy, symmetry
means that the supports of player beliefs contain repeated game strategies of
comparable strategic complexity, and consistency means that the support of
each player’s belief contains one of his opponent’s ¢ best responses. This paper
establishes a similar impossibility theorem for beliefs over incomplete infor-
mation strategies. The theorem does not preclude the construction of Bayesian
learning theories per se, and it says nothing directly about convergence to
equilibrium play. Rather, the theorem says that a Bayesian learning theory
can be consistent only if it rules out certain types of strategic uncertainty.

This paper is largely self-contained but the proof of the impossibility
theorem employs two intermediate results from Nachbar [22]. The reader
is also directed to Nachbar [22] for additional discussion of motivation and
interpretation.

2 Basic definitions

2.1 The repeated game form

Let A4; denote the set of actions available to player i in the stage game. Let «;
denote an element of A4;. I assume that |4;| < co, where |4;] is the cardinality
of A;. Let A = A x A,. An element a = (a1, a;) € A is an action profile.

Let 4(A;) denote the set of probability mixtures over A4;. 4(A;) can be

! Following Bdge and Eisele [2], Mertens and Zamir [18], Brandenburger and Dekel
[3], one could construct a type space theory in which each player’s “super strategy,”
mapping from types to incomplete information strategies, could be taken to be com-
mon knowledge. This representation is essentially without loss of generality provided
that one does not also impose a common prior. For a discussion of the difficulties of

interpretation that arise in type space theories, see Dekel and Gul [5].
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identified with the unit simplex in RM!. An element o; € 4(4;) is a mixed
action. An element o = (a1, 00) € 4(A1) x A(A3) is a mixed action profile.

An n-period history, denoted £, lists the action profiles realized in the first n
periods of play. Thus, % is an element of A", the n-fold Cartesian product of
A. Let h° denote the null history, the history that obtains before play begins.
Let # denote the set of all finite histories, including A°.

A path of play, denoted z, is an infinite history, an element of 4%. Let
Z = A® denote the set of paths of play. z, will denote the action profile
played at date n under the path of play z. n(z,n) € A" will denote the projec-
tion of z onto its first n coordinates, giving the initial n-period history deter-
mined by z. 7(z,0) = A°.

Make Z measurable by giving it the g-algebra generated by the cylinders
C(h) =« Z, where C(h) is the set of paths of play with initial segment /4. Let
A(Z) denote the set of probability measures over Z.

Players at date n + 1 know the realized n-period history. A repeated game
strategy is a complete contingent plan of action: it specifies what 7 plans to do
in period n + 1, for each possible n period history of the repeated game, for
each n. I will adopt the convention that the term action refers to the stage
game while the term repeated game strategy refers to the repeated game. For-
mally, a repeated game behavior strategy for i is a function of the form

agj H — A(A,)

Thus, a repeated game behavior strategy allows i to randomize at each of his
information sets. Given a repeated game behavior strategy o; and a history #,
the probability that player i chooses action ¢; in the period following /# is
ai(h)(a;). Let X; denote the set of i’s repeated game behavior strategies. Let
2 =21 x2,. 0= (01,07) € X is a repeated game behavior strategy profile.

I will use s; to denote a repeated game pure strategy, which is a repeated
game behavior strategy that, for each 4, assigns probability 1 to an element of
A;. Following history £, if the repeated game pure strategy s; assigns proba-
bility 1 to a; then I will write s;(h) = a;. S; = X; will denote the set of player i’s
repeated game pure strategies. S; can be identified with [4,]”. Make S; mea-
surable by giving it the product o-algebra.

A repeated game behavior strategy profile o induces a probability measure
U, € A(Z). History h is reachable under the repeated game behavior strategy
profile ¢ iff u,(C(h)) > 0. History 4 is reachable under o iff there exists some
repeated game pure strategy s for which 4, ,,,(C(%)) > 0.

2.2 Stage game payolffs

Given a stage game form, stage game payoffs for player i can be represented
as a real |4,| X |4»| matrix, which in turn can be represented as an element
0, e RM1I41 Payoffs can be normalized in a number of different ways. For
present purposes, the most convenient normalization turns out to be to the
unit cube centered on the origin. Call the cube @. An element 6, €O is a
parameter for player i. An element § = (0;,6,) € @ x O is a parameter profile.
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Make @ measurable by giving it the standard Borel g-algebra inherited
from = Rl and make ® x ® measurable by giving it the product o-
algebra. Given 0] € @ and 1 > 0, I will denote the closed relative 4 neighbor-
hood of 6; by

Ni(0) = {0 @ 10— 0]]] < 2},
In particular, No(0) = {0;}. Given a parameter profile 6 = (67, 6;), I will
let

N,{(H*) = NA(GT) X ]V,l(H;‘)

Define u;: A x ® — R by setting u;(a, ;) equal to the component of
0; corresponding to the action profile a. I will also let u; denote the mixed
extension of u;; for any 6; and any mixed action profile a € 4(A4;) x 4(A43),

Lli(O(, 9,) = IE%u,-(a, 0,‘),

where IE, denotes expectation with respect to o.

2.3 Repeated game payoffs

Consider any parameter 0; € @ and any profile o of repeated game behavior
strategies. Player i’s expected discounted payoff is

Vvi(o-7 gl) - ]E/za (Zén_lui(ziﬁ 91)) )

n=1

where 0 € [0, 1) and where IE, denotes expectation with respect to z,.

2.4 Continuation games

An n-period history / defines a continuation game, the repeated game starting
in period n+ 1. In the continuation game following %, a repeated game be-
havior strategy o; induces a repeated game continuation behavior strategy o,
defined by

O','h(/’ll) = O','(/’l . h/)

for any history /', where % - i’ denotes the concatenation of # and 4. Given a
profile o = (g1,02), let o), = (g1, 021). The profile o; induces the probability
measure 4, over the set of continuation paths, which is simply Z.

Given a profile ¢ of repeated game behavior strategies and a parameter 6;,
the expected continuation payoff to player i following history / is

Vilon 0;) = Ey, (Zé"luxzn, 09)'

n=1

Note that in this definition payoffs are discounted to the start of the period
following /, rather than back to the first period.
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2.5 Incomplete information strategies

At the start of the repeated game, player i knows his own payoff parameter,
0;, but not that of his opponent. Recall that S; is the set of repeated game pure
strategies. An incomplete information strategy for player i is a measurable
function

7, : 0 — ;.
Given 0;, if 7;(0;) = s; then player i plays
7i(6:)(h) = si(h)

following history 4. I will use the term “incomplete information strategy”
(rather than simply “‘strategy’) to avoid confusion with repeated game strat-
egies. Let 7; be the set of i’s incomplete information strategies and let
T =T, x T,. An element 7 = (71,72) € T is an incomplete information strat-
egy profile.

I have three reasons for restricting the range of incomplete information
strategies to the repeated game pure strategies. First, for repeated games in
which stage game payoffs are known, Nachbar [22] shows that an inconsis-
tency obtains even if players can execute nonpure repeated game behavior
strategies. That reasoning extends to the present setting. Second, one of the
main motivations for the present paper is to consider whether the inconsis-
tency obtains when randomization is purified via payoff uncertainty, along the
lines of Harsanyi [7]. The restriction to repeated game pure strategies is in this
spirit. Third, as noted in a more general context by Aumann [1], there is a
measure theoretic subtlety in defining incomplete information strategies that
map to nonpure repeated game behavior strategies; the problem is not serious,
but I would prefer to avoid it entirely.

2.6 The probability measure on parameter profiles

Fix a probability measure p on © x 6. I will assume that p is independent. Let
p; denote the marginal corresponding to player i.

2.7 Beliefs

From the perspective of player 1, 75 is the set of possible models of player 2’s
behavior. Informally (see below), Player 1’s prior belief is a probability dis-
tribution over these alternative models. As noted in the introduction, most of
the literature on learning in games of incomplete information assumes that
player 1’s belief is degenerate: player 2 is certain that the model is some
75 € T>. In this paper, in contrast, condition CS, defined in Sect. 4, will force
beliefs to be nondegenerate.

The formal definition of a belief is complicated by the fact that, because
both @ and S; are uncountable, there are problems with defining an appro-
priate g-algebra for T;; see Aumann [1]. Following Milgrom and Roberts [19],
I will define a belief about player i to be a probability measure P; over @ x S;,
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where @ x S; is given the product g-algebra. I will assume that P,, player 1’s
belief about player 2, does not vary with player 1’s own parameter 0;, and
similarly for player 2. This assumption is consistent with the players believing
that their parameters are drawn independently. And I will assume that the
marginal of P; on @ equals p,. I will refer to (Py, P») as a belief profile.

Remark 1. Measure theoretic problems with defining beliefs do not arise if a
player is certain that his opponent’s incomplete information strategy will
come from a countable set 7; < 7;. In this case, the belief can be represented
as the product of p; and a probability over the discrete space 7;. But I will not
confine the discussion to this case. []

2.8 Reduced forms

Given p,, a profile (71, s;) consisting of an incomplete information strategy 7
and a repeated game pure strategy s, induces a probability measure p,
over paths of play; that is, s € A(Z). 1 will say that o, is a reduced form
of 71 iff, for any s,,

71,52)

Hz),5) = Hoy,50)

The definition of reduced form for 7, is analogous.

It is not hard to see that a reduced form exists for every z;. I have not
claimed that the reduced form of 7; is unique. But any two reduced forms of
7;, say ¢; and o/, will generate the same set of reachable histories and will be
identical at every reachable history.

Similarly, any pair (P1, s2) induces a probability measure xp, ,,) € 4(Z). 1
will say that gy is a reduced form of P iff, for any s, € Ss,

Hepy s) = Hoy,s)

The definition of reduced form for P, is analogous. Again, reduced forms exist
for any belief but need not be unique.

From a decision theoretic standpoint, it does not matter whether a player
(a) has belief P; about his opponent’s incomplete information strategy, yield-
ing a reduced form g;, or (b) is certain that his opponent will play the repeated
game behavior strategy o;. It is often more convenient to work with a reduced
form g; than with P;. But when formulating a theory of what beliefs ought to
be, it is P; rather than o; that is relevant.

Consider any parameter profile §* = (67,60;) and any A > 0 such that
p(N;(0%)) > 0. I will say that oy is a reduced form of ©1 on N,(0y) iff, for any
SH € Sz,

iz 5100eN,00)) = Hor,5)"

where the notation “|6 e N, (607)” indicates that y is ‘computed conditional on
01 € N,(07). Similarly, o, is a reduced form of Py on N ,(67) iff, for any s, € S,

ﬂ(PhSz |()] EN/((}IX)) = :u(al,sz)'
The definitions for player 2 are analogous.
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2.9 Bayesian updating

As the game proceeds, each player learns by Bayesian updating of his prior.
As I will discuss in Sect. 2.10, Bayesian updating will be inherent in opti-
mization, rather than a separate behavioral assumption. Given a prior P;, any
reduced form o;, and any history /4 that is reachable under o;, a reduced form
of the posterior over incomplete information strategies is simply o;;,. This fact
is the primary reason why working with reduced forms is so convenient.

2.10 Optimization

For the moment, fix player 1’s parameter, #,. Given ¢ > 0, the repeated game
behavior strategy o € X is an ¢ best response at 0) (or oy is ¢ optimal at 0)) iff,
for any reduced form o, of player 1’s belief,

Vi (0’1,0‘27 91) +ée=> meabg( Vi (S17 a2, 01).
S1 1

A similar definition holds for player 2. Even if o; is ¢ optimal at 6, the
induced repeated game continuation strategy may be & suboptimal at ¢, in
subgames that are far in the future or that the player views as possible but
unlikely. Should such a subgame be reached, the player would, presumably,
deviate from his repeated game pure strategy. The following stronger version
of ¢ optimization eliminates this problem.

Definition 1. Fix ¢ > 0, 0, € @, and a belief P,. The repeated game behavior
strategy o) € 2| is a uniform ¢ best response at 0; (or o is uniformly ¢ opti-
mal at ;) iff, for any reduced form o, of P, and any h that is reachable under
(01,02),

Vi(oin, om, 01) +& > max Vi(s1, 00, 01).
S1 €01

A similar definition holds for player 2.

Definition 2. Fix a belief P>. ©{ is a uniform ¢ best response almost everywhere
(or t{ is uniformly e optimal almost everywhere) iff, for p, almost every 0,
71(61) is a uniform ¢ best response at 0,. Write t{ € BR{(P,). Similar defi-
nitions hold for player 2.

Remark 2. If 6 > 0 then it is easy to see that if s; is ¢ = 0 optimal at 6; then s; is
uniformly ¢ = 0 optimal at 6,. Bayesian learning is thus built into optimization
when 6 > 0 and ¢ = 0. If either 6 = 0 (complete myopia) or ¢ > 0 then uniform
& optimization is a stronger requirement than ¢ optimization. []

Remark 3. The following argument establishes that, for any belief and any
e > 0, there exists a 7; € T; that is uniformly ¢ optimal everywhere (not just
almost everywhere). First, for each 6;, a repeated game pure strategy uniform
& = 0 best response exists for any belief; this is a standard result for discounted
repeated games. Subdivide the unit cube @ into k11142l subcubes, where k is
some positive integer. Construct 7; by selecting, for each subcube, a 0; in that
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subcube and setting 7; to be constant on the interior of that subcube and equal
to a repeated game pure strategy best response at ;. To each zero dimensional
boundary (i.e. a corner) of a subcube, arbitrarily assign a repeated game
strategy used in the interior of one of the subcubes that share this boundary.
Proceed in this manner to assign repeated game strategies to the relative inte-
riors of boundaries of higher dimension. t; is clearly measurable: @ has been
partitioned into a finite number of measurable sets, and t; is constant on each
element of the partition. Moreover, for any ¢ > 0, there is a k sufficiently large
that the 7; so constructed is uniformly ¢ optimal at every ;. [

3 Prediction and prototheories

3.1 Prediction

Informally, player 1 learns to predict the path of play iff, eventually, he makes
forecasts along the path of play that are almost as accurate as if he knew 7,.
This does not mean that player 1 learns 7,; even if player 1 learns to predict
the path of play, his forecast of what player 2’s behavior would be off the path
of play might be erroneous. And prediction does not mean that player 1 nec-
essarily learns to forecast the path of play generated by the realized repeated
game pure strategy, 72(6,); see Remark 5, below.

Let N be the set of natural numbers (including zero) and consider a set
IN® < IN. Say that N° has density I iff

<
o HL2 o]

n—oo n

=1.

Recall that 7(z, n) is the n-period initial segment of the path of play z, and that
C(h) is the cylinder of paths of play with initial segment /.

Definition 3. Fix a belief P>. Let 0 = (01,02) be any profile of repeated game
behavior strategies. Player 1 weakly learns to predict the path of play gen-
erated by o iff, for any a¥ that is a reduced form of P, the following conditions
hold.

1. u,(C(h)) > 0 implies ,u(gl_gzp)(C(h)) > 0, for any finite history h.

2. For any real number n > 0 and p, almost every path of play z, there is a set
N?(n,2) = N of density 1 such that, for any n e N¥(y, z) and any a; € A5,
letting h = n(z,n),

|o2(h)(a2) — a3 (h)(a2)| < -
The definition for player 2 is analogous.

Remark 4. Under Definition 3, prediction is weak in that forecasts are
required to be accurate only at all but a sparse set of dates, rather than at all
dates after some date 7. The reason for adopting the weaker definition stems
from results and counterexamples in Lehrer and Smorodinsky [16]; see also
the discussion in Nachbar [22]. [
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Definition 4. Fix a belief P,. Player 1 weakly learns to predict the path of play
generated by © = (11, 12) iff, for any o, that is a reduced from of t, and for p,
almost every 0y € O, player 1 weakly learns to predict the path of play generated
by o = (s1,02), where s1 = 11(61). The definition for player 2 is analogous.

Definition 5. Fix a belief P, and a parameter profile 6 = (6,,6,). Player 1
weakly learns to predict the ex post path of play generated by 7 = (71, 72) at 8
iff player 1 weakly learns to predict the path of play generated by
(71(61),72(02)). The definition for player 2 is analogous.

Remark 5. If the p; are absolutely continuous with respect to Lebesgue mea-
sure then, even if player 1 weakly learns to predict the path of play generated
by 7, player 1 may not weakly learn to predict the ex post path of play at p
almost every . But prediction will imply ex post prediction at 0 if p(0) > 0, or
if the 7; are constant on a neighborhood of §. []

Remark 6. Foster and Young [6], building on Jordan [11, 13], establishes a
conflict between ex post prediction and uniform & = 0 optimization when the
p; are absolutely continuous with respect to Lebesgue measure and when the
support of p is a neighborhood of a game, like matching pennies (exhibited
in Fig. 2 in Sect. 4.1), where the unique equilibrium is in mixed actions. This
particular conflict does not arise if (a) ex post prediction is weakened to pre-
diction in the sense of Definition 4, or (b) players only ¢ optimize, or (c) the
support of p is a neighborhood of a game with an equilibrium in pure
actions. []

3.2 Prototheories

Definition 6. P>, player 1’s belief about player 2, is nondogmdtlc with respect to
a product set T =Ty x T> = T iff, for any t € T, player 1 weakly learns to
predict the path of play generated by t. An analogous definition holds for player
2’s belief about player 1.

Informally, if P; is nondogmatic with respect to 7' then P; does not rule out
any incomplete information strategy in 7.2

Definition 7. A prototheory of Bayesian learning is a nonempty product set
T =T xT,<T such that for each i there is some belief P; that is non-
dogmatic with respect to T.

A prototheory T becomes a theory of Bayesian learning once one specifies
(a) beliefs that are nondogmatic with respect to 7', (b) an ¢ > 0, and (c) a rule

2 T have erred on the side of choosing a definition that is, if anything, too weak in or-
der to strengthen the negative results to follow. The weakness here is that player i is
required to learn to predict the path of play only if he himself chooses an incomplete
information strategy from 7;. Conceivably, he might fail to learn to predict if he were
to choose an incomplete information strategy outside of 7;.
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for selecting from the uniform ¢ best response correspondence. If 7 is a pro-
totheory then nondogmatic beliefs do in fact exist. 7} is to be thought of, very
loosely, as the support of the belief P;.> By an argument that parallels one
given in Nachbar [22], there is no belief that is nondogmatic with respect to
T = T, except in the trivial case in which the opponent has only a single stage
game action. Therefore, a prototheory is necessarily a proper subset of 7.

Remark 7. By the “grain of truth” result of Kalai and Lehrer [14], any 7 that
is countable is a prototheory. []

4 CS and consistency

In this section, I will define two properties that I would like prototheories to
exhibit: CS and consistency. Theorem 1 in Sect. 5.1 will establish that these
properties, although seemingly weak, are incompatible.

4.1 CS

Recall the definition of density 1 in Sect. 3.1. And recall that z(z,n) is the
history equal to the n-period initial segment of the path of play z.

Definition 8. Ler T be a prototheory. Consider 0° = (0y,0,) and 7 >0 such
that p(N;(07)) > 0. T satisfies CS on N ,(0%) iff the following conditions hold.

1. Thereisan & € (0,1) such that, for each i, the following is true. Consider any
;e Ti and any a; € X; that is a reduced form of t; on N,(0;). There is a
va e T; and an s; € S; such that TE(H,-) =s; for p; almost every 0; € Ni(ﬁf)
and, for any history h, if s;(h) = a; then

O',‘(/’l)((l,‘) > f

2. Consider any 1| € Ty such that, Sfor some sy € Sy, 11(61) = s1 for p; almost
every 0y € N,(07). For any function y,, : Ay — A, there is a T, € T» and an
sy € Sy such that the following is true.

(@) 12(62) = s2 for p, almost every 0, € N;(65).
(b) Let z be the path of play generated by (s1,s2). There is a set N7(z) =« N
of density 1 such that for every n € N?(z), letting h = n(z,n),

s2(h) = y12(s1(h))-

And an analogous statement holds for any t» € T» that is constant on N;(05)
and any vy, : Ay — Aj.

3 Because many different incomplete information strategies are asymptotically out-
come equivalent, player 1 will typically be able to learn to predict incomplete infor-
mation strategies outside of 75, but this is to be thought of as incidental to player 1’s
decision making.
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If the theory is modified to allow players to play nonpure repeated game
behavior strategies at ¢ for which p(#) > 0 then this definition is a strict gen-
eralization of the definition of CS given in Nachbar [22] for repeated games of
complete information.

CS condition (1) is motivated by the idea that an incomplete information
strategy 7, that is sensitive to infinitesimal changes in 6, is complicated. In
particular, such a 7, must read the parameter 0, to infinite precision, even if 6,
is not Turing computable.* This paper takes the position that a rational player
should be cautious, and that one facet of caution is that if player 1 thinks that
it is possible that player 2 might choose 7, then player 1 should think that it
is also possible that player 2 might choose a variant of 7, say 5, that, for A
small, is constant on N,(65), even at the expense of some payoff loss (which is
presumably compensated for by a reduction in unmodeled complexity costs).

I have four additional remarks. First, CS condition (1) will be satisfied on
N;(0%) if, for each ; in Ti, T; contains one locally constant variant of z;. The
condition does not require that 7; contain every locally constant variant.

