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Abstract

In this paper we compare the performance of standard nearest-neighbor propensity
score matching with that of an analogous Bayesian propensity score matching proce-
dure. We show that the Bayesian approach has several advantages, including that it
makes better use of available information, since it makes less arbitrary decisions about
which observations to drop and which ones to keep in the matched sample. Addi-
tionally, the Bayesian method produces parameter samples that can be used to easily
compute summary measures of the distribution of treatment effects; allows evaluating
the sensitivity of treatment effects to alternative priors; and can be used to produce
interesting visualizations of the distribution of quantities of interest. We conduct a sim-
ulation study to evaluate the performance of standard and Bayesian nearest-neighbor
matching when the propensity score model is correctly specified, as well as under dif-
ferent misspecifications of the propensity score model. Lastly, we use both methods
to replicate a recent study about the impact of land reform on guerrilla activity in
Colombia.
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1 Introduction

Matching methods are commonly used by social scientists to measure causal effects based

on observational data—that is, in situations where the researcher has no control over the

assignment of observations to causal states—or to correct randomization failures in the

context of experimental or quasi-experimental research (Cochran and Rubin, 1973; Rubin,

1979). These methods allow comparing values of the outcome variable across observations

that are similar in every (observed) relevant way except for differences in exposure to a

presumed cause. A variety of procedures have been developed to determine the similarity

of observations and to match observations conditional on similarity—or more specifically,

conditional on a summary measure of the distance between observations. One such distance

measure is the propensity score, commonly defined as the probability of being exposed to

alternative causal states or treatments, conditional on determinants of treatment assignment

(Heckman, Ichimura, and Todd, 1997; Rosenbaum and Rubin, 1983). The true propensity

score is an unobserved quantity, and is typically estimated using a regression approach. In

this paper, we propose and evaluate the performance of a simple method for incorporating

information about estimation uncertainty in the propensity score.

Even though the idea of using estimated propensity scores for matching observations

emerged decades ago (Rosenbaum and Rubin, 1983, 1985), and though alternative matching

procedures have been developed in recent years (see for instance, Diamond and Sekhon 2013;

Iacus, King, and Porro 2012), propensity score matching methods are still widely applied

and researchers continue proposing extensions and generalizations of propensity score-based

procedures (Imai and Dyk, 2004; Imai and Ratkovic, 2012; Zigler and Dominici, 2014). The

propensity score approach was developed as a way to solve the dimensionality problems

that would ensue if researchers tried to control for observed differences between treatment

and control observations by stratifying on multiple covariates. Estimated propensity scores

can be used to match observations treated with exposure to alternative causal states, using

non-parametric matching procedures, in order to construct matched samples that are well-
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balanced on relevant covariates (Dehejia and Wahba, 2002); where well-balanced means that

covariates are similarly distributed between treatment groups. If the matching method suc-

ceeded in balancing all relevant confounders, then differences in outcomes across treatments

can be attributed to differences in exposure to the presumed cause.

[Figure 1 about here.]

Despite the ease of use and popularity of the propensity score, it has a number of limita-

tions. Since we do not know the true mechanism underlying treatment assignment, estimated

propensity scores may deviate in unknown ways from true assignment probabilities, produc-

ing biased measures of causal effects (Rosenbaum, 1999). Furthermore, propensity score

matching procedures are usually conducted in two stages: one involving the estimation of

propensity scores, and another one in which treated and control observations are matched

based on point estimates of the distance measure (Stuart, 2010). But this ignores the fact

that propensity scores are themselves estimated quantities, and as such there is always some

degree of measurement uncertainty associated with those estimates (Tu and Zhou, 2002).

This idea is illustrated in Figure 1 (constructed with synthetic data), where the top-most

plot depicts the distribution of point estimates of propensity scores among treatment and

control units (information typically used as input to propensity score matching algorithms)

and the bottom-most plot depicts 95% credible intervals for the propensity score correspond-

ing to each observation in the sample (information typically disregarded by propensity score

matching algorithms). Even though analysts always have some amount of uncertainty about

estimated propensity scores, standard matching algorithms treat the distance measure as a

fixed quantity that is known with certainty (McCandless et al., 2009). The primary purpose

of our paper is to propose and evaluate the performance of a simple method for accounting

for estimation uncertainty in the propensity score.

A number of scholars have already made progress in investigating the extent to which

incorporating uncertainty in the propensity score would have an impact on standard errors

associated with measurements of causal effects. Tu and Zhou (2002) sought to incorporate
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uncertainty in the propensity score using a bootstrap method, and found that doing so

leads to larger standard errors associated with estimates of treatment effects. However,

the reliability of the bootstrapping approach has been called into question in recent years

(Abadie and Imbens, 2008). McCandless et al. (2009) were the first to propose using Markov

Chain Monte Carlo (MCMC) methods to account for uncertainty in the propensity score.

Consistently with the previous two studies, they found that incorporating uncertainty in the

propensity score leads to wider Bayesian credible intervals in the context of propensity-score-

based stratification and regression. An (2010) followed a similar approach, using Bayesian

methods to account for uncertainty in the propensity score in the context of propensity-

score-based regression and matching, but in contrast to McCandless et al. (2009), found

that doing so leads to lower standard errors.

Both McCandless et al. (2009) and An (2010)’s Bayesian inference procedures involve the

simultaneous estimation of propensity score and outcome models.1 Kaplan and Chen (2012)

criticize the simultaneous-estimation approach on the basis that, by estimating both models

simultaneously, outcome data is allowed to inform the estimation of the propensity score—a

potentially problematic attribute of the procedure, since it may introduce selection bias.

While the propensity score should incorporate information about the treatment-assignment

mechanism, it should not incorporate information about the outcome or treatment effect. To

address the previous issue, Kaplan and Chen (2012) proposed first estimating the propensity

score model using MCMC methods; then repeatedly estimating treatment effects (using

regression or non-parametric approaches), each time considering a different sample from the

posterior distribution of the propensity score; and finally computing the mean and variance

of estimated treatment effects across samples.

In this paper, we evaluate the performance of Bayesian propensity score matching (BPSM)

using a sequential estimation procedure along the lines of the method proposed by Kaplan

1See also Zigler and Dominici 2014, who develop a Bayesian method for jointly estimating propensity
score and outcome models that allows accounting for uncertainty in the specification of the propensity score
model.
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and Chen (2012), which avoids the problems discussed in the previous paragraph while still

allowing the incorporation of information about the uncertainty in the propensity score. We

find that BPSM has important advantages relative to standard propensity score matching

(PSM), including that—as is generally the case with Bayesian estimation procedures—it

produces samples of model parameters that can be used to summarize results and compute

quantities of interest such as measures of centrality and dispersion (Jackman, 2000), allowing

the analyst to get a more accurate sense of the estimation uncertainty in treatment affects.

An important difference between this paper and previous studies of the performance of

Bayesian propensity score regression and matching (such as McCandless et al. 2009, An

2010, and Kaplan and Chen 2012), is that we focus on procedures where control units that

are not comparable to treatment units are dropped from the analysis and are not taken

into account for the computation of treatment effects. Dropping control observations with

no close matches in the treatment group is a standard practice that allows achieving better

balance in the matched sample (Ho et al., 2007). We argue that accounting for estimation

uncertainty is particularly important in the case of matching procedures that entail dropping

observations, since the decision of whether to keep or drop a unit is based on the estimated

distance measure. Indeed, we find that another reason why BPSM improves upon standard

PSM is that the decision of whether to keep or drop observations from the matched sample

is done in a less arbitrary manner.

[Figure 2 about here.]