Second, one obvious way to construct a variant 75 of 7, that is constant on
N;(05) is as follows. For each 6, € N,(0;), set 75(62)(h) equal to the action a»
for which o, (/) is maximal, where o, is the reduced form of 7, on N,(65).
Equivalently, choose the action a, for which the corresponding set of param-
eters in N;(0;) has highest p, measure. (If there is a tie, break the tie arbi-
trarily.) Under this construction, if 75(6,)(h) = a, then o;(h)(az) = 1/|4].
This construction is consistent with CS condition (1) for any & < 1/|4,|.

Third, in the above motivation, player 1 was certain as to player 2’s belief
but believed that player 2 might only ¢ optimize (because of unmodeled com-
plexity costs). Example 2 will illustrate that one can also motivate CS condi-
tion (1) by assuming that player 1 is certain that player 2 optimizes perfectly
(i.e. ¢ = 0) but is uncertain as to player 2’s belief.

Fourth, the force of CS condition (1) is not to rule out purification along
the lines of Harsanyi [7] but to rule in the possibility that the opponent may
not be purifying perfectly. This distinction will become clearer when I develop
Example 2.

CS condition (2) requires that, even if each player knows that the true
parameter profile was drawn from N;(0%), each player is still uncertain, at
least initially, as to what repeated game strategy his opponent will imple-
ment. CS condition (2) is motivated by considerations of both symmetry and
caution.

e Symmetry. Aside from differences in the cardinality and labeling of their
action sets, the mechanics of constructing repeated game and incomplete
information strategies are fundamentally the same for both players. Symme-

4 0, e @ c R4l is Turing computable if it can be calculated to arbitrary preci-
sion by a Turing machine, which is a formal model of a digital computation with un-
bounded memory. The Turing computable parameters are a countable subset of O,
which is uncountable.
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try requires that this similarity be reflected in the prototheory. CS condition
(2) captures a weak form of symmetry in the fact that s, is constructed from
s1 via the relabeling function y,.

* Caution. The requirement that CS condition (2) holds for all possible y,,
captures a form of strategic uncertainty. CS condition (2) requires that if
some 7 happens to be included in the prototheory then certain variations
on 7, must be included as well.

In the context of repeated games of complete information, Nachbar [22]
explicitly defined primitive conditions called weak caution and symmetry and
showed that CS is a consequence of these conditions. Weak caution condition
(1) is actually identical to CS condition (1). One can formulate exact analogs
of weak caution and symmetry in the incomplete information setting, as con-
ditions on incomplete information strategies rather than on repeated game
behavior strategies, and one can again derive CS as a consequence. But the
analog of weak caution condition (2) may be overly strong in incomplete in-
formation settings; I will return to this issue in Example 1. The exact analogs
of the other conditions do not appear to be problematic. In this paper I will
use CS, which is weaker than weak caution and symmetry, as a primitive,
rather than a derived, property.

I have one last remark before proceeding to the examples. The results of
this paper will not require that the prototheory satisfy CS on every neighbor-
hood of every parameter profile but only that it satisfy CS on some neighbor-
hoods of some parameter profiles. For example, if 6 = 0 (players are myopic)
then one can argue that CS condition (2) is unreasonable on neighborhoods
of games in which some action is strictly dominant, since CS condition (2) is
incompatible with mutual knowledge of ¢ rationality (for ¢ small) on such
neighborhoods. But I would argue that CS condition (2) is reasonable on
many other neighborhoods, and in particular on neighborhoods of stage
games where every action is rationalizable; the examples below will illustrate
this.

Example 1. Suppose that the stage game is 2 x 2 and that 4; = {H, T} for
each i. Suppose that p; puts probablhty 1 on a subset @ < O consisting of
just three parameters: @) = {0, ,GIT, HC} 91 gives a payoff of 1 when player 1
plays H and a payoff of -1 when player 1 plays T, regardless of what player 2
plays. Thus, if the parameter is 0 then player 1 finds it strictly dominant
to play H regardless of o. 01 is analogous, but makes 7 rather than H
strictly dominant. Finally, 6 is the parameter corresponding to player 1’s
payoffs in the coordination stage game given in Fig. 1. The definition of

Fig. 1. A coordination game
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6, = {0107 65} is analogous. Let t* = (z7,73) be a Nash equilibrium pro-
file for the incomplete information game. (More precisely, to handle the case
d =0, let 7} induce a uniform ¢ = 0 best response to 7 at each element of @,
and similarly for player 2.)

If T, = {7} for each i, so that the prototheory is just a Nash equilibrium
profile of the incomplete information game, then the prototheory effectively
assumes that there is no strategic uncertainty at 0¢ = (ch , HC) even though
the repeated coordination stage game has a continuum of pure equilibria. If
CS condition (2) is to hold at 0 then the prototheory must be augmented to
incorporate a degree of strategic uncertainty.

To make the example more concrete, suppose that p,(@H) =2/3,
p(0T) =2/9, and p,(0F) = 1/9. Suppose further that & = 0. If € is the true
state then one can readlly verify that, under any equilibrium 7*, both players
play T in the first period, both play H in the second period, and that both are
certain from period 3 onwards that 6€ is the true parameter profile. To make
things as simple as possible, let #* be the two-period history in which both
players play T in the first period and both play H in the second. Consider a
Nash equilibrium profile t* such that, following any history in which 4* is the
initial segment, player 1 plays H and player 2 plays 7.

To augment 7" so that CS condition (2) holds at #°, the simplest fix is to
add one other incomplete information strategy, call it 7;, to each 7}. In the
case of player 2, take 7, to be identical to 7; except that, at HZC , for any history
of length two or more with initial segment 2*, 7, plays H rather than 7. Define
71 analogously. One can verify that if the prototheory is augmented to include
these 7; then the augmented prototheory satisfies CS at €, for 4 = 0 and with
IN”(z) = {3,4,...} for each of the four relevant z (corresponding to the four
repeated game profiles possible at ¢ under the augmented prototheory). Note
that 7, is rationalizable; indeed (71, 75) is a Nash equilibrium of the incomplete
information game.

Two additional remarks. First, the strategic uncertainty required by CS
condition (2) is, if anything, too mild. Under the augmented prototheory,
players are certain that if the parameter profile is 6 then all strategic uncer-
tainty will be resolved by period four. One could argue that caution should
imply that strategic uncertainty be resolved only asymptotically, but CS does
not require this.

Second, the augmented prototheory satisfies CS at #€ even though the
augmented prototheory contains only equilibrium incomplete information
strategies. But note that the implied N”(z) are proper subsets of IN. If the
definition of CS were strengthened to require IN”(z) = N then, in this exam-
ple, there would not exist any prototheory that, using only equilibrium
incomplete information strategies, satisfies CS. In contrast, in a complete
information setting, even if one requires IN7(z) = IN, it is possible to satisfy CS
in the € game using only equilibrium repeated game strategies. Thus,
IN7(z) = N is a much stronger assumption in incomplete information settings
than in complete information settings. It is partly for this reason that I find
weak caution condition (2), which implies N”(z) = IN, more compelling in
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Fig. 2. Matching pennies

complete information settings than in incomplete information settings. (Weak
caution condition (2) was discussed above in connection with CS condition

(2) O

Example 2. Again, suppose that the stage game is 2 x 2 and that 4; = {H, T'}.
Consider matching pennies, given in Fig. 2. Let OMF = (H}VIP,@/IP) be the
parameter profile for this stage game. Let p be absolutely continuous with
respect to Lebesgue measure and let N,(O™") be the smallest neighborhood
for which p(N;(0™")) = 1. Informally, T will assume that 4 > 0 is small, so
that all games in N;(0™M") are close to matching pennies. Let * = (¢}, 7}) be a
Nash equilibrium of the incomplete information game. For A small, this
equilibrium is a purification, along the lines of Harsanyi [7], of the equilibrium
of repeated matching pennies. Suppose 7 is given by 7; = {z;} for each i.

T violates CS condition (1) on N;(6™?) no matter how small one takes
> 0. The position taken here is that 7" is not a reasonable prototheory; for /.
small, a reasonable prototheory should (as required by CS) include the in-
complete information strategies “H always” (the strategy that executes H in
every period, regardless of history, for any parameter) and its mirror image
“T always.”

In defense of this position, note that if player 2 were certain that player 1
were playing 7; then the payoff loss from player 2 playing either “H always”
or “T always” would be close to zero, for A small. And executing ““H always”
or “T always” is simple, whereas executing 7} requires, among other things,
that player 2 read the true parameter 6, to infinite precision. Moreover, if
player 2 is not certain that player 1 is playing 75 then there may be no payoff
loss at all from “H always” or “T always,” depending on player 2’s belief,
since, while neither “H always” nor “T always” is part of any Nash equilib-
rium of the incomplete information game, both are rationalizable for A suffi-
ciently small.

One can verify that if “H always” and “T always” are added to the pro-
totheories for both players then the augmented prototheory, with just three
incomplete information strategies for each player, satisfies CS. One might
argue that this augmented prototheory is still far too thin, but this merely
underscores that CS is, if anything, too weak. []

Example 3. Suppose that, for each i, T} consists of the set of strategies that can
be implemented by Turing machines (see Footnote 4). A Turing machine that
implements 7; takes as input the parameter 6; and the history 4 and produces
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as output 7;(0;)(h). 1 assume that each of the |A4;||A4| coordinates of 0; is
encoded as a binary string of length k; typically, any such encoding will only
approximate 0;. For each Turing machine, the precision & is fixed across all
parameters, but k may vary from Turing machine to Turing machine. For
each i, T} is countable and hence T is a prototheory; see Remark 7. It can be
verified that T satisfies CS at Lebesgue almost every parameter profile in
O x 6.

One defect of this example is that, because the set of parameters considered
by any given 7; is effectively finite, prediction implies ex post prediction at
every parameter profile. Because of this, the sort of purification considered in
Example 2 will fail asymptotically, causing problems with existence of even ¢
equilibrium. One solution is to allow players to execute nonpure behavior
strategies (e.g. allow players to use Turing machines with access to a finite set
of, possibly biased, coin flippers). Another solution is to augment 7' by the
inclusion of strategies that take as input an infinite precision description of
the parameter, provided this is done in such a way that CS is preserved. For
instance, if the prototheory originally considered in Example 2 is augmented
by inclusion of the Turing implementable incomplete information strategies,
the resulting augmented prototheory satisfies CS. [

4.2 Consistency

Definition 9. A prototheory T is ¢ consistent iff there is a belief Py, nondogmatic
with respect to T, such that there is an incomplete information strategy in T,
that is uniformly ¢ optimal almost everywhere, that is, BR5(P) n T> # &, and
similarly BRE(Py) N Ty # (.

Definition 10. 7" is consistent iff it is & consistent for every ¢ > 0

Consistent prototheories exist. A trivial example is a Nash equilibrium
profile. See Example 1 or Example 2. But, as those examples illustrate, a Nash
equilibrium profile is not a satisfactory candidate for the prototheory of a
learning theory.

To motivate consistency, consider the following informal introspective
argument. Suppose that the prototheory is mutual knowledge, meaning that
both players know 7. In particular, each player knows the support of his
opponent’s belief. Mutual knowledge of the prototheory does not imply
mutual knowledge either of beliefs or of rationality. Suppose further that
player 1 thinks that it is possible that player 2 is rational, and therefore that
player 2 chooses an incomplete information strategy that is uniformly ¢ opti-
mal almost everywhere with respect to some belief that is nondogmatic with
respect to 7. Finally, suppose that player 1 thinks that the ¢ of a rational
player 2 might be arbitrarily small. Then the prototheory must be consistent.
Conversely, if the prototheory is not consistent but is mutual knowledge then,
evidently, at least one of the players is certain that the other is not rational.
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5 Impossibility

5.1 Statement of the main result
Given 0) € 0, an action a; € A; is weakly dominant iff, for any a; € A4;,

ul(al,az,ﬁl) > max ul(ai,az,ﬁl).
016/41

The definition for player 2 is similar.>

Definition 11. NWD (the No Weak Dominance condition) holds at 6 € © x @
iff neither player has a weakly dominant action.

Given a parameter 01, Player 1’s minmax payoff is given by

m1(01)= min max u](o(1,0(2,01).
thEA(Az) OCIGA(AI)

Player 1’s pure action maxmin payoff is given by

M1(01) = max min ul(a17a2,91).
aj€A; axeA;

The definitions for player 2 are analogous.

Definition 12. MM (the Maxmin/Minmax condition) holds at 0 € © x O iff,
for each player i, the pure action maxmin payoff is strictly less than the minmax

payoff,
M;i(0;) < m;(0;).

Examples of stage games that satisfy MM are matching pennies, rock-
scissors-paper, battle of the sexes, and many coordination games. Note that
for these stage games the case for CS is particularly strong.

The main result of this paper is the following theorem, proved in Sect. 5.2
as a corollary of a stronger but more cumbersome result, Theorem 2.

Theorem 1. Let T be a prototheory. Suppose that p(N;(0%)) > 0 for every
A>0.

1. Suppose that NWD holds at 0" and suppose that, for some ). > 0, T satisfies
CS on N, (0%). Then there is a d € (0,1] such that, for any é € [0,0), T is not
consistent.

2. Suppose that MM holds at 0" and suppose that, for some ) > 0, T satisfies
CS on N;(0"). Then, for any d € [0,1), T is not consistent.

If p(0%) > 0 then these results hold also for /. = 0.

Referring to the discussion in Sect. 4.2, Theorem 1 implies that if the pro-
totheory is mutual knowledge and if it satisfies CS on any neighborhood of

5 This definition is somewhat weaker than the standard one in game theory in that I do
not require strict inequality for any a,.
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any stage game at which MM holds then each player is evidently certain that
the other player is not rational.

If p(07) = 0, as will be the case if p; is absolutely continuous with respect
to Lebesgue measure, then the conclusion of Theorem 1 is somewhat weak
in that an incomplete information strategy t; that is not uniformly & optimal
almost everywhere could, in principle, still be uniformly ¢ optimal on a subset
of @ of large p; measure. In Sect. 5.3, I derive a crude upper bound on the p;
measure of such sets.

On the other hand, if p(0*) > 0 then the analysis essentially reduces to that
of the complete information case covered by Nachbar [22]. In particular, if
MM holds at 0* and if CS holds at 6* then, for sufficiently small ¢, no t; € T}
will be uniformly ¢ optimal at 8. The p; probability that the repeated game
strategy induced by 7; is uniformly ¢ optimal is thus at most 1 — p;(6.), which
can be zero or arbitrarily close to zero.

Remark 8. A previous version of this paper, Nachbar [21], established a dif-
ferent but related inconsistency theorem. Suppose that it is mutual knowledge
that players choose incomplete information strategies that are uniformly ¢ = 0
optimal almost everywhere, but suppose that the beliefs themselves are not
mutual knowledge. Rather, each player thinks that his opponent might have
any belief out of some set of beliefs. If the set of beliefs satisfies a certain
property roughly in the same spirit as CS then the theory will be inconsistent
in the sense that each player will choose an incomplete information strategy
that is not, loosely speaking, in the support of his opponent’s belief. [

5.2 Proofs
The following result is the analog of Theorem 2 in Nachbar [22].

Theorem 2. Let T be a prototheory. Suppose that p(N;(0%)) > 0 for every
A>0.

1. Suppose that NWD holds at 0*. Then there is a A > 0 and a J € (0, 1] such
that, for any d € (0,6), there is an & > 0 such that, for any 2 € (0, 2) and for
any ¢ € [0,), if T satisfies CS on N, (0%) then T is not & consistent.

2. Suppose that MM holds at 0*. Then there is a 1. > 0 such that, for any
5€0,1), there is an & >0 such that, for any ). (0,1) and for any
¢€[0,8), if T satisfies CS on N,(0%) then T is not ¢ consistent.

If p(0%) > 0 then these results also hold for ). = ). = 0.

Assuming for the moment that Theorem 2 is true, Theorem 1 then follows
as an easy corollary.

Proof of Theorem 1. Given that p(N;(0%)) > 0 for every 4 > 0, if 7" satisfies
CSon N 4(07) for some A > 0 then, in particular, it satisfies CS on N, (0%) for

some 4 € (0, 4). Theorem 1 then follows from Theorem 2 and the definition of
consistency. H

To prove Theorem 2, I will first prove the following intermediate result.
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Lemma 1. Let T be a prototheory. Suppose that p(N;(0%)) > 0 for every /. > 0.

1. Suppose that NWD holds at 0*. There is a é € (0,1] and a ° > 0 such that,
for any 6 € [0,6), there is an & such that, for any i € (0,2°), for any belief
profile that is nondogmatic with respect to T, for any i, for any t; € T, and
for any a; that is a reduced form of t; on N (0} ), if T satisfies CS on N ;(0")
and if o; is uniformly & optimal at every 0; € N ,(0}) then & > &.

2. Suppose that MM holds at 0*. There is a A° > 0 such that, for any J € [0, 1),
there is an & such that, for any 2 € (0, 2°), for any belief profile that is non-
dogmatic with respect to T, for any i, for any t; € T;, and for any o; that is a
reduced form of t; on N, (0), if T satisfies CS on N;(0%) and if a; is uni-

*

formly & optimal at every 0; € N, (0;) then & > &.
If p(0™) > 0 then these results also hold for 4 = 2° = 0.

To prove Lemma 1, I introduce the concept of evil twins for repeated game
strategies.

Definition 13. A repeated game pure strategy s, € S, is an ¢ evil twin of a re-
peated game pure strategy s; € S| at the parameter 0) € O iff s| is not uniformly
e optimal at 0y for any belief such that player 1 weakly learns to predict the path
of play generated by (s1,s3). A similar definition holds for evil twins of player
2’s repeated game pure strategies.

In repeated matching pennies, the stage game for which was exhibited in
Fig. 2, an evil twin of s; is any best response to s;. In the repeated coordina-
tion game whose stage game is exhibited in Fig. 1, an evil twin of s; is the
identical twin defined by, for all 4, s,(h) = s1(h). Lemma 2 will identify more
general conditions under which a strategy is an evil twin. Before stating
Lemma 2, I must define some notation.

Define aj? : 4) x @ — A, by, for any repeated game pure action a; € 4,
and any parameter 0; € O,

aZM(al,Hl) = arg min Lll(al,az,@]).
azeAz

If the right-hand side is not single valued, arbitrarily pick one of the values to
be aj’(ay, 0;). The function a” is defined similarly.

Given s; and 0, define S¥(s;,0,) = S, to be the set consisting of all
sy € Sy for which there exists a set N® < IN of density 1 such that, for all
n € N°, letting z denote the path of play generated by (s;,s;) and letting
h =mn(z,n),

S2(h> = CZZM(Sl (h), 91).

The definition of S} (s,, 0,) is analogous.
Define the function @, : A} x @ — A4, by, for any pure action a; € 4| and
any parameter ) € O,

dg(d],ol) = arg max [ max ul(a{,az,()l) — ul(al,az,Ol) .
026/42 al/GAl
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If the right-hand side is not single valued, arbitrarily pick one of the values to
be a(ay, 0)). The function a; is defined similarly. Loosely, a(ay, ) is the
action that gives player 1 maximal incentive not to play a;. a(ay, ;) does not
necessarily minimize player 1’s payoff from «;. That is, it is not necessarily
true that L~12(Cl1, 01) = aé"’(al,ﬁl).

Given s; and 6}, define S‘z(sl ,01) = S, to be the set consisting of all s, € S»
for which there exists a set N° = IN of density 1 such that, for all n € IN°, let-
ting z denote the path of play generated by (s;,s2) and letting 1 = n(z, n),

$2(h) = ax(s1(h), 01)

The definition of S| (82, 6,) is analogous.
By virtue of the normalization of the parameters to the unit cube, the most
that a player can receive in any period is

i =max u;(a,0;) =1
a,Oi,i

and the least that a player can receive in any period is

u = min u;(a,0;) = —1.

a,0;,i
This implies that, for any 6;, any repeated game pure strategy s; is uniformly

2
1-0

<

<

8(15’]’13,)( = =

—_
S

optimal.
The statement of Lemma 2 requires some additional definitions. Define
wi : ©® — R by

wi(0r) = min | max w(ay, ax(ar, 1), 01) = wi(ar,axar, 01), 01) |,
1 1 ule 1

and similarly for w,. Define w: ® x @ — R by
w(0) = min w;(6;).

Since u; is continuous in 6;, w; is continuous, hence w is continuous. If NWD
holds at 0 then w;(6;) > 0 for each i, hence w(¢) > 0.

Lemma 2.

1. Suppose that NWD holds at 0. Set
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Consider any 0 €[0,09) and any e€(0,¢p). For any sy €S and any
Sy € S’z(sl, 01), 2 is an ¢ evil twin of s; at 0y. And an analogous statement
holds for any s; € S,.

2. Suppose that MM holds at 0. Set

o = min m;(0;) — M;(60;) > 0.

Consider any 6€[0,1) and any ¢e€[0,e9). For any sy €S, and any
$H € SzM(sl, 01), sz is an € evil twin of sy at 0,. And an analogous statement
holds for any s; € S,.

Proof. Lemma 4 in Nachbar [22], which is a generalization of Proposition 1 in
Nachbar [20], shows that the conclusion of Lemma 2 holds when NWD holds
at 0 provided
20
&< W’(g) — m .