The arbitrariness of discarding units based on point estimates of propensity scores is

illustrated in Figure 2. This figure depicts the relationship between estimated propensity

scores and the decision of whether to drop observations from the matched sample, when

performing nearest-neighbor matching within caliper. In the case of control observations in

the synthetic dataset used for constructing this example, dropping decisions are relatively

rare for point estimates of propensity scores above 0.2. This suggests that small changes in

the distance measure (i.e. point estimates of propensity scores) may alter the composition of
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control units kept in the matched sample, especially for observations with point estimates of

the propensity score close to the 0.2 cutoff. We argue that incorporating uncertainty in the

propensity score by repeatedly matching treatment and control observations based on draws

from the posterior distribution of propensity scores (instead of matching only once based on

point estimates of the propensity score) can satisfactorily address the arbitrariness problem,

and (by making more efficient use of the available information) can lead to estimates of

treatment effects that are more representative of those prevailing in the target population.

Moreover, using more data should lead to higher precision, reflected in lower standard error

and narrower confidence intervals.

The rest of the paper is organized as follows. First, we describe the standard and Bayesian

propensity score matching procedures evaluated in this paper. Second, we report the results

of simulation studies conducted to compare the performance of both methods. We consider

hypothetical situations where the propensity score model was correctly specified, as well as

situations where a relevant covariate was omitted from the propensity score model. After

that, we replicate a recent study about the impact of land reform on the frequency of guer-

rilla insurgency in Colombia, using both standard and Bayesian propensity score matching

procedures. This application allows us to evaluate the impact of incorporating uncertainty

in the propensity score into the computation of average treatment effects in the context of a

real-world application. We conclude with a brief discussion of our results and a summary of

the benefits of the Bayesian approach.

2 Methodology

In this section we describe the propensity score matching procedures implemented in this

paper. Let Zi denote an indicator of treatment assignment, which takes values one for

individuals exposed or assigned to the treatment, and zero for individuals in the control

group. Further, let Yzi indicate the potential outcome for an individual i, which takes values
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Y1i if the individual is exposed to the treatment, and Y0i otherwise. The individual treatment

effect can be defined as the difference between the potential outcome under the treatment,

and the potential outcome under the control. Since each individual is exposed to a single

causal state (meaning that for each i, either Zi = 1 or Zi = 0), it is not possible to measure

individual treatment effects (Holland, 1986). However, numerous causal inference techniques

have been developed that allow researchers to estimate average treatment effects.

For each individual, let Yi denote the observed outcome and let Xi denote observed co-

variates thought to affect both the outcome and the probability of exposure to the treatment,

P (Zi = 1|Xi). If the outcome variable is a binary indicator that takes value one for any

individual with probability P (Yi = 1|Zi, Xi), the Average Treatment Effect (ATE) in the

population can be defined as the change in P (Yi = 1|Zi, Xi) caused by a change in Zi:
2

ATE = P (Yi = 1|Zi = 1, Xi = x)− P (Yi = 1|Zi = 0, Xi = x) (1)

In this paper, we consider two alternative approaches to estimating treatment effects:

standard nearest-neighbor propensity score matching (PSM) and Bayesian nearest-neighbor

propensity score matching (BPSM). In the latter case, we use MCMC methods to estimate

the propensity score model, and then estimate the treatment effects using a non-parametric

propensity-score matching procedure. Next, we describe the main characteristics of the

procedures that we use to measure treatment effects (PSM, BPSM, and post-matching model-

based adjustments).

2If the outcome variable is continuous, then the ATE in the population can be defined as the change in the
conditional expectation of Yi caused by a change in Zi. That is, ATE = E[Yi|Zi = 1, Xi = x] − E[Yi|Zi =
0, Xi = x].
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2.1 Propensity Score Matching (PSM)

In the case of standard nearest-neighbor propensity score matching (PSM), we estimate the

propensity score model using a logistic regression approach, such that:

logit[P (Zi = 1|Xi)] = ΓXi (2)

where Γ is a vector of coefficients and Xi is a vector of observed individual attributes.