The right-hand side of this inequality is strictly positive for any
0 < w(0)/(w(0) + 2). Hence the inequality holds for any J € [0,dy) and any
¢ €[0,&9). The argument for MM is analogous. M

The next lemma records that the repeated game pure strategies invoked in
Lemma 2 will be incorporated into any prototheory that satisfies CS.

Lemma 3. Consider a neighborhood N ;(0%) such that p(N,(0%)) > 0 and sup-
pose that T satisfies CS condition (2) on N;(0%). Consider any t, € T} such
that, for some s € S, t1(01) = s1 for p, almost every 0y € N;(0%). Consider
any 65 € N,(67).

1. Thereisatye Ty and an s, € S, (s1,07) such that ©2(0,) = 2 for p, almost
every 0, € N, (03).

2. Thereisat,eT> and an s, € SZM(sl ,07) such that ©,(02) = s, for p, almost
every 0> € N, (03).

And similar statements hold for player 2.

Proof. Given 7; and s; as in the statement of the lemma, define y,, : 4; — 4>
by y(ar) = @(a;,0;). In view of the definition of S,(s,6?), the conclusion
then follows from CS condition (2), with N° = IN7(z). The proof for S (s,6})
is analogous, as is the proof for player 2. H

Proof of Lemma 1. Suppose that NWD holds at 8. Set 2° > 0 such that

NWD holds at every 0 € N;-(07). Because the function w employed in the

statement of Lemma 2 is continuous, one can take A° sufficiently small that

there is a 6 € (0, 1] and an &’ such that the conclusion of Lemma 2 holds for

every 6 € [0,0), every ¢ € [0,&'], every 4 € (0,2°), and every 0 € N+ (0%).
Consider any 6 € [0,6) and set

g =¢'¢(1-9) >0,
where £ € (0,1) is as in the definition of CS condition (1).
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Consider any 2 € [0, 2°) and suppose that T satisfies CS on N, (6*). Note
that, by hypothesis, p(N,(0")) > 0 for any A > 0. If A = 0, one must assume
separately that p(6*) > 0.

Suppose that oy is a reduced form of 7; € T; on N ,(07) and suppose that
01 is uniformly ¢ optimal at every 0, € N, (07). By CS condition (1), there is a
T € T) and a repeated game pure strategy s; such that ] (01) =, for all
0y € N;(0]) and such that for any a; € 4; and any h, if s;(h) = a; then
J](h)(a1)>f. _

Choose any 6] e N,(0y). Since o; is uniformly & optimal at every
0y € N,(07), o1 is, in particular, uniformly ¢ optimal at 6. It follows from
Lemma 6 in Nachbar [22] that s; is uniformly ¢/[£(1 — J)] optimal at 6.

On the other hand, by Lemma 3 above, there is an incomplete informa-
tion strategy 7 € T> such that, for p, almost every 0, € N,(05), 12(02) =
s € S2(s1,07). Since 71(0)) =51 for p, almost every 6, e N,(0;) and
72(6,) = s, for p, almost every 0, € N;(65), since p(N;(0%)) > 0, and since, by
hypothesis, player 1 weakly learns to predict the path of play generated by
(t1,72), it follows that player 1 weakly learns to predict the path of play gen-
erated by (s1,s2). Since s; is uniformly ¢/[£(1 —J)] optimal at 65, it then
follows from Lemma 2 and the construction of &’ that

e/[c(1—0)] > ¢,
or

e>e'E(1-9) =g,
as was to be shown. The proofs for MM and for player 2 are similar. H

Proof of Theorem 2. Assume that either NWD or MM holds at §*. Let § and
J° be as in the statement of Lemma 1. (If MM holds, set 6 = 1.) Consider any
5 €[0,9). Let & be as in the statement of Lemma 1. By the proof of Lemma 1,
for any 0, & < &9 < &§"®*, where & is defined in Lemma 2 and &§"** is defined
just prior to the statement of Lemma 2.

Because u; is continuous in ¢;, there is a function e;: [0,&§"] x R, —
[0, &"**] with the following properties.

1. For each i, if s; is uniformly ¢ optimal at any 0; € N,(0;) then s; is uni-
formly e;(e, A) optimal at every 0; € N,(0;).

2. es is continuous and nondecreasing in both arguments.

3. es5(e,0) = e for any ¢ € [0,&"].

By properties (2) and (3), there is a 4 € (0,2°] such that e5(0, 1) < & for all
4 € (0,7]. By property (2), there is an & € (0, 5] such that es(¢, 1) < & for all
eel0, s()) and all 4 € (0, A).

Now consider any 7; € T; and suppose that 7; is uniformly ¢ optimal almost
everywhere. Then for p; almost every 6, 7;(6!) is uniformly ¢ optimal at 6..
Hence, for any 4 >0, for p; almost every 0] € N;(0;), ©:(0;) is uniformly
es(e, A) optimal at every 0; € N, (0;). Therefore, if o; is a reduced form of 7; on
N,(0;) then g; is uniformly es(e, 1) optimal at every 6; € N,(0;).
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Consider any / € (0, 7) and suppose that 7" satisfies CS on N,(6"). It then
follows from Lemma 1 that

es(e, A) > &,
and hence that
&> &s.

Therefore, 7; € T; is not uniformly ¢ optimal almost everywhere for any
¢ €[0,&5). Since T; was arbitrary, T is not ¢ consistent for any ¢ € [0,&5). H

5.3 Bounding the probability that ©;(6;) is not uniformly ¢ optimal

Suppose that the conditions of Theorem 1 are satisfied. Specifically, let NWD
or MM hold at 6% and suppose that p(N;(0*)) > 0 for any 2 > 0. Let d € (0, 1]
and 2 > 0 be as in Theorem 2 (if MM holds set 6 = 1). Choose any ¢ € [0,5)
and let & be as in Lemma 1. As noted in the proof of Theorem 2, & < &{"**,
where the latter was defined prior to the statement of Lemma 2. Consider any
/€ (0,7) and suppose that 7" satisfies CS on N,(0*). Finally, consider any
belief profile that is nondogmatic with respect to 7.

For any ¢ and any t;, define D; to be the subset of N,(0;) on which 1; is
uniformly ¢ optimal.

D; ={0; € N,(0}) : 7;(6;) is uniformly ¢ optimal at 6;}.
D; is measurable since 7; is measurable. Let

T hNO)
n; is the p; probability, conditional on 0; € N;(0;), that 7;(6;) is uniformly ¢
optimal at 6.

Let the function e; be as in the proof of Theorem 2. For any 6, € D;, since
7;(0)) is uniformly ¢ optimal at 0, 7;(0;) is uniformly e;(e, ) optimal at every
0; € N,{(O:)

On the other hand, for every 0] € N;(0}), t:(0}) is uniformly ¢ optimal
at every 0; € N,(0;).

Let o; be a reduced form of 7; on N ,(07). It follows that o; is uniformly

nies(e, ) + (1 —n;)e5™
optimal at every 6; € N;(0;). By Lemma 1

nies(e, 4) + (1 — ;)™ > &5.

For ¢ and A sufficiently small, e;(e, 1) < &§ < &"**, and hence
o =5

i enax — es5(e,4)’

which is independent of 7;. For ¢ and A sufficiently small, ¢s is close to zero
and so the right-hand side is approximately
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Thus, if ¢ and 4 are small and if p(N;(0%)) is close to 1 (if players are confident
that something like 0* is the true stage game) then, for any 7, € T, the p,
unconditional probability that 7;(6;) is uniformly ¢ optimal is bounded above
by, approximately 1 — &§ /&"**. In particular, for any 7; € T;, the p; probability
that 7;(0;) is & optimal at ; is bounded away from 1.

As already remarked in the discussion following the statement of Theorem
1, if p(0*) > 0 then, for ¢ small enough, the unconditional probability that
7;(0;) is uniformly ¢ optimal is bounded above by 1 — p;(6;), which can be
zero or arbitrarily close to zero.
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Abstract. This is a study of the axiomatic method and its recent applications to
game theory and resource allocation. It begins with a user’s guide. This guide
first describes the components of an axiomatic study, discusses the logical and
conceptual independence of the axioms in a characterization, exposes mistakes
that are often made in the formulation of axioms, and emphasizes the impor-
tance of seeing each axiomatic study from the perspective of the axiomatic
program. It closes with a schematic presentation of this program. The second
part of this study discusses the scope of the axiomatic method and briefly presents
a number of models where its use have been particularly successful. It presents
alternatives to the axiomatic method and answers criticisms often addressed at
the axiomatic method. It delimits the scope of the method and illustrates its rel-
evance to the study of resource allocation and the study of strategic interaction.
Finally, it provides extensive illustrations of the considerable recent success that
the method has met in the study of a number of new models.

1 Introduction

Until recently the axiomatic method! had been the primary method of inves-
tigation in a few branches of economics and game theory, such as abstract

Support from NSF, under grant SES 9212557, and the comments of Lars Ehlers, Marc
Fleurbaey, Toru Hokari, Bettina Klaus, Yves Sprumont, and John Weymark are
gratefully acknowledged. I am particularly indebted to Walter Bossert, Laurence Kra-
nich, James Schummer, and two referees for their detailed remarks.

1A point of language needs to be clarified at the outset so as to delimit the scope of
this essay. The axiomatic method has been used at different levels of formal analysis.
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social choice, inequality measurement, and utility theory, but in the last ten to
twenty years its use has considerably expanded. This has certainly been the
case for two important domains of game theory where it had been applied at
the very beginning. One of them is bargaining theory, which is concerned with
the selection of a payoff vector from some feasible set (see Thomson 1999a,
for a survey). The other is the theory of coalitional games with transferable
utility, which deals with the determination of players’ rewards as a function of
the profitability of the arrangements they can make in groups (see Peleg 1988,
for a detailed treatment). More remarkably, a number of models for which
the axiomatic method has proved extremely fruitful have recently been iden-
tified. Axiomatic studies of these models have shed new light on well-known
solutions, and sometimes led to the discovery of new solutions. The models
concern the subjects listed below. In each case, I give a few representative
references; general presentations of the literature can be found in Moulin
(1988, 1995), Young (1994), Fleurbaey (1996), Roemer (1996), and Thomson
(1999a,b).

e Apportionment: how should representatives in Congress be allocated to
States as a function of their populations, when proportionality is desired but
exact proportionality is not possible? (See Balinski and Young 1982, for a
comprehensive treatment.)

* Bankruptcy and taxation: how should the liquidation value of a bankrupt
firm be divided among its creditors? When money has to be raised to cover
the cost of a public project, what fraction of his income should each tax-
payer be assessed? (O’Neill 1982; Aumann and Maschler 1985; Chun 1988;
Dagan 1996b; see Thomson 1995b, for a survey.)

* Quasi-linear social choice problems: given a finite set of public projects, and
assuming that utility can be freely transferred between any two agents at a
one-to-one rate, which project should be chosen and what share of the cost
(or monetary compensation) should each agent be charged (or receive)?
(Moulin 1985a,b; Chun 1986.)

* Fair allocation in economic contexts: the general question is whether effi-
ciency can be reconciled with equity, but equity is a multifaceted concept,
and a myriad of specific issues can be raised. Many have now been resolved
for a wide range of models. (See the surveys by Moulin 1995; Thomson
1996a,c; and Moulin and Thomson 1997; Kolm 1997.)

I will not discuss its role in ancient mathematics (Euclidean geometry) and modern
mathematics (e.g. the construction of number systems). Debreu’s (1959) subtitle to the
Theory of value, “An axiomatic analysis of economic equilibrium,” reflects his ob-
jective of giving equilibrium analysis solid mathematical foundations, and to develop
a theory whose internal coherence could be evaluated independently of the (eco-
nomic) interpretation given to the variables. At a second level, we find the axiomatic
foundations of utility theory and individual decision making. I will not discuss these
two levels, limiting myself to a third level, which concerns the search for solutions to
classes of multi-agent interaction (formal definitions of these terms appear below).
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¢ Cost allocation: given a list of quantities demanded by a set of agents for
a good, and given the cost of producing the good at various levels, how
should the cost of satisfying aggregate demand be divided among the
agents? (Tauman 1988; Moulin 1996; Moulin and Shenker 1991, 1992,
1994; Kolpin 1994, 1996; Aadland and Kolpin 1998.)

¢ Coalitional games without transferable utility: given a set of feasible utility
vectors for each group or “coalition’ of agents, how should agents’ payoffs be
chosen? (Aumann 1985a; Hart 1985; Peleg 1985; see Peleg 1988, for a survey.)

e Matching: given two sets of agents, each agent in each set being equipped
with a preference relation over the members of the other set, how should
they be paired? This problem and variants had been the object of a number
of strategic analyses (Roth and Sotomayor 1990), but their axiomatic anal-
ysis has recently expanded in a variety of new directions (Sasaki and Toda
1992; Sasaki 1995; Kara and Sonmez 1996, 1997; Toda 1991, 1995, 1996;
Sénmez 1995, 1999).

* Measurement of the freedom of choice: given two sets of possible choices,
when can one say that one set offers greater freedom of choice than the other?
This literature, initiated by Pattanaik and Xu (1990), is a recent entry into the
field but it is developing fast (Bossert et al. 1994; Klemisch-Ahlert 1993;
Kranich and Ok 1994; Puppe 1995; Kranich 1996, 1997; Bossert 1997).

e Equal opportunities: given a group of agents with different talents or
handicaps, how should resources be distributed among them? Here, the lit-
erature is also very new (Bossert 1994; Fleurbaey 1994, 1995; Iturbe and
Nieto 1996; Maniquet 1994; Bossert et al. 1996).

* Allocation by means of lottery mechanisms: given a group of alternatives
and a group of agents with von-Neuman preferences over these alternatives
and lotteries over these alternatives, what lottery should be selected? A
number of models have recently been expanded to accommodate such
mechanisms (Bogomolnaia and Moulin 1999; Abdulkadiroglu and S6nmez
1999; Ehlers 1999; Ehlers et al. 1999).

It may be timely to look at these various developments in a unified way
and to assess the methodology on which they are based. I have two main
goals. The first one is to explain how an axiomatic study should be conducted
and, taking a broader view, how the axiomatic program envisioned. The sec-
ond one is to give an idea of the recent progress that has been permitted by the
use of the axiomatic method, in particular with regards to concretely specified
models of resource allocation. For that reason, many of the examples that I
take to illustrate points of pedagogy belong to this area. I also draw exten-
sively from the theory of cooperative games. I certainly do not attempt to give
a complete presentation of the axiomatic literature, and in particular, I take
almost no example from the considerable theory of Arrovian social choice. On
this subject, a number of other works are available (Sen 1970; Kelly 1978;
Fishburn 1987).

This study has grown much beyond what I had planned, and a guide
appears necessary. Part I is a users’ guide. It is composed of seven sections.
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Section 2 introduces the basic notions of a problem and a solution. Section 3
describes the components of an axiomatic study, its starting point, its goals,
and the sort of results that we should expect from it. Section 4 discusses the
issue of independence of the axioms in a characterization, by which I mean
both their logical independence but also their conceptual independence. Sec-
tion 5 presents typical errors made in the formulation of axioms. Section 6
widens the scope of the discussion and explains how each axiomatic study
should be seen within the framework of what I call the axiomatic program. It
describes the goals of this program. Section 7 is a schematic summary of
Part L.

Part II discusses the scope of the axiomatic method and evaluates it in
comparison to other methods. Section 8 presents the alternatives to the axi-
omatic method and shows their connections to it. Section 9 responds to a
number of criticisms that have been raised against the axiomatic method.
Section 10 presents and assesses the commonly held position that the scope
of the axiomatic method is limited to abstract models, and to cooperative
situations. Section 11 discusses the relevance of the axiomatic method to the
study of resource allocation. It introduces the distinction between abstract and
concrete models and discusses the limitations and the merits of abstract mod-
els. Section 12 evaluates the relevance of the axiomatic method to the study of
strategic interaction. It points out that the opposition that is often made be-
tween the axiomatic and the strategic approaches in game theory is concep-
tually flawed. Finally, it argues in favor of an integrated approach in which
the axiomatic method is given a wider role.

Part I: A user’s guide

2 Basic set-up: Problems and solutions

Before describing the axiomatic method, I introduce the basic terminology
that I will use, in particular the concepts of “problems” and “‘solutions’.

2.1 Problems

An axiomatic study of multi-person interaction starts with the specification of
a class of problems. A problem is given by specifying data pertaining to the
alternatives available and data pertaining to the agents (players, consumers,
firms, generations ...). Usually included are the preferences of the agents over
the alternatives.

Problems can be described in varying degrees of detail. To illustrate the
wide range of possibilities, an ““Arrovian” social choice problem (Arrow 1963;
Sen 1970) simply consists of a usually unstructured set of feasible alternatives,
together with the preferences of the agents over this set. Bargaining problems
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and coalitional games consist only of sets of attainable utility vectors. For
normal form games, a set of actions is specified for each agent, along with the
utility vector associated with each profile of actions. For extensive form
games, sequences of actions are given together with the utility vector asso-
ciated with each profile of sequences of actions. These models are already
more concrete, as they include information on how utilities result from indi-
vidual choices, even more so of course when a description of the sequential
structure of the actions is added. For allocation problems in economic envi-
ronments, the precise physical structure of alternatives is included. These
problems stand at the opposite end of the spectrum from abstract social choice
problems.

In what follows, I frequently take them as illustrations and I assume some
familiarity with the basic definitions, and if not with all of the axioms that
have been considered in their study (a list appears in Subsect. 9.1), with at
least the general principles underlying the central axioms, and with the main
solutions. The Appendix contains short descriptions of the models.

2.2 Solutions

Given a class of problems, 2, a solution* on & is a correspondence that asso-
ciates with every D € & a non-empty? set of alternatives in the feasible set of
D.* My generic notation is F for solutions, X for the universal space of alter-
natives to which the alternatives that are feasible for D belong, and X (D) for
this set of feasible alternatives of D. Altogether then, a solution is a corre-
spondence F : 2 — X such that ¢ # F(D) < X(D). The aim of the investi-
gation is to identify “good” solutions, good in the sense that they provide
either an accurate description of the way problems are resolved in the real
world, or a recommendation that an impartial arbitrator or judge could or
should make.

Solutions are allowed to be multivalued in some models, and required to
be singlevalued in others. Whether the objective is descriptive or prescriptive,
singlevaluedness is of course desirable: a solution that makes precise pre-
dictions or recommendations is more likely to be useful. However, single-
valuedness is often a very strong requirement and for many models, the search
has been for multivalued solutions.

In bargaining theory singlevaluedness has been imposed in almost all cases.
In the theory of coalitional games with transferable utility, a number of sin-
glevalued solutions exist but several important ones are multivalued. When
utility is not transferable, singlevaluedness is very demanding. In the theory of

EEIT3 LEINT3

2 A variety of other terms are used, such as “rule”, “mechanism”, “solution function”,
“solution concept”, and “correspondence”.

3 The non-emptiness requirement is not universally imposed. Whether it should be is
discussed in Subsect. 4.4.

4 Note that I do not consider here the problem of deriving a ranking of the set of
feasible alternatives, the central objective of the Arrovian social choice literature.
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resource allocation, multivaluedness is usually permitted. Here too, single-
valuedness would in general be an unreasonably strong requirement. However,
in some special cases, (examples are bankruptcy and taxation models, and
one-dimensional models with single-peaked preferences both in the private
good case and in the public good case), it is met by a number of interesting
solutions.

3 The components of an axiomatic study

An axiomatic study often begins by noting that for a given domain of prob-
lems several intuitively appealing solutions exist, and that some means should
be found of distinguishing between them. Alternatively, it may start with the
observation that there appears to be only one natural candidate solution for
the domain, and be motivated by the desire to find out whether other solutions
may be available after all. Yet, for other domains, no well-behaved solution is
known, and the axiomatic approach is a good way of finally uncovering at
least one such solution, or identifying how close solutions can get to meeting
various criteria of good behavior. An axiomatic study has the following
components:

1. It begins with the specification of a domain of problems, and the formula-
tion of a list of desirable properties of solutions for the domain.

2. It ends with (as complete as possible) descriptions of the families of sol-
utions satisfying various combinations of the properties.

It should also offer

3. An analysis of the logical relations between the properties;

4. a discussion of whether plausible alternative specifications of the domain
would affect the conclusions, and if so, how;

5. a discussion of the implications of substituting for the properties natural
variants of them.

Studying the logical relations between the axioms is an effective way to
assess their relative power. Understanding the implications of alternative speci-
fications of the domain is important too since it is frequently the case that other
choices could have been made that are almost as natural. The robustness of
our conclusions with respect to these choices should be tested. Formulating
and exploring variants of the axioms is equally useful as it is not rare that the
general ideas that inspire them could have been given slightly different and
almost as appealing mathematical forms. We need to know the extent to which
our conclusions are sensitive to choices between these various forms, given
that the differences between them may have limited conceptual significance.

An axiomatic study often results in characterization theorems. They are
theorems identifying a particular solution or perhaps a family of solutions, as
the only solution or family of solutions, satisfying a given list of axioms. A
characterization is the most useful if it offers an explicit description of the
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solution(s); in the case of a family, a formula specifying it as a function of
some parameter belonging to a space of small mathematical complexity (say a
finite dimensional Euclidean space) is of greatest practical value.® The format
of a characterization is as follows®:

Theorem 1. (Characterization Theorem). A solution F : 9 — X satisfies axi-
oms Ay, ..., A if and only if it is solution F* (alternatively, if and only if it
belongs to the family F *.)

An axiomatic study may also produce impossibility theorems, stating the
incompatibility of a certain list of axioms on a certain domain.

3.1 The objective of an axiomatic study should not in general be the
characterization of a particular solution

In the previous section, I stated that the objective of an axiomatic study
should be to understand and to describe as completely as possible the impli-
cations of lists of properties of interest. Instead, authors often start by stating
that their objective is to characterize a particular solution. Apart from two
classes of exceptions discussed below, I do not consider this to be a legitimate
goal.” Whatever reasons we have of being interested in a particular solution,
and some of them may be quite justified, does not usually make a character-
ization of the solution a valid objective.

A first reason for such an interest is that the definition of the solution is
intuitively appealing. But this does not suffice to warrant the exclusive focus on
the solution because there may be other solutions with appealing definitions.

Another reason may be that the solution seems to give the right answers in
particular situations about which, once again, intuition appears to be a reli-
able guide. But here too, other solutions may be equally successful for these
examples. Moreover, for us to infer from the examples that good behavior is
to be expected from the solution in general, they should be representative of
sufficiently wide classes of situations. This observation suggests that the class
of situations that each example illustrates be formally identified, that the re-
quirement on a solution that it behave in a desirable way for that class be
formulated as an axiom, and that the implications of this axiom be inves-
tigated. I will discuss this program in detail in Subsect. 8.2.

5 Of course, it is not up to the investigator whether such a formula exists.

¢ An analogy with particle physics may not be totally out of place. There, the search is
for the minimal list of elementary particles in terms of which all other particles can be
described. These elementary constituents are the “atoms’ of the theory. Similarly, an
axiomatic characterization can be seen as the “decomposition” of a solution into ele-
mentary properties. One important difference though is that a given solution can
sometimes be characterized in several alternative ways.

7 What motivates the analysis should not in principle affect the analysis itself, but in
fact it often does, and a number of errors commonly made can be traced to this
unjustified objective.
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3.2 The objective of characterizing a particular solution is legitimate in some
situations

A first type of exceptions to the principle stated above, that the objective of an
axiomatic study should not be the characterization of a particular solution, is
when the solution happens to be widely used in practice. A second type is when
the solution has played an important role in theoretical literature. We may be
able to discover through an axiomatization why the solution has emerged in the
real world or in theoretical studies.

1. Important examples of the first type can be found in the contexts of re-
source allocation and abstract social choice. A primary one is the Walrasian
solution. It is quite remarkable that this solution has guided production and
allocation decisions in so many different historical contexts, and very natural
to infer that it must have special properties that no other solution satisfies:
identifying the properties characterizing it becomes a legitimate exercise. (In
the last two decades, some answers have been found to this question. Indeed,
although its informational merits had been noted and given intuitive descrip-
tions for a number of years, it is only relatively recently that precise notions of
informational efficiency have been formulated, and characterizations of the
solution on the basis of these properties developed: under certain assumptions
it is ““best” from that viewpoint; Hurwicz 1977; under related assumptions, it
is “uniquely best”; Jordan 1982).%

Majority rule and Borda’s rule are examples of voting rules that are fre-
quently applied in practice, and again, it is proper to ask: What are the prop-
erties that these solutions must enjoy, and others not, that have led to such
wide use? (Here too, characterizations due to May 1952; Young 1974; Ching
1995 and others, have thrown considerable light on the issue.)

2. Examples of the second type are formulas or algorithms that are some-
times suggested. We are often drawn to “‘simple” or “elegant” formulas, or
formulas that can be given a simple interpretation. Similarly, certain algo-
rithms or procedures may appeal to our intuition. It is quite justified to be

8 Clearly, if the objective is to understand what features of the Walrasian solution
have made it an almost universal means of exchanging goods, this search for an axio-
matization should proceed under an additional constraint, namely that the axioms be
pertinent to the “spontaneous” development of institutions. In that respect, explan-
ations based on considerations of informational simplicity are the most likely to be the
“right” ones, whereas it is doubtful that the variable population considerations such as
consistency that recently have led to the Walrasian solution have much relevance (more
on this later). Of course, this does not mean that wanting to figure out the implications
of consistency is not worthwhile, and it is of great interest that the Walrasian solution
should have emerged from such considerations as well. To summarize, I would say that
wondering whether certain properties of informational simplicity characterize the
Walrasian solution is legitimate, but it is the characterization of the class of solutions
satisfying conmsistency that we should be after, whether or not the Walrasian solution
belongs to it, and not the characterization of this particular solution on the basis of a
condition of this kind.
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curious about whether the intellectual appeal of a formula or algorithm is due
to their embodying properties of general interest.

A solution for coalitional games with transferable utility defined by means
of an attractive algorithm is the nucleolus (Schmeidler 1969; Kohlberg 1971).
It is mainly this intuitive appeal that had made this solution a frequent point
of reference in the game theory literature and it was natural to wonder
whether a formal justification for it could be found. Such a justification, based
on an idea of consistency®, was eventually discovered for a variant known as
the prenucleolus (Sobolev 1975; see below for a discussion).

But note that whether the goal is to understand why a solution is used in
practice or where its intellectual appeal resides, if characterizations are possi-
ble, it is the properties on which they are based that should take center stage in
further research on the subject.

To pursue our last example, the focus of the literature that followed
Sobolev’s work on the prenucleolus has indeed been on identifying the impli-
cations of various consistency notions.

When we need to simply understand, perhaps not to characterize, a par-
ticular solution, because the solution has already merited our attention by
enjoying some central properties and we would like to know more about it, I
claim that the axiomatic method can be of great help, and I propose a proto-
col for its use below.

3.3 The characterization of a unique solution is not necessarily preferable to
the characterization of a family of solutions

A characterization theorem has the merit of completely describing the impli-
cations of a list of properties, and that is why we should be striving for such
results. Although many authors prefer that a single solution be identified in a
characterization, presumably because the class of problems under study has then
been given a unique resolution, I will also challenge this view and say that such a
characterization is actually not as good news as the characterization of a family
of solutions.

Indeed experience tells us that, more often than we would like, impossi-
bilities are precipitated by relatively short lists of properties. Typically, if we
have shown that a certain list of properties are satisfied by an entire family of
solutions, we will be eager to take advantage of the opportunity this multi-
plicity gives us and impose additional requirements. Some of them may be
met by several members of the family, and our next task will be to find out
exactly which they are. Starting with the property that we consider the most
important, we should then identify the subfamily satisfying it. If this subfamily
still contains more than one element, we should bring to bear the property
that we consider to be the second most important and so on, and we might
very well proceed until a single solution remains.

° Consistency being often mentioned in these pages, we remind the reader that a pre-
cise statement of the property is given in Sect. 9.1.
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More likely however, since we rarely have in mind a strict priority of
properties, the analysis will branch off in several directions, depending on the
order in which we impose the additional properties, each branch possibly
ending with the characterization of a unique solution. This sort of tree struc-
ture of our findings is typical of an axiomatic study. Certainly, at a stage when
several solutions are still acceptable, it is natural to want to know if they
should really be thought of as equivalent, or whether they can be distinguished
on the basis of additional properties of interest. Then, the objective of char-
acterizing the various solutions “from each other” becomes legitimate.

We will probably want to conclude an axiomatic study with character-
izations of particular solutions, because such theorems indicate that we have
then reached the boundary of the feasible. However, the number of these in-
dividual characterizations, and therefore the scope of our study will be all the
greater if our first findings are characterizations of families of solutions, that is,
if we are successful in describing the implications of lists of properties that
indeed are not strong enough to force uniqueness.

3.4 For practical reasons, the analysis itself may have to begin from solutions

Although properties come first conceptually, it is certainly useful in practice, and
in some cases very useful, to have at our disposal several examples of solutions
when starting an axiomatic study. In fact, we are more likely to achieve our
goal if we have available a wide repertory of them. The examples can be used
in assessing the strength of axioms, testing conjectures concerning the com-
patibility of axioms, and the independence of axioms in characterizations.
This issue is discussed next.!°

4 Independence of axioms in a characterization

Here, I develop the view that the study of the independence of the axioms in a
characterization should be part and parcel of the analysis. By the term inde-
pendence, we usually understand ‘““logical” independence, but I also discuss
what can be called the “conceptual’ independence of the axioms. I argue that
although axioms should be logically and conceptually independent, they
should be compatible in their spirit. Finally, I clarify a logical issue concerning
the way in which a characterization is affected by expanding or contracting
the domain of problems under consideration.

10 Until recently, it was actually unusual for a new solution to emerge for the first time
in an axiomatic study. For most domains, the solutions that had been found the most
valuable had been given intuitive definitions first and axiomatic justifications were
found later. As the program expands, studies of new models more frequently take axi-
oms as their point of departure, and it is becoming common for solutions to be intro-
duced in the process of such analysis. Also, as existing models are probed more deeply,
variants of existing solutions that do not have their simple form have often been
uncovered by axiomatic work.
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4.1 In a characterization, the axioms should be logically independent

Recall the “if and only if” format of a characterization. The issue of inde-
pendence pertains to the statement: “If a solution satisfies a certain list of
axioms, it is solution F*.” This is the “uniqueness part”, the other direction
being the “existence part”. The axioms are independent if by deleting any one
of them, it is not true that the solution F* remains the only admissible one.
Verifying that the solution identified in the theorem satisfies the axioms is
usually easy, principally because the work can be divided into separate steps,
one for each of the axioms, whereas the uniqueness part has to do with the
way they interact.

4.1.1 A first reason to establish independence of axioms is to ensure that our
results are stated in the most general form

The obvious argument in favor of independence concerns the generality of our
conclusions: if one of the axioms is redundant, we widen the scope of the result
by deleting it.

The interest of many researchers in characterizations lies in the mathe-
matical appeal of results “packaged” as ““if and only if”’ theorems. However,
we often know more than what such a theorem says. In the course of our
analysis, we may have discovered that if some of the axioms were weakened in
certain ways, the solution that is characterized would remain the only accept-
able one (in other words, we know more than what the uniqueness part says).
We may also have learned that the solution actually satisfies stronger versions
of some of the axioms. Consequently, the “if and only if” format is a little
dangerous: it conceals some of the information that we have uncovered. In
particular, it may result in a uniqueness part in which the axioms are not in-
dependent.

If we have shown that the uniqueness part holds without a certain axiom,
we should write the characterization without it, but remark separately that the
solution does satisfy it. If uniqueness does not hold without the axiom but
does with a weaker but natural version of it,!! it is the weaker version that
should appear in the characterization and here we should also point out that
the solution happens to satisfy the stronger version. If the solution satisfies
much stronger versions of the axioms than the ones used in the unique-
ness part, we should probably not present our findings as an “if and only if”’
theorem.

11 In proofs, we do not need to invoke the axioms in all of the situations to which they
apply, but only in selected situations. Therefore the weaker conditions obtained by
limiting their scope to these situations will certainly suffice for the uniqueness proof,
but working with these conditions will not necessarily give us a “better”’ theorem. The
weaker condition is less natural. For instance, if a requirement of efficiency is imposed
for all economies, and in some proof the requirement is invoked for an economy in
which agents have Leontieff preferences, the result could be stated with the weaker but
artificial requirement that the rule be efficient for Leontieff economies.
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4.1.2 A second, practical, reason to establish independence of the axioms is
to discover more general results

A practical reason for checking independence has to do with research strategy:
it is a way of exploring the “‘neighborhood’ of the characterization. The better
we know this neighborhood, the more confident we will be about the correct-
ness of our results. This exploration may also help us discover other techni-
ques of proof for the characterization, or simplifications of the proof that we
have.

4.1.3 How to establish logical independence of axioms

In order to establish the independence of axiom A, say, from the other axi-
oms in Theorem 1, it suffices to exhibit one solution different from F* and
satisfying A, ..., Ag, but not A;. However, we should not be satisfied with
just one or any example of a solution, for several reasons.

1. First, the examples should be as “natural” as possible; ideally, they
should be solutions that we might have been tempted to use on other grounds,
such as solutions that we know enjoy other properties of interest, or solutions
that have been the object of particular attention in the literature. Establishing
independence in this way will provide a direct explanation of why these
potentially worthwhile solutions are disqualified given our objectives.

In the context of bargaining theory, in order to prove that contraction in-
dependence is independent of Pareto-optimality, symmetry, and scale invari-
ance, four axioms that characterize the Nash solution, it is best to bring up a
solution such as the Kalai-Smorodinsky solution, because — this is the lesson
that one can draw from the literature — it should probably be thought of as the
major competitor to the Nash solution, instead of less prominent solutions or
solutions constructed for that specific purpose.

2. Second, to be really useful, the examples may very well have to satisfy
properties that are not given in the original list. A property that we consider
basic may not appear explicitly in the characterization because it is implied by
the list of axioms A1, ..., A that are the focus of the study, but it may not be
implied by the shorter list obtained by dropping 4. Then, the independence
of A from A,,..., A; should also be investigated under the additional as-
sumption that the solution satisfies the property.

An example of such a property, for many models, is continuity. This
property being quite desirable, we will want to know whether 4, is indepen-
dent from A,, ..., Ay together with continuity. If not, A; can be replaced by
continuity in the characterization, and this might in fact be a more interesting
uniqueness part (of course we should not forget to note then that the solution
satisfies 4, and perhaps also state the characterization with 4;).

3. Finally, we should look for as wide a class of counterexamples as possi-
ble. Indeed, we might be able in the process to identify all of the solutions
satisfying A4,, ..., A;. From the characterization of the class of solutions sat-
isfying A, ..., Ay, it will typically be easy to deduce how the class would be
further restricted by adding either 4, or one of several conditions that are
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reasonable alternatives to A;.'?> The more general characterization is not
necessarily the result that we will write up though, since its proof will probably
be more complex. If we judge that the cost of the additional technical devel-
opments is too high in relation to the increased generality of the theorem, we
should retain the simpler and less general result, but inform our readers of
what we know, in a remark, a footnote, or an appendix, with a degree of de-
tail that depends on our intended audience.

For example, in the context of bargaining theory, symmetry can be shown
to be independent of the other three conditions that we listed earlier as char-
acterizing the Nash solution, by simply producing the solution defined by
maximizing the product of player 1’s utility and the square of player 2’s util-
ity. However, the whole class of solutions satisfying these three conditions can
essentially be obtained by noting that maximizing any product of weighted
utilities would also work, and it is much more informative to exhibit this
class.'® The resulting class of “weighted Nash solutions” has indeed been
found of great interest in theory and applications.

4.2 In a characterization, the axioms should express conceptually distinct
ideas

Although in a given characterization, several axioms may be motivated by
the same general principle (such as a principle of fairness, or a principle of
incentive-compatibility), each axiom should preferably embody only one spe-
cific aspect of the general idea.

I write “preferably” because, like most of the other rules formulated here,
this recommendation should not be followed too rigidly. I now give three
reasons for that.

1. A first reason for a given axiom to incorporate distinct conceptual con-
siderations is when it has a simple and direct procedural interpretation.

In bargaining theory, the axiom of midpoint domination, which says that
the solution outcome should dominate the average of the agents’ most pre-
ferred alternatives, is an illustration. It does embody partial notions of effi-
ciency (since the outcome should be sufficiently close to the boundary of the
problem for this domination to be possible), symmetry (the function that
associates with each problem the point that is to be dominated satisfies sym-

12 Tt is not entirely true that given any two lists of axioms related by inclusion, char-
acterizing the implications of the shorter list is necessarily more difficult. For instance,
the classes of solutions satisfying only Pareto-optimality, or only symmetry, are of
course very simple to describe. It is probably more accurate to say that up to a point,
the difficulty increases. Then, it starts decreasing. I am not making a formal point here,
but this statement describes fairly accurately most situations with which I have some
familiarity. A main reason is that the basic axioms that we tend to impose first are one-
problem axioms whose implications are usually much easier to determine than those of
“multi-problem” axioms. The distinction is discussed in detail below.

13 The qualification “essentially” is because when violations of symmetry are extreme,
certain dictatorial solutions and lexicographic extensions of them are also admissible.
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metry), and scale invariance (the function is scale invariant). However, it
implies none of these three axioms.!* Moreover, it is descriptive of an intui-
tively appealing scheme that agents often use: the midpoint corresponds to the
vector of utility levels that they reach when they randomize with equal prob-
abilities between their preferred outcomes. A closely related example, taken
from the theory of coalitional games with transferable utility, is the require-
ment on a solution that for the two-person case, it coincides with the so-called
“standard solution” (Hart and Mas-Colell 1989), the solution that picks the
alternative at which the surplus above the individual rationality utility levels is
split equally. Again, this requirement embodies partial notions of efficiency
and symmetry, but it does so in a way that is very intuitive. It too corresponds
to the flipping of the coin to which agents often resort in practice.

I will also note two difficulties — and these are the other two reasons to
which I alluded above — in following the recommendation not to incorporate
in an axiom distinct conceptual considerations. They should warn us against
being too dogmatic in putting it in practice:

2. Our judgment whether a given axiom does mix ideas that would better be
kept separate may well depend on the perspective taken.

In the theory of coalitional games with transferable utility, and for the
fixed population models in which it is typically used, the core can certainly be
taken as a primitive notion. However, when the scope of the analysis widens
S0 as to permit variations in populations, and axioms are introduced in order
to relate the recommendations made by solutions in response to such varia-
tions, the core can be decomposed in terms of individual rationality and con-
sistency (Peleg, 1985, 1986). In the context of resource allocation, the notion
of an envy-free allocation is another example that is intuitively appealing from
a normative perspective, and it is difficult to conceive of more basic ones from
which it could be derived. Yet, when the perspective shifts from uniquely
normative considerations and strategic concerns are addressed in addition, no-
envy can be derived under very mild domain assumptions from the much
more elementary fairness condition of equal treatment of equals and the
implementability condition of Maskin-monotonicity (Geanakoplos and Nale-
buff 1988; Moulin 1993a; Fleurbaey and Maniquet 1997).'> For an example
taken from the theory of non-cooperative games, to which I return below,
Nash equilibrium can be decomposed — this decomposition is exact — in terms
of individual rationality, consistency, and converse consistency (Peleg and Tijs
1996).

3. The final reason is that in the process of gaining a deeper understanding
of a subject, our judgment about possible formal decompositions of an axiom
into more elementary ones may change. As we discover links between notions

14" A very simple characterization of the Nash solution can be obtained by means of
this axiom and Nash’s contraction independence (Moulin 1988).

15 This is not an exact decomposition, since these two axioms together only imply
no-envy; they are not equivalent to it.
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that we previously perceived as distinct, the way in which we partition and
structure the “conceptual field”” into individual conditions sometimes evolves.

On a variety of domains, monotonicity and consistency conditions are tra-
ditionally thought of as being unrelated, and they are stated separately.
However, in some situations such as the allocation of private goods, they can
actually be understood as “conditional” versions of a general ‘“‘replacement
principle”; a strong requirement of solidarity, which says that a change in the
environment in which agents find themselves should affect all of their welfares
in the same direction. It pertains to situations in which agents are not ‘“‘re-
sponsible” for the change when it is socially undesirable, nor deserve any
“credit” for it when it is socially desirable. If the principle is applied to the
departure of some of the agents, the issue is whether they leave empty-handed
or with their components of what the solution has assigned to them. When
imposed together with efficiency, we therefore obtain either a monotonicity
condition or a consistency condition. (This point is developed in Thomson
1995a.)

Similarly, we could argue that for the problem of fair division, the stan-
dard forms of the monotonicity conditions such as resource-monotonicity,
which states that an increase in the social endowment, population being kept
fixed, should benefit everyone, or population-monotonicity, which states that
an increase in the population, resources being kept fixed, should penalize
every agent initially present, make sense only in the presence of efficiency.
Since efficiency will indeed typically be required, the demand that all “rele-
vant” agents be affected in the same direction if the parameter (resources or
population) increases or decreases — this too is a requirement of solidarity —
may be judged more natural (Thomson 1995a).

Finally, in private ownership economies, an axiom such as individual-
endowment monotonicity, which states that if an agent’s endowment increases,
he should not be made worse off, can be interpreted from the normative
viewpoint, as reflecting the desire that the agent should benefit from resources
on which we feel that he has legitimate rights, as he may have obtained them
through an inheritance or thanks to his hard work. Alternatively, it may be
seen from the strategic viewpoint, as providing him the incentive never to de-
stroy the resources he controls, as this would result in a socially inefficient
outcome.

4.3 In a characterization, the axioms should be conceptually compatible

Although it is important that axioms be logically independent and that they ex-
press distinct ideas, it is equally important that they be conceptually compatible:
the intuition underlying the formulation of one axiom should not be violated by
the others. This point seems clear enough but nevertheless deserves to be
made.

I will give an example from the theory of bargaining that has to do with
the joint use of continuity and consistency. The most commonly used topo-
logical notion (Hausdorff topology) in that theory ignores subproblems
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involving subsets of the players. On the other hand, consistency is motivated
by the desire to link recommendations across cardinalities, and certain sub-
problems appear explicitly in its statement. When this condition is imposed, it
is therefore natural to use a continuity notion based on a topology that rec-
ognizes the importance of subproblems too. (Such a topology is used in
Lensberg 1985, and Thomson 1985.)