Subsequently, we match treatment and control observations on the basis of estimated

propensity score, P̂Si = P̂ (Zi = 1|Xi). We search for matches using a non-parametric

procedure, whereby treatment units are sorted in terms of the estimated distance measure

from largest to smallest, and then each unit is matched one at a time to the nearest control

unit(s) along the distance measure.

Most frequently, we use a slightly modified matching procedure where, for each treat-

ment unit, we only consider control units lying within a maximum distance on the distance

measure. The maximum distance used to determine eligible matches is termed a caliper and

is specified in terms of number of standard deviations of the distance measure (Rosenbaum

and Rubin, 1985). For each treatment unit, we select a single match at random from those

control units lying within the chosen caliper.

2.1.1 Average Treatment Effect

When the outcome variable is a binary indicator, P̂0 denotes the estimated probability of

success under the control; and P̂1 denote the estimated probability of success under the

treatment. For units within the matched sample, we estimate P̂0 as the average observed

outcome taken over all matched control units:

P̂0 =
1

Ñ0

Ñ0∑
i=1,i∈C̃

Y0i (3)

where C̃ denotes the matched control group, Ñ0 denotes the number of matched control
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units, and Y0i denotes the observed outcome for individual i in the matched control group.

Similarly, we estimate P̂1 as the average observed outcome taken over all matched treatment

units:

P̂1 =
1

Ñ1

Ñ1∑
i=1,i∈T̃

Y1i (4)

where T̃ denotes the matched treatment group, Ñ1 denotes the number of matched treatment

units, and Y1i denotes the observed outcome for individual i in the matched treatment group.

We estimate the ATE as the difference between the estimated probability of success under

the treatment (P̂1) and the estimated probability of success under the control (P̂0):
3

ˆATE = P̂1 − P̂0 (5)

Note that while the PSM procedure produces a point estimate of the ATE, it does not

produce indicators of dispersion. Therefore, unless additional analyses are conducted after

matching, it is not possible to evaluate the uncertainty about treatment effects.

2.2 Bayesian Propensity Score Matching (BPSM)

First, we estimate a propensity score model similar to that given in equation (2), but using

using MCMC methods. The Bayesian estimation procedure produces samples of the Γ

vector of parameters of the propensity score model, [Γ̂(1) . . . Γ̂(K)], where K denotes the total

number of saved iterations. These samples can, in turn, be used to calculate samples of

estimated linear predictors, [Γ̂(1)X . . . Γ̂(K)X], and samples of estimated propensity scores,

[P̂ (1) . . . P̂ S
(K)

], either of which can later be used as distance measures for the matching

procedure.

For each k sample, we matched treatment and control units on the basis of the estimated

3When the outcome variable is continuous, the average treatment effect is computed as the difference
between the average value of the outcome variable in the treatment group, and the average value of the
outcome variable in the control group.
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propensity score, using a nearest-neighbor propensity score matching procedure similar to

that described before. Subsequently, we estimate the probability of success under the control

for matched sample k, P̂
(k)
0 , as the average observed outcome taken over all matched control

units:

P̂
(k)
0 =

1

Ñ
(k)
0

Ñ
(k)
0∑

i=1,i∈C̃(k)

Y0i (6)

where C̃(k) denotes the matched control group in sample k and Ñ
(k)
0 denotes the number of

matched control units in sample k. Similarly, we estimate the probability of success under

the treatment for matched sample k, P̂
(k)
1 , as the average observed outcome taken overall all

matched treatment units:

P̂
(k)
1 =

1

Ñ
(k)
1

Ñ
(k)
1∑

i=1,i∈T̃ (k)

Y1i (7)

where T̃ (k) denotes the matched treatment group in sample k and Ñ
(k)
1 denotes the number of

matched treatment units in sample k. For each matched sample k, we estimate the average

treatment effect similar to in equation (5):

ˆATE
(k)

= P̂
(k)
1 − P̂ (k)

0 (8)