The position could be adopted that in the formulation of each axiom we
should take into account the essential ideas underlying the others. I illustrate
the position with several examples, and for the reader who is concerned that
its implementation creates a tension with the objective expressed in the previ-
ous subsection — I propose a less radical choice.

The first example again has to do with efficiency and symmetry, two
properties that have been imposed together in a wide range of studies. In this
application, an extreme form of the position stated in the previous paragraph
is that if efficiency is imposed, the axiom of symmetry should be written so as
to apply to problems from which it is only required that their Pareto-optimal
boundary be symmetric (as opposed to problems that are fully symmetric).
Such a formulation reflects a strong view that efficiency should be given pre-
cedence. For another illustration of this viewpoint in the context of Arrovian
social choice in economic environments, see Donaldson and Weymark (1988).
A somewhat more flexible formulation is to require that two problems with
the same Pareto set be solved at the same point'® and to keep the other axi-
oms including symmetry in their usual forms.

To take another example, if individual rationality is one of the require-
ments, it may make sense in the formulation of monotonicity conditions to
focus on the subset of the feasible set at which the individual rationality con-
ditions are met. Here too, I would suggest instead that an axiom of indepen-
dence of non-individually rational alternatives be used in conjunction with the
others — such an axiom has indeed appeared in the literature (Peters 1986).

4.4 Evaluating characterizations by the number of axioms on which they are
based

The opinion is sometimes heard that a characterization of a solution or a family
of solutions that makes use of “few” axioms is superior to a characterization
involving “many” axioms. Before evaluating the validity of this position,
which I will challenge, a “counting problem’ needs to be confronted.

1. First, some requirements may be incorporated in the definition of what
is meant by the term solution, instead of being imposed separately as axioms
on solutions. If we believe that certain requirements are minimal, ‘“‘non-nego-
tiable”, whereas our position concerning the others is more flexible, this way
of proceeding may seem justified.

A central example here is non-emptiness: some authors require solutions to
associate with each admissible problem at least one feasible outcome (as I

16 Such a condition could be called independence of non-Pareto optimal alternatives.
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have done above), whereas others state non-emptiness as an axiom. Other
conditions that are often taken as part of the definition of a solution are effi-
ciency and symmetry.

The choice to write a given condition as a separate axiom may depend on
how restrictive the condition is for the domain under consideration.

For bargaining problems, existence is almost never an issue, whereas for
coalitional games without transferable utility, it often is. It is therefore safe to
incorporate non-emptiness in the definition of a solution to the bargaining
problem, and prudent to impose it as an axiom in the study of coalitional
games.

However, I believe that even for requirements that we consider basic, the
analysis always benefits from including a discussion of the extra freedom
gained by deleting or weakening them, and for that reason, it is best to have
them listed as separate axioms.

2. A second reason for the counting problem mentioned above is that it is
of course always technically feasible to combine several axioms into one. By
so doing, we decrease the number of axioms but not the demands on the so-
lutions. I argued earlier that axioms should embody conceptually distinct de-
siderata, and this difficulty should in principle not occur, but practice is
sometimes a different matter. I gave several reasons why in the previous sec-
tion.

This counting problem being clarified, and contrary to the view stated
above, my position here is that the fact that an entire family of solutions rather
than a unique solution has come out of an characterization involving a large
number of axioms must be seen as good news, provided, once again, that they
are logically independent and express conceptually distinct ideas, as they should.
This is because, for the class of problems under study, a solution or family of
solutions exists that is well-behaved from a variety of perspectives.!’

On the other hand, and to emphasize a position that I expressed earlier, we
should in general be striving for theorems describing the implications of few
properties together. These are better theorems since the implications of addi-
tional properties will typically be easily obtained from them as corollaries. In
order to take advantage of such theorems, we should of course thoroughly
explore the possible derivation of such corollaries. This argument will take its
full force below when I discuss the importance of seeing each axiomatic study
from the perspective of what I refer to as “the axiomatic program”.

4.5 A logical issue: how enlarging or restricting the domain affects a
characterization

It is important to understand how a characterization is affected by enlarging or
restricting the domain of problems under consideration. Here, 1 discuss some

17 1 find the argument that a characterization based on fewer axioms is more “elegant”
to have no relevance to the program with which I am concerned here.
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common misconceptions about this issue. One of them is that the character-
ization of a given solution on a larger domain is a weaker theorem. Is this a
legitimate view?

The first point to make is that it is not actually meaningful to speak of the
“same” solution as having been characterized on two different domains. For-
mally, a solution is a triple consisting of a domain, a range, and “arrows”
from every point in the domain to the range. By changing the domain, we
change the solution and therefore we cannot characterize the same solution on
two distinct domains. What causes much of the confusion here is that we often
keep the same name for the mapping when we change the domain, and for a
good reason: in most cases the solution is defined by means of the same for-
mula, or the same algorithm, or the same set of equilibrium equations ... on
the various domains.

In the theory of resource allocation, we use the phrase of “Walrasian so-
lution” to designate the solution that selects the Walrasian allocations of each
admissible economy, whether or not preferences are strictly monotonic or
strictly convex and so on. It is certainly meaningful to apply the “Walrasian
definition”, or the “Walrasian formula”, on these various domains.

When we mainly care about “one-problem” properties of solutions we can
safely think of a formula or algorithm as defining the “same” solution on
various domains. However, as soon as properties involving comparisons of
problems are brought in (axioms involving pairs, or triples, or sequences of
problems), we risk making logical errors by not keeping in mind that applying
the same definition on two different domains produces two different solutions.

To gain further understanding of the issue, think of a solution constructed
by “combining” existing solutions as follows: arbitrarily divide the domain
into two subdomains, and apply one or the other of two arbitrarily chosen
solutions, depending upon which of the subdomains the problem to be solved
belongs to.!8

For instance, on the domain of private good economies, consider the so-
lution that selects the Walrasian allocations when all agents have Cobb-
Douglas preferences, and the core otherwise.

We tend to immediately reject such hybrid solutions, but why? Is it because
we feel that they are unlikely to meet any criteria of good behavior? Perhaps,
but whether this is true really depends on which criteria we have in mind. If
we care only about one-problem properties for instance and these properties
happen to be met by each of the component solutions, there is nothing wrong
with the hybrid solution, except perhaps for the inconvenience of having to
check which of the two cases applies. We suspect however that for many other
criteria, the hybrid solution would be disqualified. The axiomatic method can
help us formally identify what these criteria are.

As a further illustration of the difficulty of deciding what a legitimate so-
lution is, consider a domain of problems involving variable populations, each

8 Such constructions are common in the abstract Arrovian theory of social choice.



On the axiomatic method 345

economy being obtained by first drawing a finite group of agents from an in-
finite population of “potential’” agents. A solution defined on such a domain
associates with each group of agents and each specification of the data
describing them (such as their preferences, their endowments, their production
skills and so on), a set of allocations. Imagine now a solution constructed by
switching back and forth between several existing solutions according to how
many agents are involved. Again, our first reaction, when confronted with
such a solution, is to reject it as “artificial”’. In the paragraphs to follow, I will
try to find out whether and to what extent this view is valid.

A concrete example, for private good economies, is the solution obtained
by selecting the Walrasian allocations when the number of agents is even and
the core when it is odd. An objection to this solution is that it is “unnatural”
to alternate between Walrasian notions and core notions: we should make up
our mind and pick Walrasian allocations for all cardinalities or the core for
all cardinalities. This seems convincing enough but what are the formal
arguments to support the objection? In what sense does the Walrasian defi-
nition for even numbers “go together” or “fit” with the Walrasian definition
for odd numbers, or the core for even numbers fit with the core for odd
numbers?

In general, what is wrong with going back and forth between different
existing notions in defining solutions? A possible answer is that our choice
then cannot be described in terms of a single and simple formula. However,
“compactness” of a definition does not seem much of an argument in its fa-
vor. First, alternating between two notions may not be a major technical
complication. Second, and more importantly, arguments of simplicity of defi-
nitions should not take precedence over substantive economic considerations
like efficiency, fairness, monotonicity, consistency and so on. The simplicity
argument is of course not completely irrelevant because solutions passing the
single-and-simple-formula test are more likely to satisfy invariance or inde-
pendence properties of the kind that have played an important role in axiom-
atic analysis. But if that is the underlying reason, these properties should be
formally identified and the analysis should focus on them.

Moreover, the single-and-simple-formula test is not in general well defined
because on a certain domain a given solution may be described in several
distinct ways, each of which suggesting a different extension to larger
domains. For solutions defined on classes of problems that may involve any
number of agents, this difficulty often occurs because solutions that are dis-
tinct when the number of agents is greater than two may coincide for the two-
person case.

To illustrate this point in the context of resource allocation, consider on
the one hand the solution that selects the core for all economies, and on the
other hand the solution that selects the individually rational and efficient
allocations for all economies. These two solutions happen to coincide in the
two-agent case, so how is one to say that the extension of what we choose for
two-person economies to economies with more agents should be the core or
the individual rationality and Pareto solution?
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How to extend a certain definition from the two-person case to the general
case is in fact an issue that game theorists have had to confront on many
occasions. Similar issues have been how to pass from classes of bargaining
problems to classes of coalitional games, or from classes of coalitional games
with transferable utility to classes of games without transferable utility. For
instance, extending the Shapley value (1953) from coalitional games with
transferable utility to the non-transferable utility case has been a central issue
in the literature. In addition to Shapley 1969’s proposal, we now know of
several solutions to games without transferable utility that coincide with his
1953 value when restricted to the transferable utility case.

In addition to simplicity, a second argument in favor of using solutions
defined by means of a single-and-simple formula is that whatever consid-
erations would lead us to choosing a certain definition to solve problems
involving a given number of agents should have led us to choosing the same
definition to solve problems involving any other number of agents.

I agree with this view but only in so far as we do make the effort of
uncovering what these considerations might be. This is precisely the role of
axiomatic analysis to help us in this task, as they are certainly not given to us
when we are presented with the definitions.

To the extent that a characterization of a solution holds independently of
the number of agents, and many theorems of this kind are available, we may
have a reason not to switch formulas as we move across the domain. However,
it seems more productive to explicitly address the issue of how components of
solutions should be linked across cardinalities. Consistency or population
monotonicity are two such principles that have provided arguments in favor of
using the same definition for all cardinalities. But note that consistency would
not eliminate the solution that selects the core from equal division for two-
person economies and the Walrasian allocations from equal division for
economies of greater cardinalities. Yet, it eliminates the solution that selects the
core from equal division for all cardinalities, a solution that certainly passes the
single-and-simple-formula test. I argued earlier that this test is not always well-
defined nor necessary; this example shows that it is not sufficient either.

Let us now return to the issue of how the choice of domains affects the gen-
erality of a characterization. On the one hand it is sometimes claimed that the
result pertaining to the larger domain is stronger. The opposite view, that by
enlarging the domain, we facilitate and therefore weaken the uniqueness part of
a characterization is also often heard. The argument here is that since there are
“more” situations to which the axioms apply, we give them greater power.

To better evaluate these views let us rewrite the Characterization Theorem
in the form of two separate lemmas.

Lemma 1. If a solution F : 9 — X satisfies axioms Ay — Ay, then it is F*.
Lemma 2. The solution F* : 9 — X satisfies axioms A; — Ay.

Suppose that instead we have established the following two lemmas per-
taining to a superdomain D’ of D and a solution F’* defined on D’ and whose
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restriction to D is F* (in practice, the same names might be used to designate
both F* and F™):

Lemma 3. If a solution F : 9’ — X satisfies axioms Ay — Ay, then it is F'*.
Lemma 4. The solution F"™* : 9' — X satisfies axioms A; — Ay.

Although it is clear that Lemma 4 is stronger than Lemma 2 — and to that
extent the view that enlarging the domain provides a stronger result has some
validity — there is in fact no logical relation between Lemmas 1 and 3. Indeed,
in the proof of Lemma 3, it could very well be that in order to conclude that
the solution coincides with F on &, we use (and need) the fact that it satisfies
the axioms on 2'\. This is a sense in which working on the larger domain
weakens the uniqueness lemma. On the other hand, precisely because the
conclusion of Lemma 3 holds on a wider domain than that of Lemma 1, the
two lemmas are in fact not comparable.®

If the uniqueness result obtained on the larger domain is not logically
weaker than its counterpart for the smaller domain, it may of course be more
vulnerable to criticism: by working on a larger domain, we increase the chance
that situations exist for which the axioms are not as convincing.2°

5 Common mistakes in the formulation of axioms

Here, I discuss two mistakes commonly made in the formulation of axioms:
tailoring them to a particular solution and losing sight of the fact that priority
should be given to their economic meaning.

5.1 Axioms tailored to a particular solution and lacking general appeal

A frequent and unfortunate consequence of wanting to arrive at a particular
solution, a goal whose legitimacy I questioned above, is formulating axioms
tailored to that solution and lacking general appeal. (For a discussion of this
point in the context of the search for inequality indices, see Foster 1994.) By
targeting a solution we could of course be led to the discovery and the for-
mulation of properties it has that are of independent interest, but this is often
not what happens. The common outcome is a characterization that simply
amounts to restating the definition of the solution in a slightly different form.
Of course, having at our disposal several equivalent definitions of a given
solution may be useful. However, the axiom being typically satisfied only by

19 There could be several solutions satisfying the axioms on the larger domain that all
coincide on the smaller domain.

20 Although we should not expect of any axiom that it be equally appealing in all sit-
uations in which it applies, it is important however that the proof not rely precisely on
applications to situations where the axiom is less desirable, a situation that is unfortu-
nately not uncommon.
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the solution that the investigator intended to characterize (the tell-tale sign®!),
the result does not come as much of a surprise.??

5.2 Technical axioms

Avoiding technical axioms is generally desirable since what motivates our work
are economically meaningful objectives, not mathematical ones. Unfortunately,
this is not always completely feasible: sometimes we are able to determine the
implications of a condition of primary concern to us only in the presence of
several auxiliary conditions, some of which may be of mainly technical inter-
est. Note however that frequently an axiom appears technical at first, but
when we look into it a little more closely, we discover that it does have eco-
nomic content.

For instance, in the study of bargaining problems and coalitional games
without transferable utility, smoothness of boundaries, which is one of the
restrictions imposed on problems in the formulation of a number of axioms, is
often thought of as a technical detail, but in fact it has economic significance.
Indeed the rates at which utility can be transferred between players are
meaningful information, and the fact that when moving along the boundary
of a feasible set, they may suddenly change is quite relevant when selecting a
payoff vector. Perhaps an even more striking example is continuity. It is now
well understood that in intertemporal models, the topologies on which such
notions are based can be interpreted in terms of the agents’ impatience, an
economically meaningful concept (on this point, see Bewley 1972, and Brown
and Lewis 1981).

6 Axiomatic studies and the axiomatic “program”

We should not make too much of an axiomatic study in isolation and of the
fact that a particular solution has come out as the best behaved from a certain
viewpoint. By changing perspectives, some other solution might very well
emerge.

6.1 The axiomatic program

That different studies may lead to different solutions has been seen as a diffi-
culty with the axiomatic method, but the opposite would be surprising. In

21 'We should not necessarily worry about this however. For instance, the fact that the
Shapley value is essentially the only solution to games in coalition form to have a po-
tential (Hart and Mas-Colell 1989) does not make this characterization a less valuable
result. Considerations of potential are so far removed from any previous consideration
that had been brought to bear in the study of these games, and the proof so unlike any
previous one, that the result is indeed very illuminating.

22 One could argue that no result that is fully understood is a surprise, but clearly
there are degrees to which the conclusion can be guessed from the hypotheses.
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fact, the possibility that recommendations conflict should probably be
expected, and it should be confronted. Each axiomatic study should be eval-
uated in the light of other studies, in the wider context of the axiomatic pro-
gram.

The objective of the axiomatic program is to give as detailed as possible a
description of the implications of properties of interest, singly or in combina-
tions, and in particular to trace out the boundary that separates combinations of
properties that are compatible from combinations of properties that are not.

Characterization theorems are landmarks on the boundary. One additional
property is either redundant, or it takes us into the realm of the infeasible.

6.2 Establishing priorities between axioms

When different solutions result from different axiomatic considerations, the
axiomatic program is essentially silent on which axiom to emphasize, and
therefore on which solution to recommend. Deciding which axioms should be
given priority is up to the “consumer’ of the theory. No metatheory exists to
help us. I will only state the obvious here, and observe that since many of the
critical axioms that are commonly imposed pertain to changes in some param-
eter entering the description of the problems, the plausibility of these changes
should be a primary consideration.

In stable economic environments, resources are fixed and in the short run,
so are populations. Then, “variable resource” and “‘variable population” axi-
oms are not relevant. On the other hand, if frequent shocks occur in supplies,
variable resource axioms may be important. Since in the long run, population
is more likely to vary than in the short run, variable population axioms could
be considered then. In teams, we do not have to worry about agents’ mis-
representing the information they hold privately, but in more competitive sit-
uations, “implementability’’ requirements may be needed.

6.3 Formulating discrete weakenings of axioms

When an axiom of interest is shown to be incompatible with other important
axioms, discrete weakenings of it can sometimes be identified and studied.

For the fair division of private goods, the requirement that no agent
receives a bundle that dominates commodity by commodity that of any other
agent — this condition is known as no-domination — is one such example, as a
weakening of no-envy.

These weaker versions of the properties that were our starting point may of
course not be as universally applicable however, as they are more likely to be
domain-specific.

No-domination, as a weakening of no-envy, is meaningful only in situations
where the space of alternatives is endowed with an order structure and pref-
erences are monotonic with respect to that order (this is why it is indeed a
weakening of no-envy), whereas no-envy is a meaningful condition even when
no such structure is present.
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6.4 Formulating parameterizations of axioms

Moreover, when a basic axiom is found not to be compatible with others, it is
sometimes possible to formulate parameterized versions of it, with the parameter
indicating the partial “‘degree” to which the axiom is satisfied. Then, we can
attempt to identify the range of values of the parameter for which compatibility
holds.

An illustration of this approach can be found in a study of the problem of
fair division due to Moulin and Thomson (1988). There, the equal division
lower bound (an allocation meets this bound if every agent finds his bundle at
least as desirable as an equal share of the social endowment) is shown to be
incompatible with efficiency and resource-monotonicity. When the equal divi-
sion lower bound is not imposed, a possibility was known to exist, so that the
question was open where the line between possibilities and impossibilities had
to be drawn. To answer it, Moulin and Thomson introduce a parameter in the
interval [0, 1] that turns the discrete requirement that the equal division lower
bound be met into a continuum of “graduated” conditions of increasing
restrictiveness: when the parameter is 0, the condition is vacuously satisfied
and when it is 1, the condition is the equal division lower bound itself. The re-
sult is that for all positive values of the parameter, that is, no matter how
much one weakens the equal division lower bound, the incompatibility with
efficiency and resource-monotonicity persists. Thanks to the parameterization,
the possibility was shown to be the rare case, and the impossibility the norm.

6.5 Establishing functional relations between parameterized axioms

It is possible to go further. When several properties are given parameterized
forms, it becomes in principle possible to describe the tradeoffs between them by
means of a functional relation between the parameters. Then the identification
of this relation becomes a natural next step in our research program. A concern
for several properties that are incompatible when imposed in full can be par-
tially accommodated by an appropriate selection of the parameters. Instead of
having to give up one or the other, we can decide on the importance we would
like to give to each and choose the parameters accordingly.

In a series of papers, Campbell and Kelly (see for instance Campbell and
Kelly 1993, 1994a,b), have very completely described tradeoffs between effi-
ciency and equity in the context of abstract social choice, in terms of pro-
portions of profiles for which difficulties occur.

An example for resource allocation is given in Thomson (1987a) where a
functional relation is established between a parameter measuring the extent to
which a certain distributional requirement is met and another parameter
measuring the extent to which resource-monotonicity is satisfied.

7 A schematic representation of the objectives of the axiomatic program

Figures 1 and 2, which give schematic representations of the objectives of the
axiomatic program, summarize a number of the ideas discussed so far.
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Fig. 1a,b The objectives of the axiomatic program. (a) An illustration of the trade-offs
between properties P3 and P4. In the presence of Py and P,, we cannot have both. (b)
The scope of a theorem identifying a list of properties that do not force uniqueness,
such as the pair {Q;, 0}, is illustrated by the various corollaries derived from it by
imposing additional properties. By adding Q3, we obtain a one-parameter family, and
by adding Q4, only one member of the family remains acceptable. Alternatively, we
could add Q3 and then Q4, or Q¢ and then Qs ...

Each point in the plane is interpreted as a combination of properties. The
downward sloping line is the boundary between combinations of properties
that are compatible and combinations that are not. Think of the northeasterly
direction as indicating lists of increasing lengths. Close to the origin are short
lists that are likely to be satisfied by large classes of solutions. As we progress
in a northeasterly direction, fewer and fewer solutions are acceptable. Even-
tually, we reach the boundary and the realm of the infeasible. Our goal is to
trace out with as much detail as possible this boundary, and for combinations
of properties that are compatible, to give complete descriptions of the class of
solution(s) satisfying them all. To illustrate notation, a characterization theo-
rem identifying a family of solutions { H* : o« € A} as being the only solutions
satisfying axioms P; and P, is written as “{P;, P} < {H* : 0 € A}”.

1. Tradeoffs between properties (Fig. 1a). A typical tradeoff between two
properties is illustrated by the points { Py, P,, P3} < F and {P,, P2, P4} < G.
They both lie on the boundary and therefore represent combinations of
properties that can be met together but in a unique way, by solutions Fand G.
In the presence of Py and P;, only one of P; or P4 can be met.

We may not have a good understanding of the 1mphcat10ns of Py and P,
together, as indicated by the point marked “{P;, P,} <", but a theorem
spelling out the implications of these properties would be Very desirable. Most
likely, the characterizations of F and G would be obtained as simple corol-
laries. Also, the implications of alternative properties such as Ps might be
easily obtained (perhaps to give another point of the boundary), and the fact
that some other properties, such as Pg, are incompatible with P, and P, may
also come out. This possibility is developed in the next paragraph. I have
indicated these potential implications by question marks.

2. The scope of a theorem establishing the characterization of a family of
solutions (Figure 1b). Suppose that we have shown that the solutions satisfying
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Fig. 2a,b The objectives of the axiomatic program. (a) The parameterization of a
property may allow us to determine the partial extent to which the property can be
satisfied. (b) When several properties are parameterized, the trade-offs between them
can sometimes be given the form of a functional relation

Q) and Q; constitute a two-parameter family, a result represented by the point
marked “Theorem 1: {Q1, 0>} & {H*# : o€ 4;f € B}.” Such a theorem is
very useful because from it, we can often quite easily determine the implica-
tions of additional properties. By adding Q;, we reach a smaller family
{H* 0 e A}, and then by adding either Q4 or Qs, we reach the boundary, at
the points H*# and H*"# respectively. Alternatively, starting from {Q;, 0>},
we could have added Qg first, to obtain the family {H*"# : f € B}, and then
added Qs (which perhaps would have taken us back to H*"#), and so on.
All of these corollaries indicate the “scope’ of Theorem 1, which is symboli-
cally indicated by the cone C whose vertex is the point labelled Theorem 1.
The cone spans a whole section of the feasible region and of the boundary.?3

3. Getting close to the boundary (Figure 2a). Suppose that we have estab-
lished that P can be met but the pair {P, Q} cannot, so that the boundary
passes between the points {P} and {P, Q}. This raises the question of where
exactly it lies. Does it pass “close” to { P} (the solid line) or “close” to {P, O}
(the dashed line)? Properties are discrete concepts and the question does not
seem very meaningful. Yet, it is sometimes possible to formulate parameterized
versions of them, with the parameters indicating the partial extent to which
they can be satisfied. Suppose that indeed we have a family {Q” : 1 € [0, 1]} of
graduated conditions of increasing strength such that Q° is vacuously satisfied
and Q' = Q. In the figure, we have schematically indicated that only a weak
version of Q is compatible with P because the boundary passes close to P.

4. Identifying a functional relation between parameterized axioms permit-
ting to approach the boundary (Figure 2b.) When each of two properties is

23 Think of it as a cone of light emanating from Theorem 1, its source.
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feasible but their combination is not, we can sometimes establish trade-offs
between partial, parameterized versions of the properties. Here, the two
properties M and N have been parameterized as {M*:oe[0,1]} and
{N?:Bel0,1]}. For any pair of values of « and f such that « + § < 1, the
properties M* and N# are compatible. This is indicated by the curvilinear
segment L, which represents pairs of values of the two parameters permitting
compatibility.

Part II: Scope of the axiomatic method,
alternatives to it, and recent achievement

In Part II of this essay, I discuss alternative to the axiomatic method, eval-
uates its scope, and its relevance to the study of allocation problems and
strategic interaction.

8 Alternatives to the axiomatic method

So far, I have focused on a presentation of the axiomatic method, without
discussing other approaches. In what follows, I describe these alternatives, and
show that not only they are compatible with the axiomatic method, but that in
fact, they often naturally lead to it; at the very least, they are very usefully
complemented by it.

8.1 Basing solutions on the “intuitive’” appeal of their definitions

For some authors, a solution may be so intuitive that it does not require an
axiomatic justification. The position here is that the appeal of a definition is a
substitute for an axiomatic justification.

For instance, Peleg (1985) opens his study of the consistency of solutions
to coalitional games, in which he provides the first characterization of the
core, by stating that this solution is so natural that there is little need to
characterize it.

There should of course be no objection to relying on intuition since intu-
ition underlies the formulation of the axioms too. I submit that the view just
expressed is in complete agreement with the position developed in these pages,
provided terms are properly defined. Indeed, we have seen a number of axi-
oms that pertain to only one problem at a time in the domain of definition.
Let us refer to them as one-problem axioms. When such an axiom actually
applies to every problem in the domain — let us say that it has full coverage — it
automatically defines a solution.

For most classes of problems, the concept of Pareto-optimality can be used
either to define an axiom imposed on solutions, or to define a solution, simply
the solution that selects for each problem its set of Pareto-optimal out-
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comes.?* Similarly, notions such as individual rationality and no-envy can be
used either as axioms or solutions. By contrast, symmetry (two agents with
identical characteristics should be treated in the same way) is a one-problem
axiom that does not have full coverage, since there are problems in which no
two agents have identical characteristics. In fact, most problems are of this
kind, so that we cannot define a solution on the basis of considerations of
symmetry alone.?>

To the extent that a solution is intended to provide as precise a prediction
or recommendation as possible, it may be natural to focus on the axiom in-
terpretation of a test if many alternatives pass it, and on the solution inter-
pretation if the opposite holds.

If this language is adopted, and returning to our earlier examples, Pareto-
optimality and individual rationality would be called axioms because for most
economies many allocations pass either test, whereas we would speak of the
Walrasian solution since there are typically few Walrasian allocations. The
core is somewhere in between; depending upon the model and the number of
agents, there may be few core allocations (think of a large exchange econ-
omy), or a large set of them (convex games are an example).

Alternatively, we could think of the solution that associates with each
problem the set of its feasible outcomes satisfying some basic set of properties
as a “presolution”, the term suggesting that further restrictions need to be
imposed on outcomes.

In the theory of resource allocation, the correspondence that selects for
each economy its set of Pareto-optimal allocations, or the correspondence that
selects for each economy its set of individually rational allocations, are
examples of presolutions. In the theory of coalitional games, the notion of an
imputation, an efficient payoff vector meeting the individual rationality con-
straints, can also be understood, as providing a first reduction of the set of
payoff vectors worth considering and we could speak of the “imputation pre-
solution™.

8.2 Justifying solutions on the basis of the recommendations they make for
test problems

Another approach consists in simply producing solutions, and evaluating them
by verifying that they give appropriate answers in situations in which we feel
that intuition is a reliable guide. This “direct” approach is the most frequently

24 This is under the proviso that Pareto-optimal outcomes always exist, since I have
required solutions always to be non-empty valued. For most classes of problems — all
of the models discussed in this paper are included — the existence of Pareto-optimal
outcomes is guaranteed.

25 Except perhaps in the following trivial way: for each economy to which symmetry
applies, only select allocations recommended by the axiom; for each other problem,
select the whole feasible set, or some arbitrary subset of it.
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taken.?® Here, solutions are assessed by applying them to examples. They are
promoted when they provide intuitively correct recommendations or pre-
dictions for the examples, and criticized when they do not.

Consider the extension of the Shapley value, known as the A-transfer value,
from coalitional games with transferable utility to games without transferable
utility, and to resource allocation problems. (i) It had of course been known
for a long time that on the subclass of coalitional games with transferable
utility whose core is non-empty, the Shapley value may select payoff vectors
outside of the core. Given the compelling definition of the core, this had been
seen as a problem. (ii) Examples of games without transferable utility illus-
trating additional difficulties with the A-transfer value were developed by Roth
(1980). (iit) Shafer (1980) constructed an exchange economy in which the /-
transfer value assigns a positive part of society’s resources to an agent whose
endowment is zero. The Shafer and Roth examples were then the object of an
extensive literature. (See Aumann 1985a; Roth 1986; Scafuri and Yannelis
1984; Yannelis 1982.)

In exchange economies, much has been made of certain “paradoxical”
behaviors of the Walrasian solution. For instance, there exist (i) economies in
which it allocates all of the gains from trade to only one of the agents; or (ii)
economies in which an agent’s welfare decreases when his endowment in-
creases; or (iii) economies where an agent’s welfare increases when he transfers
some of his endowment to another agent whereas the recipient’s welfare de-
creases (this is the well-known “‘transfer problem”). (iv) The Walrasian solu-
tion is also manipulable by misrepresentation of preferences.

Evaluating solutions by means of examples is a useful way to proceed
but the lessons to be learned by examining examples are often not drawn with
sufficient care. A few examples for which a solution does not make what
appears to be the right choice are not a sufficient reason to reject the solution.
First, it should not come as a surprise that any given solution would on oc-
casion not make the right recommendation. More importantly, instead of
serving as an indictment of the solutions in the study of which they were
developed, the examples should instead be used in a constructive way to
establish a new vista from which to consider the field. The axiomatic method
suggest that the following protocol be set in motion.

1. We should formally identify the class of situations that the examples
illustrate. The examples will be informative only if they are representative of a
sufficiently wide class of cases. The identification of this class should then in-
spire the formulation of a general property that can be incorporated as an axiom
in the analysis: the axiom simply specifies how the solution should behave on

26 This is illustrated by the following list of examples of solutions that were introduced
in this way: for bargaining problems, the Raiffa solution (1953); for coalitional games
with transferable utility, the core (Gillies 1959); for normal form games, the Nash
equilibrium solution (1951); for extensive form games, the subgame perfect equilibrium
solution (Selten 1975); for exchange economies, the Walrasian solution; and for
economies with single-peaked preferences, the uniform rule (Bennassy 1982).
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the class. This process is not meant to be a substitute for intuition — the intu-
ition we have about the examples — but instead as a way of articulating this
intuition into operationally useful conditions pertaining to an entire class of
cases, the cases illustrated by the examples. The questions can then be asked:
How restrictive is the axiom? Which ones of the standard solutions satisfy it?
Which other properties is it compatible with? Which combinations of proper-
ties is it compatible with? Which maximal combinations of properties is it
compatible with?

Possible requirements on a solution suggested by the examples presented
above are as follows. (i) In the context of coalitional games, a solution should
be a subsolution of the core. (ii) In the context of resource allocation, a solu-
tion should not attribute to an agent more of every good that he owned ini-
tially; (iii) it should assign to an agent a welfare level that is monotonic with
respect to his endowment; (iv) it should be immune to the “transfer problem”.
(v) In the context of the problem of fair division, a solution should assign to
each agent a welfare level that is monotonic with respect to the social endow-
ment. (vi) In the context of a wide variety of resource allocation problems, a
solution should be immune to manipulation by misrepresentation of prefer-
ences. Of course, none of these requirements should be blindly accepted in all
applications; each has its own range of relevance.

How appealing each requirement is will certainly depend on the intended
application but in light of the debate that the examples have generated, it is
clear that understanding their implications will be of great value. Incidentally,
general theorems describing the limited extent to which such requirements are
compatible with other appealing ones have now been established, largely
exonerating the A-transfer value and the Walrasian solution from the limita-
tions that the examples had illustrated. These difficulties are now understood
to be widely shared, and largely unavoidable on classical domains, although
as we will see, quite a few interesting non-classical domains have been identi-
fied where they do not occur.

2. Once the axioms have been formulated, and when the goal is to under-
stand the merits of a particular solution, we can turn to the identification of
subdomains of problems on which the solution does provide the right answer. If
it is relatively large, we might be willing to accept undesirable behavior of the
solution on the complementary subdomain.2’

In bargaining theory and in the theory of coalitional games without
transferable utility, a number of conditions are satisfied by some of the central
solutions under the assumption of strict comprehensiveness of problems?®
but violated if that assumption is not made. Violations only occur on the
“boundary” of the domain.

27 When probabilistic information is available about the likelihood of the various
problems in the domain, this information can be used to quantify the severity of the
problem.

28 This is the assumption that the undominated boundary contain no non-degenerate
subset parallel to a coordinate subspace.
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In economic models of resource allocation, strengthening monotonicity
assumptions on preferences has similar consequences: when we go from
weakly monotonic preferences to strictly monotonic preferences, we find that
a number of properties hold that cannot be satisfied otherwise.

3. If the subdomain over which the violations of an axiom by a particular
solution occur is large enough, we may need to restrict the domain of definition
of the solution to the complementary subdomain.?°

The Shapley value, when applied on the domain of convex coalitional
games with transferable utility, and when used as a solution to resource allo-
cation problems, enjoys properties (core selection, various monotonicities),
that it does not satisfy in general (Moulin 1992). In exchange economies, and
under the assumption of gross substitutability of preferences, the Walrasian
solution satisfies many properties (stability, uniqueness, various monotonic-
ities) that it violates on standard domains (Polterovich and Spivak 1983;
Moulin and Thomson 1988). Other restrictions on preferences, such as homo-
theticity, normality, and quasi-linearity imply better behavior of the Walrasian
solution (and others) than on standard domains.

4. Alternatively, we may keep the same domain of definition for the solution
but limit the application of the axiom to a subdomain.

In formulating the properties of feasible set monotonicity and population-
monotonicity of bargaining solutions, we can restrict attention to strictly
comprehensive problems. It is quite useful to know that on this large sub-
domain, the lexicographic extension of the egalitarian solution satisfies the
properties (this is because it coincides there with the egalitarian solution, a
solution that enjoys them in general).

5. Another option is to weaken the conclusion of the axiom, provided we do
not lose too much of the essential idea of its initial formulation.

The egalitarian bargaining solution is not consistent but it so happens that
the solution outcome of a reduced problem always Pareto-dominates the re-
striction of the original solution outcome to the subspace pertaining to the
agents involved in the reduction, (instead of coinciding with that restriction as
required by consistency; Thomson 1984). For most problems however, con-
sistency and this property are equivalent. Still in bargaining theory, applying
the axioms only when certain smoothness conditions are satisfied, when cor-
ner situations do not occur, or when the feasible set is strictly comprehensive,
are other typical ways in which useful reformulations are obtained. In ex-
change economies, smoothness of preferences and interiority of allocations
often play a role too.

6. Finally, we may redefine the solution altogether. Of course, the price of
working with such redefinitions may be that some previously satisfied prop-
erty will now be violated.

29 Of course, restricting the domain is not always an option. The pathological exam-
ples may be ones for which it is particularly important that we be able to make rec-
ommendations.
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In bargaining theory, the egalitarian solution only satisfies weak Pareto-
optimality, and in order to obtain Pareto-optimality, it can be replaced by its
lexicographic extension (Imai 1983).3° In the process however continuity is
lost as well as a number of monotonicity properties.

9 Common criticisms addressed at the axiomatic method

The criticism is sometimes levelled against the axiomatic method that the
studies that have made use of it too often consist in the formulation of a large
number of axioms, and in the analysis of their logical relations — a sterile
exercise for some critics — only to end in some impossibility result. Another
criticism is that when these studies do not end in impossibilities, the recom-
mendations they make often conflict one with the other. Also, that character-
izations are obtained on “too large” a domain. Finally, axioms are often
criticized for not being descriptive of behavior. I take up each of these criti-
cisms in turn and draw on the theory of cooperative games and on the theory
of resource allocation to show that they are unfounded.

9.1 Too many axioms

Considering first the claimed multitude of axioms, I assert to the contrary that
in spite of the great variety of models that have now been the object of axiomatic
analysis, and the apparently large number of axioms that have been used in these
analyses, all of these axioms are expressions for each model of just a handful of
elementary principles with wide appeal and relevance. They are the following:

1. Efficiency. The principle of efficiency, or Pareto-optimality (and weaker
versions such as weak Pareto-optimality and unanimity), is of course the most
prominent one.

2. Symmetry. Many studies also involve some form of symmetry require-
ment. An example is equal treatment of equals, which says that identical
agents should be treated identically (at each chosen alternative, or globally). A
related condition is anonymity, which states that the solution should be
invariant under “permutations’ of agents.

3. Invariance and covariance. Invariance principles with respect to certain
choices of utility functions play an important role in models where utility in-
formation is used (d’Aspremont and Gevers 1977; Sen 1977).

The general principles described next have underlaid a great number of
recent developments.

4. Consistency and its converse. The consistency principle states the inde-
pendence of a solution with respect to the departure of some of the agents
with their assigned payoffs. It allows us to deduce, from the desirability of an

30 On the domain of strategic games, either in normal form or in sequential form,
Nash equilibrium can be replaced by undominated Nash equilibrium, or subgame
perfection respectively. See below for a further discussion.
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outcome for some problem faced by some group, the desirability of each re-
striction of the outcome to each subgroup for the problem obtained by imag-
ining that the members of the complementary subgroup leave with their
assigned payoffs and reevaluating the situation from the viewpoint of the
remaining agents; these are the associated “reduced problems”. The converse
of this principle permits us to infer the desirability of an outcome for the
problem faced by some group from the desirability of the restrictions of the
outcome to all two-person subgroups in the associated reduced problems (see
Driessen 1991, and Thomson 1996a, for surveys.)

5. Monotonicity. Consider now problems that can be described in terms of a
parameter that belongs to a space endowed with an economically meaningful
order structure (feasible set in utility space, technological opportunities in
commodity space, population size). The monotonicity principle requires the
welfares of all relevant agents (perhaps the entire set of agents or some partic-
ular subset of them) to be affected in a specific direction by changes in param-
eters that can be evaluated according to that order (see Thomson 1995b, for a
survey of the applications of the principle to variations in populations).

6. Replacement. The replacement principle asserts that any change in some
parameter entering the description of the problem under consideration,
whether or not the change can be evaluated in some order, should affect the
welfares of all relevant agents (again, who the relevant agents are depends on
the application) in the same direction (Thomson 1990a). A primary example
of such a parameter is preferences.

Both the monotonicity and replacement principles are formalizations of the
central idea of solidarity, with the latter expressing the strongest demands.3?

7. Informational simplicity. Principles of informational simplicity have also
been considered. They express in various ways the idea that solutions should
only depend on the essential features of each problem, either to facilitate cal-
culations, or to help guarantee that the agents will have a good understanding
of the situation (examples are contraction independence of Nash 1950; local
independence of Nagahisa 1991, 1994, and Nagahisa and Suh 1995; see also
Diamantaras 1992). These conditions turn out to have considerable relevance
to strategic issues, discussed next.

8. Implementability. Finally, we have principles pertaining to the strategic
behavior of the agents. Strategy-proofness states that it should always be in an
agent’s best interest to tell the truth about his characteristics, typically his
preferences, but also the resources he controls (endowments of physical goods,
knowledge of technologies, of likelihood of uncertain events ...) (see Barbera
1996, for a perspective, and Sprumont 1995, for a survey). Implementability
says that there should be a game form such that for each economy, the set of
equilibrium outcomes of the induced game coincides with the set of outcomes
that the solution would have selected on the basis of truthful information (see

31 In some models, the monotonicity and consistency principles can actually be seen as
“conditional” forms of the replacement principle (Thomson 1995b).
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Maskin 1985, Postlewaite 1985; Moore 1992, for surveys, and Corchon 1996,
for a comprehensive treatment; see also Jackson 1999).

It occasionally takes time to discover that a single principle underlies
developments in distinct areas. But once the principle has been recognized and
given a general formulation, it can serve as a very useful link across models,
providing conceptual unity and common elements of proof techniques.

A striking example illuminating this phenomenon is the consistency prin-
ciple which I have mentioned repeatedly. The principle, which likely underlies
a method of adjudicating conflicting claims suggested in the Talmud, a body
of Jewish laws and commentaries that is over 2,000 years old (O’Neill 1982;
Aumann and Maschler 1985), made a first explicit appearance in early studies
of the bargaining problem (Harsanyi 1959) and in the theory of coalitional
games with transferable utility (Davis and Maschler 1965). After a twenty-
year lull, researchers returned to it, and its implications have now been very
fully explored in a wide variety of areas: apportionment (Balinski and Young
1982), coalitional games with transferable utility (Sobolev 1975; Peleg 1986),
bargaining (Lensberg 1985, 1988), various models of fair allocation (Tade-
numa and Thomson 1991, 1993; Thomson 1988, 1994b), coalitional games
without transferable utility (Peleg 1985; Tadenuma 1992), quasi-linear cost
allocation (Moulin 1985a; Chun 1986), and bankruptcy and taxation (Young
1987, 1988; Dagan and Volij 1997), each time under a different name>2. In the
late 80’s, it was recognized as a general principle, and the terminology settled
on consistency.

It is true that some minimal adaptation of a general principle to each spe-
cific domain is usually necessary, so that the principle ends up giving rise to a
constellation of specific properties.

Pursuing the theme of consistency, a variety of formulations have been
considered depending upon whether the model is discrete, the decision to be
made pertains to utility levels or to physical goods, all subgroups or only
selected ones are allowed to leave (small groups or groups belonging to a class
endowed with a particular structure), the agents who leave are guaranteed the
payoffs originally promised to them or payoffs that are only required to be at
least as large as these original payoffs.

However, in most cases, this adaptation is a fairly straightforward opera-
tion.*3 What is important is to understand the essential logic of, and motiva-
tion for, the principle behind its various avatars.

9.2 Too many impossibilities

Turning now to the claim that axiomatic analysis has too often resulted in
impossibilities, it too has little merit. First, impossibilities do not invalidate

32 The following names have been used: (“uniformity”, “stability”, “stability under

LR TS

arbitrary formations of subgroups”, the “reduced game property”’, “bilateral equilib-
rium”, “separability”).
33 For instance, a property such as strategy-proofness always takes the same form

independently of which model is being considered.
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axiomatic analysis: they simply reflect mathematical truths that cannot and
should not be ignored. Moreover, an impossibility is often a characterization
with one axiom too many, and it is a matter of presentation whether the focus is
on the characterization or the impossibility. If we have the expectation or the
hope that a certain list of desirable properties are compatible but in fact they
are not, our conclusion will take the form of an impossibility theorem and the
tone will be disappointment. In abstract social choice, this is undoubtedly the
conclusion to be drawn from Arrow’s work and much of the literature that
followed it, a conclusion that may have been at the origin of this criticism.

However, and this is my second response to this criticism, it is now well-
understood that the impossibility theorems of Arrovian social choice are
mainly due to the analysis being conducted on unstructured domains of
alternatives, and to the search being for general methods satisfying a restric-
tive independence condition. By focusing on concretely specified models and
not insisting on the independence condition, a large number of meaningful
positive results have now been uncovered, as we will see in the remaining
pages of this essay.

9.3 Too many conflicting recommendations

Concerning the claim that when axiomatic analysis has not led to impossibil-
ities, it has too often produced conflicting recommendations, I will first point
out that whenever this has been the case, the axiomatic method should not be
blamed for results that may not fulfill our hopes. To the contrary, it should be
credited for having led to their discovery and thereby helped clarify the rela-
tive merits of a priori reasonable solutions. Moreover, for several important
domains, just a few solutions have in fact been identified as being clearly more
deserving of our attention than other candidates, as now illustrated:

1. Bargaining problems. I have already noted that in spite of the multi-
plicity of the solutions that had been proposed for bargaining problems, only
three (and natural variants), have come up again and again in the literature.
They are Nash’s (1950) original solution, the Kalai-Smorodinsky solution
(1975), and the egalitarian solution (Kalai 1977). The other solutions have
played a role on rare occasions in axiometric analysis, or never. The Nash
solution has usually come up in connection with some independence property,
and the Kalai-Smorodinsky and egalitarian solutions when some monoto-
nicity property is required. The egalitarian solution requires interpersonal
comparisons of utility, and in contexts where for conceptual or practical rea-
sons such comparisons are deemed unacceptable, we are left with just two
principal contenders! (see Roth 1979; Peters 1992; Thomson and Lensberg
1989; Thomson 1999a, for surveys of this literature).

2. Coalitional games with transferable utility. Similarly, a great many sol-
utions have been proposed in the theory of coalitional games with transferable
utility, but one has been derived in numerous axiomatic analyses, namely the
Shapley value (see Aumann 1985b, who emphasizes this point). Together with
the core and the nucleolus — the latter has been important in recent develop-



362 W. Thomson

ments — we only have three solutions on which to mainly focus. Further rele-
vant criteria to rank them may be existence — recall that non-emptiness of the
core is far from being always guaranteed — and singlevaluedness — when non-
empty, the core often selects multiple allocations.

3. Standard resource allocation. In the study of allocation of private goods,
it is also true that no single solution has always been shown superior to the
others, but we can with a large degree of confidence eliminate from contention
all but a few. The Walrasian solution has come out of axiomatic analyses on
several occasions, and the egalitarian-equivalence solution and various selec-
tions from it have played an important role in the last few years. The Walra-
sian solution has been derived primarily from considerations of informational
efficiency (Hurwicz 1977; Jordan 1982), implementability (Hurwicz 1979;
Gevers 1986), or consistency (Thomson 1988; Thomson and Zhou 1993).
Selections from the egalitarian-equivalence solution (Pazner and Schmeidler
1978) have emerged from considerations of momnotonicity, with respect to
endowments or technology (Thomson 1987b; Moulin 1987), or considerations
of welfare domination pertaining to simultaneous changes in preferences and
populations (Sprumont 1998; Sprumont and Zhou 1999).

The final examples pertain to somewhat narrower domains but for them,
an even sharper focus on a small number of solutions and sometimes a single
solution, has been obtained.

4. Allocation of a private good when preferences are single-peaked. For the
allocation of a single infinitely divisible good when preferences are single-
peaked, the same solution, the uniform rule, has come up in virtually all cases.
Whether strategy-proofness (Sprumont 1991; Ching 1992, 1994; Barbera and
Jackson 1994), implementability, monotonicity with respect to resources or
with respect to population, welfare-domination under preference-replacement,
or consistency, are imposed, (Thomson 1990b, 1994a, 1994b, 1995a, 1997,
Dagan 1996a; Moreno 1995; Klaus et al. 1997, 1998), the uniform rule has
emerged as the most important solution.

5. Auctioning a single indivisible good. For the allocation of a single indi-
visible good when monetary transfers are possible, the solution that selects for
each economy the envy-free allocation at which the winner of the indivisible
good is indifferent between his bundle and the common bundle of the losers
has come up on several occasions. Considerations of consistency, population-
monotonicity (Tadenuma and Thomson 1993, 1995), and welfare-domination
under preference-replacement (Thomson 1998), have all led to that solution.>*

6. Public choice when preferences are single-peaked. Finally, for the prob-
lem of choosing the level of a public good from an interval when preferences
are single-peaked, a family of solutions, the generalized Condorcet solutions,
and various subfamilies, have been characterized in several ways. Character-
izations of these families have been obtained from considerations of strategy-

34 This is the primary solution for this domain. Virtually all other solutions coincide
with it.
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proofness (Moulin 1980, 1984; Barbera and Jackson 1994; Ching 1997), con-
sistency (Moulin 1984), population-monotonicity (Ching and Thomson 1992),
and welfare-domination under preference-replacement (Thomson 1993; Vohra
1999).

These examples certainly do not guarantee that the same phenomenon will
always occur but they do show that for several models, some very useful pri-
orities among solutions are obtained by applying the axiomatic method.

Incidentally, note that if the objective of an axiomatic study were taken to
be the characterization of a particular solution (a position challenged in Sect.
3), the fact that the solution has been characterized in earlier work might
diminish the interest of the result. On the other hand, if we do not lose sight of
the objective of the axiomatic program, which I have argued should be to
identify as completely as possible which combinations of desirable properties
are compatible, and how, then the fact that a certain solution comes up once
again in a characterization should be celebrated: this may give us the hope
that the class of problems under study has only one reasonable solution, or at
least only a few such solutions. When it comes to actually making a choice, a
consensus will then be much more likely.

9.4 Too large a domain

A concern that is sometimes expressed is that for axioms to be effective in
proofs, the domain of problems under consideration has to be “large”, even
“too large”. Characterizations depend too much on solutions being defined
for a wide range of problems, including ones that are not likely to occur fre-
quently, or even stand at the limit of what is plausible. Sometimes, crucial
steps in proofs are made possible only by drawing on these problems that lie
at the “boundary of the domain”.

This criticism is unjustified. An axiomatic study properly conceived begins
with the proper mathematical specification of the range of economic situations
to be covered. If the domain has not been specified correctly, then of course
our conclusions will not be useful. Admittedly in practice, some flexibility is
sometimes available in specifying the domain, which is why I argued earlier
that studying the sensitivity of our conclusions to the choice of domains
should be part of our analysis. If we find that particular problems carry much
of the burden of the proofs, then it is critical to make sure that they should be
included.

For instance, in the study of resource allocation, we often allow prefer-
ences exhibiting an arbitrarily large degree of substitutability between goods
or an arbitrarily large degree of complementarity (linear preferences and
Leontieff preferences). Moreover, these preferences are often used in proofs. If
in the particular class of situations that we have in mind, natural (upper or
lower) bounds on degrees of substitutability between goods are justified, then
these bounds should be imposed. There are however interesting situations
where no such bounds exist, where for instance certain goods may essentially
be undistinguishable, so that allowing for perfect substitutability is then quite
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legitimate. The domain should include these preferences, and there is nothing
wrong if they appear in proofs.

We often start working with a standard domain, not knowing how much
of a role its size will play in the analysis, but as results accumulate, we typi-
cally gain insights into the issue. For certain properties, we now have a deep
understanding of it, an understanding that should be our goal in general. The
development of the literature on strategy-proofness illustrates well how con-
cerns about largeness of domains can be completely alleviated as a field
evolves.

(i) The first studies of the property were conducted on abstract domains of
Arrovian social choice, in which the set of alternatives is unstructured and
preferences are unrestricted. The central result of that literature, the Gibbard
(1973)-Satterthwaite (1975) theorem, essentially states that on such a domain,
a solution is strategy-proof if and only if it is dictatorial (one agent is chosen
beforehand and an outcome that is best for his announced preferences is
selected). Could this theorem, proved on such a large domain, have any rele-
vance to concretely specified economic models, models in which the set of
alternatives is endowed with a variety of mathematical structures and prefer-
ences are correspondingly restricted?

(i) Major progress in answering this question was achieved in the early
90’s by Barbera and Peleg (1990). They derived the dictatorship conclusion for
a model in which the space of alternatives is given a topological structure and
preferences are required to be continuous. However, they imposed no con-
vexity assumption on preferences. Moreover, in their proofs, they used pref-
erences having several local maxima. Such preferences are usually excluded
from our economic models.

(iii) However, Zhou (1991) imposed all of the classical assumptions and
still derived dictatorship: for preferences of the kind typically considered in
our microeconomic textbooks, dictatorship cannot be escaped.

(iv) Schummer (1997) further narrowed the class of admissible preferences
and showed that under further restrictions such as homotheticity and even
linearity, dictatorship still holds.

(v) Finally — but this is not quite the end of this journey since the latter
results only apply to two-person economies — in the case of linear preferences,
Schummer (1997) was able to exactly calculate how large the number of
possible preferences had to be to force dictatorship. Remarkably, only four
suffice.

For economies with indivisible goods and economies with public goods,
Schummer (1996, 1999) has similarly shown that extremely narrow classes of
problems lead to dictatorship.

After the initial results of Gibbard and Satterthwaite, one could legiti-
mately entertain doubts about the relevance of their conclusion to concretely
specified models of resource allocation. Thanks to these recent developments,
we now know that dictatorship is essentially inescapable.

The attention that has been lavished on strategy-proofness is unequaled
however. For other properties, and other classes of problems, we often do not
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know how sensitive to largeness of domains our conclusions are. Such analysis
will have to be part of the axiomatic program as it develops further.

There is of course no fundamental reason why progress should only be in
the direction of progressive narrowing of domains. Sometimes, starting from a
domain on which certain properties are known to be compatible, we may be
curious about how much and in what direction the domain can be widened
without existence being lost. And we will want to determine how the class of
admissible solutions will narrow in the process.

With regards to strategy-proofness, Alcade and Barbera (1994) have
explored this issue for matching theory, Barbera et al. (1991) for the election
of a committee, Ching and Serizawa (1998) for the allocation of a private
good when preferences are single-peaked, Berga and Serizawa (1996) for
public decision, again when preferences are single-peaked, and Ehlers (1999)
for the assignment of indivisible objects. In each of these studies, the authors
have been able to answer precisely the question whether a characterization
obtained on a certain domain would persist when the domain is extended at
all.®®

9.5 Axioms are not descriptive of behavior

An additional criticism often addressed at the axiomatic method is that
“people do not behave according to the axioms”. Here the issue has to do
with the scope of the axiomatic method, an issue discussed at length in the
next section. The answer is that axiomatic studies are not necessarily con-
cerned with behavior, but nothing prevents the axiomatic method from being
used in addressing these issues. I will in particular discuss its usefulness in the
study of equilibrium in games. There, the axioms are meant to formalize
“components” of behavior. For instance, is it plausible to think that players
discard dominated strategies? If yes, we may consider writing this down as one
of the axioms that will compose their behavioral portrait.

On the other hand, in the normative analysis of allocation problems, the
axioms are not intended to reflect behavior but rather social values. In for-
mulating the rules according to which goods will be produced or exchanged,
should we care about efficiency? Should we care about how gains made pos-
sible by improvements in technologies are distributed? Should we care about
the impact of population changes on existing populations? These are essen-
tially normative, not descriptive, issues.

10 The scope of the axiomatic program

In this section, I discuss the scope of the axiomatic method. Its relevance is
wider than generally thought, and in particular it is not limited to abstract
models and problems of cooperation.

35 When no extension is possible, the domain is “maximal” for the list of properties
that are being investigated.
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10.1 Is the axiomatic method mainly suited to the analysis of abstract models?

Axiomatic studies of the abstract models of social choice, bargaining, and
coalitional games are quite numerous, whereas until recently the number of
axiomatic studies of concretely specified classes of resource allocation prob-
lems had been rather limited. This may suggest that the axiomatic method is
mainly suited to the study of abstract domains. I believe otherwise, for the
following reasons:

1. First, enough evidence has accumulated in the last ten years to make a
convincing case that the axiomatic method is not only conceptually compatible
with concrete formulations but also operationally useful; it does offer a work-
able and productive way of analyzing concretely specified economic models.
The conceptual apparatus that has been elaborated, the proof techniques that
have been developed, and the body of results that have been obtained, together
provide what I consider compelling evidence in support of this position.

In addition to the examples used throughout this paper, see Young (1994);
Moulin (1995); Thomson (1999b); or Moulin and Thomson (1997); for sur-
veys of the literature on resource allocation; also see the various references of
Subsect. 12.3 concerning strategic analysis.

2. Conversely, and with the possible exception of Arrovian social choice,
the impression that the theory of abstract models had progressed only, or prin-
cipally, in the axiomatic mode, is greatly mistaken anyway.

The historical record is clear. In the theory of bargaining, between Nash’s
publication of his classic article (1950) and the middle seventies, when the lit-
erature underwent a significant revival thanks to Kalai and Smorodinsky
(1975) and Kalai (1977), only a handful of axiomatic studies of the bargaining
problem appeared. In the theory of coalitional games with transferable utility,
no axiomatization of solutions other than the Shapley value and variants of it
was developed in almost thirty years following Shapley’s classic 1953 paper.
Apart from Sobolev’s work (1975) on the prenucleolus (Schmeidler 1969),
work that did not become known in the West for several years,* it is only in
the early eighties that axiomatic analysis took a preeminent position in that
branch of the literature. Then, axiomatic derivations of the core (Gillies 1959)
and the prekernel (Davis and Maschler 1965) were obtained by Peleg (1986).
At that time, characterizations of the Shapley value from new perspectives
were also discovered (Young 1985; Hart and Mas-Colell 1989).

Nash’s and Shapley’s founding papers did give an axiomatic “‘tone” to the
theory of bargaining and to the theory of coalitional games with transferable
utility,®” but as the above references indicate, these authors were essentially

36 To this date, there is no published English translation of Sobolev’s fundamental
characterization of the prenucleolus, although several have been circulated.

37 This may explain the mistaken view about the role played by the axiomatic method
in the development of the theory of cooperative games described above, since no game
theory textbook goes much beyond these two papers, and most students of the field
obtain a flavor of the methodology through the abbreviated treatment that they find
there.
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not followed in their methodology until relatively recently, and in fact as far
as the latter is concerned, quite recently.

An even more striking example is the theory of coalitional games without
transferable utility. Until the late 1980’s, that literature had been entirely
non-axiomatic: none of the central solutions, the core, the A-transfer value
(Shapley 1969), the Harsanyi value (Harsanyi 1959, 1963), were given axiom-
atic justifications until twenty or thirty years after they were introduced. These
characterizations are due to Peleg (1985) for the core, Aumann (1985a) for the
A-transfer value, and Hart (1985) for the Harsanyi value. Then, other solu-
tions were also discovered in the course of axiomatic analysis — an example
here is Kalai and Samet’s (1985) egalitarian solution.

10.2 Is the axiomatic method mainly suited to the analysis of cooperative
situations?

Another common perception is that the axiomatic method is mainly suited to
the study of cooperative models. I argue below that this view is mistaken and I
devote Sect. 12 to a discussion of the relevance of the axiomatic method to the
study of strategic interaction.

11 On the relevance of the axiomatic method to the study of resource
allocation

Here, I discuss the relevance of axiomatic studies of abstract models to the
understanding of concrete resource allocation problems.

Instead of directly analyzing a class % of resource allocation problems
specified with all of their physical details, a standard way of proceeding is
to “reduce” them first so as to obtain abstract problems in a class .o/ that
we understand, and then to apply the conclusions derived in the analysis
of <.

1. A first issue in evaluating the legitimacy of this approach is whether each
concrete problem in € is mapped into one of the abstract problems in /. The
answer is yes for several important classes.

Consider the problem of allocating private goods: under standard as-
sumptions on preferences, endowments, and technologies, by taking the image
in utility space of the set of feasible allocations (this is the reduction to which
we just alluded), we obtain a problem satisfying the assumptions typically
made in the theory of bargaining (non-degeneracy, convexity, compactness,
and comprehensiveness).

If coalitions can form and preferences are quasi-linear, we can associate
with each economy a coalitional game with transferable utility (by defining
the worth of a coalition to be the maximal aggregate utility the coalition can
achieve by redistributing among its members the resources it controls), and in
fact this game satisfies the balancedness condition that has been central to the
theory of these games (Shapley and Shubik 1969).
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If general preferences are permitted, we end up with problems belonging to
one of the classes that are standard in the theory of coalitional games without
transferable utility.

2. However, that each resource allocation problem in € maps to some
problem in </ is not sufficient to justify applying the results obtained in the study
of <. Since these results pertain to solutions defined on the whole of </, we need
to know whether conversely, each of the problems in </ can be derived from
some problem in €. We do have fairly general, and positive, answers to this
kind of questions, at least when the class of concrete problems are exchange
economies. Unfortunately, for other domains, not much is known.

Billera (1974) and Billera and Bixby (1973a, 1973b) have shown that if a
bargaining problem satisfies the standard conditions mentioned in item 1, then
indeed it is the image in utility space of some problem of distribution of pri-
vate goods in which preferences satisfy standard assumptions. Similarly,
Shapley and Shubik (1969) have shown that each totally balanced coalitional
game with transferable utility can be derived from some economy satisfying
commonly imposed assumptions. The main restriction in each of these studies
has to do with the number of goods, which should be sufficiently large in re-
lation to the number of agents. Sprumont (1997) has initiated the investigation
of the conditions that a coalitional game with transferable utility has to satisfy
in order to arise from some economy with public goods.

3. Further, consider a requirement P, involving pairs of abstract problems,
and a requirement Py involving pairs of concrete problems, such that the images
in utility space of two concrete problems satisfying the hypotheses of Py are two
abstract problems satisfying the hypotheses of P.;. Suppose that we have been
able to determine the implications of P;. We would like to know whether we can
deduce from this knowledge the implications of Py. To answer this, we need to
know whether for each pair of problems satisfying the hypotheses of P, there is
a pair of concrete problems satisfying the hypotheses of Py and whose images in
utility space are the two abstract problems.

This point is somewhat more subtle and the following illustration might be
more revealing that the general statement. Suppose that the analysis of ./ has
involved axioms pertaining to pairs of problems. In bargaining theory, an ex-
ample is when two problems are related by inclusion, a situation to which the
requirement of strong monotonicity pertains: it says that if the feasible set
expands the payoffs of all agents should be at least as large as they were ini-
tially. It is often motivated by reference to an economic situation in which
physical resources increase, and the desire to make all agents benefit from
such increases. The implications of this requirement in bargaining theory are
well understood: in the presence of efficiency, only the so-called monotone
path solutions are acceptable (Kalai 1977; Thomson and Myerson 1980). The
possibility of applying this result to economies hinges on whether, given two
bargaining problems related by inclusion, there exist two economies that differ
only in their endowments of resources — the endowment of one should domi-
nate the endowment of the other — and such that their images in utility space
coincide with the two bargaining problems. Slightly more formally, given a
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pair of problems in .o7 related by inclusion (a situation to which we would like
to apply the axiom of strong monotonicity), when are they the images of the
two versions of a given problem in € resulting from two choices of the social
endowment, one of which dominates the other, (a situation to which the
axiom of resource-monotonicity applies)? When this operation is possible is
useful information, but I am not aware of any general study of it. Certainly,
we know from our previous discussion that a general positive answer should
not be expected.

4. The operation may not always be critical however, for the following
reason. In a characterization proof, not all possible problems or pairs of
problems are used. Then, the more limited question that needs to be asked is
whether the pairs used in the proof of the characterization can be obtained from
pairs of concrete problems satisfying the hypotheses of the axiom.

In our example, not all pairs related by inclusion are used in deriving a
characterization of the class of strongly monotonic solutions to the bargaining
problem; in fact, much more restricted classes of such pairs are needed.

5. A limitation of the abstract model is that changes in the parameters as
described in the hypotheses of an axiom may occur not only in the concrete
circumstances motivating the condition but also in circumstances that are
unrelated to them. The description of the model not being rich enough for the
investigator to verify when the motivating situation applies, other situations
may be ‘“smuggled in” that were not intended, widening the scope of the
condition too much. To avoid this pitfall, it is important to directly study how a
given solution defined on </ and in which one may be interested behaves, when
applied to the images of pairs of problems in €.

For such studies, see Roemer (1986a,b 1988, 1990, 1996) and Chun and
Thomson (1988), who considered which monotonicity and consistency con-
ditions are satisfied by solutions to the bargaining problem when they are used
to define solutions to resource allocation problems.

In this regard, it is useful to note however that for a number of properties,
as the number of commodities increases, what can be achieved enlarges con-
siderably. In fact, as soon as the number of commodities is equal to two, the
behavior of bargaining solutions when applied to economic problems is es-
sentially what it is on abstract domains (Chun and Thomson 1988). These
results show that the one-commodity case is quite special, putting into ques-
tion the relevance of the numerous studies that have taken it as canonical
example.

The advantage of working within a concretely specified model is that we
can exactly identify the circumstances under which the possibility of an en-
largement of the feasible set occurs, and decide case by case how the solution
should respond. Altogether, and in the absence of complete answers to some
of the questions just raised, it may be safer to work directly with concretely
specified resource allocation models rather than abstract problems. The
numerous references that I have given to recent studies of such models were
intended to show that this position is not only methodologically sound but
also operationally productive.
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12 On the relevance of the axiomatic method to the study of strategic
interaction

In this section, I discuss the application of the axiomatic method to the study
of strategic models.

12.1 The conceptually flawed opposition between axiomatic game theory and
non-cooperative game theory

As a preface to this discussion, I will note a frequent misunderstanding per-
taining to the traditional division of game theory into its “‘cooperative’ and
“non-cooperative” branches. The former is thought of by many as the natural
domain of application of the axiomatic method, and it is often referred to as
“axiomatic game theory”’, non-cooperative games being the domain of “stra-
tegic” analysis. To illustrate, the axiomatic theory of bargaining is commonly
opposed to its non-cooperative counterpart: axiomatic game theory is under-
stood to be normative, that is, its objective is to recommend normatively
appealing compromises; by contrast, non-cooperative game theory is sup-
posed to be descriptive of the way a group of agents, each of them intent on
promoting his own interest, would solve conflicts without outside interference.

My first observation is that this opposition between the axiomatic approach
and the non-cooperative approach is conceptually flawed. Indeed the term
“axiomatic” refers to the methodology of the investigator, who is outside of the
game, and the term “‘non-cooperative” to the behavior of the agents involved
in the game. Moreover, as discussed later, nothing prevents the axiomatic
method to be applied to the study of non-cooperative games.

It may be more useful to distinguish between modes of analysis on the
basis of the degree of concreteness with which we define the problems that we
consider. It is this distinction that motivates the following sections.

12.2 Are abstract models of game theory more general, or less general, than
concrete models?

Abstract models have been criticized for not providing adequate representa-
tions of the richness of actual conflicts. But they have also been praised for
allowing a wider coverage: by discarding information about the concrete
details of actual problems, we can handle within a single theory a much
broader class of situations. Which viewpoint is the correct one?

1. In support of the first position, note that a game tree can be “collapsed”
into a normal form game by ignoring all information about the tree structure
and retaining only strategies and their associated payoffs, and a normal form
game can in turn be collapsed into an abstract problem by ignoring all stra-
tegic information and retaining only the set of feasible payoffs. Therefore any
solution defined on a class of abstract problems specified in utility space, can
be mapped into a solution on a class of normal form games, and this solution
can in turn be mapped into a solution on a class of extensive form games.

The conclusion is therefore mathematically unescapable that a possibly
greater class of solutions is available for concretely specified models.



On the axiomatic method 371

In support of the second position, I simply note that natural procedures
can often be defined for associating with each normal form game an extensive
form game, and for associating with each abstract problem a normal form
game. Then, a solution to extensive form games can be mapped into a solu-
tion to normal form games. Similarly, a solution to normal form games can be
mapped into a solution to abstract bargaining problems.

An operation of this latter kind was performed by Nash (1950) who sug-
gested associating with each bargaining problem a certain strategic “game of
demands”. Another such procedure, a “game of solutions”, was developed
by van Damme (1986). Starting from a game specified in concrete terms,
Stahl (1972) and Rubinstein (1982) have also proposed ways of associating
with it a certain strategic game in extensive form, a ‘“game of alternating
offers”. Giil (1989) and Hart and Mas-Colell (1996) have considered coali-
tional games and associated with each such game a sequential bargaining
process.

2. In actual conflicts, agents’ actions are constrained in a variety of ways,
due to tradition, laws, or historical accidents. It is often argued that it is these
constraints that give each problem its specific character, and that without a re-
alistic description of them, there is no hope of understanding how it will be
solved. Although the existence of such constraints cannot be denied, it is also
true that considerable flexibility remains. Bargaining does not take place
according to the rigid scenarios spelled out in most of our formal studies. The
order in which agents move is quite variable; so is the time interval that sep-
arates an offer from a counter-offer; and the nature of these offers and
counter-offers varies considerably.>®

Of course, no mathematical model can possibly take into account all of
this detail, and a focus on the central aspects of the negotiations is required.
This is where the judgment of the modeler comes in, a judgment that only
robustness analysis can test. If it is true that alternative modelings of a given
bargaining situation essentially all lead to the same outcome, then a justifica-
tion for the model has been obtained. A model of bargaining should be for-
mulated so as to capture the essential elements of a class of relevant situations.
The only way to become convinced of whether modeling has been successful is
to perform this robustness analysis.

3. A counter-argument is that situations where some flexibility seems to
exist have been mis-specified.

If the time at which bargaining has to be concluded is flexible, and is
actually under the control of the players, then this flexibility should be incor-
porated into the analysis. If a certain issue may be part of the negotiations, the
choice of the players to bring it up should also be put into the model. The
possibilities of throwing away utility, being represented by a third party,
extending the scope of negotiation to new issues, calling in an arbitrator, set-
ting the agenda, . .., can all in principle be incorporated in the game form or

38 See Perry and Reny (1994), for an analysis where some flexibility is modeled.
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the tree, strengthening the argument that there is never any need to consider
anything more than the actual game form or the tree.

This argument is formally correct, but it actually begs the issue: until we
understand well how these various changes in the game form or the tree affects
the outcome, it is sterile to claim that only exactly specified game forms or trees
should be analyzed. A successful negotiator is not one who only understands
whatever explicit rules are given but rather one who knows how to manipulate
the rules, that is, understands what could be called “‘the implicit game”’.

Political scientists, who have had to be concerned with procedures much
more than economists, have contributed importantly to the understanding of
how they affect the outcome of games. In some contexts, it has been shown
that an appropriate choice of agenda could lead to any point in policy space
(McKelvey 1976).

4. In order to be effective, the axiomatic method typically requires that the
domain be “large enough,” whereas players engaged in a particular conflict
situation need not be concerned about other conflict situations. And indeed,
why should they be? The answer to this criticism is two-fold: first, it is hard to
imagine a player selecting a strategy in the particular game that he is facing
today without drawing on his experience in previous situations of the same kind
and attempting to formulate rules as to how he should play games in general.
Minimally, he has to speculate about what his opponent(s) will do, so that his
thinking should cover at least two game situations, not just one. Rationality on
the part of a player does seem to require that he develops some theory of how to
play games that extends beyond the particular game in which he is currently
involved. Second, as analysts, and even if the players are assumed to play only
one game, we can feel confident about our conclusions only when we have under-
stood how the solution that we are proposing behaves on a variety of games. Our
theory can only gain strength by being tested on a class of games.

When it comes to the recommendations that a judge or arbitrator should
make, the need for a general procedure is also quite clear. Consider for in-
stance the problem of dividing the liquidation value of a firm, say 12, between
two claimants with claims 8 and 10. Without a general procedure for solving
such bankruptcy problems, what should one think of the awards of 5 to
claimant 1 and 7 to claimant 2? It is virtually impossible to evaluate such a
recommendation in isolation, but by bringing within the scope of the exercise
other situations of the same kind, one can begin to form an opinion. For in-
stance, it is easier to evaluate the above recommendation and the awards of 5
to claimant 1 and 8 to claimant 2 when the liquidation value is 13, when these
two situations are considered together. More generally, by extending the class
of problems to be solved, we are better able to decide what to do for each of
them. The various ways in which recommendations could or should be related
as parameters change is what the axioms will express.

I also believe that the parties involved are much more likely to accept the
decision of the judge or arbitrator if he provides reasons for his decision. Such
reasons are most likely to refer to other similar situations. Once again, these
reasons are the axioms of our theories.
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12.3 Early achievements of the axiomatic method applied to strategic models

It is obvious that there is no intrinsic reason why abstract models should be
analyzed only axiomatically, and conversely, as I have attempted to show, the
axiomatic method can be profitably applied to concrete classes of resource
allocation problems. I will now argue that there is also no reason why strategic
interaction should not be studied axiomatically. A number of axiomatic studies
of strategic models have in fact been conducted, and they amply demonstrate the
relevance and the usefulness of the approach. Given the proliferation of solu-
tions for strategic models that has occurred (van Damme 1991), the axiomatic
method might in fact be quite welcome in sorting them out. I now give a list of
contributions that are particularly significant in this regard.

1. Harsanyi and Selten (1988)’s book is a primary illustration. The authors
consider normal form games and formulate a rich variety of conditions on
solutions. Examples are the basic invariance with respect to isomorphisms,
which says that two games that are the same up to a linear transformation of
utilities and renaming of agents, should be solved in the same way up to that
transformation; the self-explanatory invariance with respect to payoff trans-
Sformations that preserve the best reply structure; payoff monotonicity, which
says that if a pure strategy combination is chosen for some game and the
payoff function is changed by increasing the payoffs at that strategy combi-
nation, then it should still be chosen for the new game; cell consistency, which
says that the solution outcome of a game should agree with the solution out-
comes of its cells; truncation consistency, which says that the solution out-
comes of a truncated game should agree with the solution outcomes of the
non-truncated game. Other axioms are invariance with respect to sequential
agent splitting, partial invariance with respect to inferior choices, partial invari-
ance with respect to duplicates. Harsanyi and Selten establish a large number
of compatibility and incompatibility theorems. A related contribution is by
Selten (1995).

2. Abreu and Pierce (1984) consider extensive form games and investigate
the existence of solutions satisfying the following three axioms. Normal form
dependence: two games having the same normal form are solved in the same
way. Dominance: no dominated strategy is part of any solution outcome, and
if T is obtained from T by eliminating a dominated choice, then the solution
outcomes of 7" are the projections of the solution outcomes of 7 on 7. Sub-
game replacement: replacing a subgame which has a unique equilibrium out-
come in pure strategies by the corresponding payoffs, gives a game whose so-
lution outcomes are the restriction of the solution outcomes of the initial game
on the new game. They show that no solution satisfies both normal form de-
pendence and subgame replacement, and that no solution satisfies dominance.

3. Kohlberg and Mertens (1986) consider sequential games and formulate
several requirements on a solution for such games: existence, connectedness,
backwards induction, invariance, the requirement that two games with the
same reduced normal form should be solved in the same way, admissibility,
and iterated dominance. See also Mertens (1989, 1991, 1992).
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4. Bernheim (1988) considers normal form games and formulates a num-
ber of axioms pertaining to a player’s choice of an action to maximize his
payoff subject to beliefs about his opponent’s choices, under the assumption
that players do not assign positive probability to choices of the other players
that are judged “irrational”. Under these assumptions, there remain the issues
whether priors are common or not, and whether the choices of the other players
are perceived as independent random events or not. The four combinations of
the two axioms and their two negations characterize four equilibrium con-
cepts, iterated dominance, correlated equilibrium, rationalizability, and Nash
equilibrium. See also Brandenburger and Dekel (1987), and de Wolf and
Forges (1995, 1998) and Bernheim (1998).

5. Peleg and Tijs (1996) derive most of the familiar equilibrium notions
for games in strategic forms from considerations of consistency and various
notions of converse consistency.>® Additional axiomatic derivations of Nash
equilibrium along these lines are obtained by Peleg et al. (1994), Peleg and
Siidholter (1994), Norde et al. (1993), and Shinotsuka (1994).

6. Jackson and Srivastava (1996) identify a general property of solutions
(a property they call “direct breaking”) that guarantees a certain kind of
implementability.

7. Kaneko (1994) provides an axiomatic characterization of Nash equi-
librium on the basis of epistemic considerations.

8. Peters and Vrieze (1994) derive a selection from the subset of the convex
hull of the set of Nash equilibrium payoffs by translating the axioms used by
Nash in deriving his solution to the bargaining problem in terms of the data
entering the definition of normal form games.

9. Samet (1996) gives an axiomatization of operators describing the way
agents formulate hypotheses about the way a game will be played.

10. Tan and Werlang (1988), Basu (1990), Salonen (1992), Ben-Porath
and Dekel (1992), Borgers and Samuelson (1992), Tedeschi (1995), and
Kaneko and Mao (1996) are other studies in which the axiomatic method is
used, explicitly or implicitly.

12.4 On the interplay between the axiomatic and non-axiomatic modes of
analysis

Instead of pitting the axiomatic approach to the study of conflict situations
against non-axiomatic approaches, or abstract models against concrete mod-

39 In this context, consistency says that if a strategy profile is selected by a solution for
a game G, then in the “reduced game” obtained from G by imagining some of the
agents playing their assigned components of the profile, and appropriately redefining
the payoff function, the solution would still select the restriction of the original profile
to the remaining agents. Converse consistency pertains to the opposite operation. When
a strategy profile is such that its restrictions to subgroups of players are chosen by the
solution for the associated reduced games, then it is selected by the solution for the
large game.
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els, a multifaceted approach seems the most promising. The merits of such an
approach were certainly recognized by the founders of game theory. Nowa-
days, it is true however that game theorists have often fallen victims to the
need for specialization that in the last two decades may have been a necessary
accompaniment of the considerable expansion of the field. I will therefore
conclude with further illustrations of the useful role that the axiomatic method
can play in the study of strategic interaction.

12.4.1 The axiomatic and non-axiomatic approaches applied to game
theoretic models have sometimes met in surprising and illuminating
ways

In several interesting situations, axiomatic and non-axiomatic approaches
have led to the same, or closely related conclusions. In such cases, each
approach lends support to the other. I will give three illustrations, already
mentioned earlier, taken from the theory of bargaining.

1. The first illustration is of course Nash’s own work. Nash (1950) gives an
axiomatic characterization of the Nash bargaining solution. In (1953) he also
shows that the equilibria of a certain strategic game superimposed on his ab-
stract model — in this game, strategies are utility levels — produce the very
same outcomes.

2. Van Damme (1986) formulates a different game, in which players’
demands have to be justified as resulting from the application of well-behaved
bargaining solutions to the problem at hand, but the equilibria of its game
also lead to the Nash outcomes.

3. Finally, Stahl (1972) and Rubinstein (1982) reformulate the process of
bargaining by incorporating temporal elements in the negotiations. Their
strategic game of alternating offers generates equilibrium outcomes that also
coincide with the Nash outcome under an appropriate limit argument.

12.4.2 Axiomatic analysis provides the basis for understanding why different
approaches may lead to the same outcomes

Axiomatic analysis can go further and sometimes offer general results helping
us understand why different approaches lead to the same conclusions. I will
give two illustrations.

Consider the following theorem, which is a variant of a result due to Hur-
wicz (1979): if a correspondence defined on a class of exchange economies
satisfying standard assumptions (i) always selects Pareto-optimal and indi-
vidually rational allocations, and (ii) when the initial allocation is Pareto-
optimal, selects all individually rational allocations, and finally, (iii) is Maskin-
monotonic,*® then it contains the Walrasian solution.

This result teaches us a very general lesson about games. Indeed, since
the (Nash) equilibrium correspondence of any game is necessarily Maskin-

40 This says that if an allocation is chosen for some profile of preferences and prefer-
ences change in such a way that the allocation does not fall in anybody’s preferences,
then it is still chosen for the new profile.
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monotonic, and often satisfies the first two conditions of the theorem, then for
a large class of games, (games defined on classes of exchange economies), their
equilibrium correspondences always include the Walrasian solution, a rather
remarkable fact.

Recently, a number of authors have explicitly searched for principles
underlying general results pertaining to strategic interaction. The potential of
this approach is well illustrated by the success that it has met in connection
with consistency.

1. Krishna and Serrano (1996) demonstrate how a strategic interpretation
of the consistency condition shown by Lensberg (1988) to characterize the
Nash bargaining solution in the context of a model with a variable popula-
tion, would lead to the Nash solution. In his studies of non-cooperative mod-
els of bargaining and bankruptcy, Sonn (1994) finds the monotonicity and
consistency conditions developed in the axiomatic theory of bargaining to be
central to the derivation of the equilibrium equations. In a series of con-
tributions, Serrano (1993, 1995, 1997) uses similar arguments to derive the
nucleolus, the core, and the kernel.

2. Hart and Mas-Colell (1996) consider a non-cooperative bargaining
process for coalitional games without transferable utility and identify a par-
ticular solution which is also one that comes out of certain axiomatic consid-
erations. Here too, consistency plays an important role.

3. I have already discussed the characterizations of solutions to games in
strategic form obtained by Peleg and Tijs (1996). These results are based on
the application of notions of consistency and converse consistency, which until
then had been exclusively seen from the normative angle. For other contribu-
tions on the subject, see Peleg, Potters, and Tijs (1994), Peleg and Siidholter
(1994), and Shinotsuka (1994).

4. Dagan et al. (1993) consider a strategic game for bankruptcy problems
and exploit consistency ideas in order to characterize its equilibria.

5. Moldovanu (1990) similarly identify the equilibria of a game of offers in
a model of assignment by drawing on the consistency of a certain solution.

12.4.3 The axiomatic method sometimes usefully complements strategic
analysis

One of the central results in the theory of repeated games is the so-called “folk
theorem,” which states that any outcome Pareto-dominating the maximin
point can be obtained at equilibrium. Therefore, the predictive power of stra-
tegic analysis is sometimes very low. In situations where an equilibrium results
from preplay communication, the next obvious question is how players will
ever agree on any one equilibrium. Selection of an equilibrium on the basis of
normative considerations examined in the axiomatic mode may provide an
answer.

12.5 Implementation theory as the domain par excellence of axiomatic analysis

Most importantly perhaps, and if one of our goals as social scientists is not
only to understand the way conflicts are solved in the world, but also to dis-
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cover and promote methods of conflict resolution that are more likely to result
in good outcomes, the rules of the game should be an object of choice. Im-
plementation theory is concerned with constructing games with the objective
of identifying which social objectives are realistically achievable in the face of
strategic behavior of the agents. This field is among those that have benefited
the most from axiomatic analysis.

Indeed, the axiomatic method has assisted at all levels, in the determina-
tion of which normatively appealing social objectives are compatible, which
equilibrium concepts are appropriate in the analysis of the games to which
agents are confronted (Jackson and Srivastava 1996), and which solutions can
be implemented with respect to each chosen equilibrium concept. More
recently, much attention has been devoted to the characterization of which
solutions can be implemented by means of games satisfying additional prop-
erties of interest, mainly intended to permit simplicity of the procedure; here
too, the approach has been mainly axiomatic, with the axioms capturing
notions of computational simplicity (Dutta et al. 1995; Saijo et al. 1993;
Sjostrom 1996).

13 Conclusion

In this essay, I described the axiomatic method and attempted to refute argu-
ments against it. I also presented recent accomplishments, focusing on re-
source allocation in concretely specified economic models. I hope that these
recent successes will motivate applications to yet other areas.

Appendix

This appendix contains short descriptions of the various models most often
used as illustrations in the main body of the paper.

(1) A bargaining problem is a pair (B, d) of a non-empty, convex and compact
subset of IR” and a point d in B. The set B is interpreted as a set of utility
vectors attainable by the n agents if they reach a consensus on it, and d is
interpreted as the alternative that will occur if they fail to reach any com-
promise.

(2) A transferable utility game in coalitional form is a vector v in R?"~!. The
coordinates of v are indexed by the non-empty subsets of the set of play-
ers. A coordinate is interpreted as the amount of “collective utility” that
the members of the corresponding coalition can obtain.

(3) A normal form game is a pair (S,/%) where S =S, x---x S,and h: S —
R". For each player i, S; is a set of actions that he may take, and the
function £ gives the payoffs received by all the players for each profile of
actions.

(4) An extensive form game (with no exogenous uncertainty) is a tree 7, where
each non-terminal node bears as label an element of {1,... n}, and each
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terminal node bears as label a point in IR”. As compared to the previous
class of games, a sequential structure is added to the set of actions, and the
nodes indicate times at which agents choose actions.

(5) An exchange economy is a list (Ry,...,R,,®i,...,w,) where each R; is a
continuous and monotonic preference relation defined on IRfL, and
w; € lRﬁ is agent i’'s endowment. The integer / is the number of commod-
ities.

(6) An economy with single-peaked preferences is a list (R, ..., R,, Q) where
R; is a single-peaked preference relation defined over the non-negative
reals. The number Q2 gives the amount of a non-disposable good to be
divided among the n agents.
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