Thus, the BPSM procedure does not produce a single point estimate of the ATE, but a

sample of size K of estimated ATEs. This sample can be used to produce summary measures

of the posterior distribution of the estimated ATE, including measures of centrality such as

the mean, and measures of dispersion such as credible intervals. In contrast to PSM, BPSM

can be used to obtain not only point estimates of the ATE, but also associated measures of

uncertainty.
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2.3 Post-Matching Regression Adjustment

Since PSM and BPSM are not exact matching procedures, neither will typically produce

matched samples that are perfectly balanced on observables. To control for remaining im-

balances in covariates, it is suggested that analysts conduct post-matching regression adjust-

ments in the matched sample (Rubin, 1973, 1979; Rubin and Thomas, 2000). According to

Ho et al. (2007), results produced by parametric adjustment on the matched sample should

be less model-dependent than similar adjustments on the original dataset, since it is only

conducted among comparable treatment and control observation and therefore avoids extrap-

olation. When the outcome variable is binary indicator, we perform regression adjustment

on the matched sample by estimating logistic regressions of the following form:4

logit[P (Yi = 1|Zi, Xi)] = βZi + ΘXi (9)

where β is the coefficient associated with the binary indicator of treatment assignment Zi,

and Θ is a vector of coefficients capturing the effect of covariatesXi (the same set of covariates

included in the matching procedure).

In the case of PSM, regression (9) is typically estimated using maximum likelihood,

and then a simulation procedure is used to estimate the effect of switching the treatment

assignment variable Zi from zero to one while holding Xi constant. This procedure produces

a series simulated treatment effects that can be used to obtain summary measures of the

distribution of the ATE, including point estimates and associated measures of uncertainty.

In the case of BPSM, we repeatedly estimate regression (9) within each k matched sample

using MCMC methods. Estimating the outcome model using Bayesian methods produces a

series of S draws from the posterior distribution of β and Θ parameters for each k matched

sample, which can then be used to summarize quantities of interest. Thus, the BPSM

procedure with post-matching regression adjustment produces K × S samples of estimated

4When the outcome variable is continuous, we perform regression adjustment by estimating linear regres-
sions on the matched sample, under the assumption that: E[Yi|Zi, Xi] = βZi + ΘXi.
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average treatment effects. When the outcome variable is a binary indicator, each draw of

the estimated ATE is computed as:5

ˆATE
(k,s)

= P̂ (Y = 1|Z = 1, X = X̄)(k,s) − P̂ (Y = 1|Z = 0, X = X̄)(k,s) (10)

where X̄ is a vector of mean or median levels of covariates included in both the matching

procedure and the subsequent model-based adjustment. The sample of adjusted ATE esti-

mates can be used to summarize different aspects of the posterior distribution of the average

treatment effect, including measures of centrality and dispersion, controlling for imbalances

in observed covariates that might have remained following the application of the matching

procedure.6

3 Simulation Studies

In this section of our paper, we undertake a number of different simulation studies to examine

the relative performance of the PSM and BPSM approaches. We begin with the obvious

simulation: we know the specification of the propensity score and outcome models, and we

estimate the true model using both approaches. These simulations indicate that the BPSM

approach is superior to PSM for recovering estimates of the treatment effects. The second set

of simulations consider what is probably a more likely scenario for applied researchers: the

propensity score model is misspecified due to the absence of a confounder. Here we present

simulation results from a variety of simple misspecifications, and in all cases we present

evidence that the BPSM approach dominates the PSM approach. Thus, the simulation

studies presented in this paper suggest that the BPSM approach is superior to the PSM

approach.

5When the outcome variable is continuous, the adjusted ˆATE equals the estimate of the coefficient

associated with the treatment variable in the linear outcome model. That is, ˆATE
(k,s)

= β̂(k,s).
6The BPSM procedure can be easily implemented with the aid of existing R packages. In this paper,

Bayesian estimation of propensity score models was performed using MCMCpack (Martin et al., 2011), and
nearest-neighbor matching steps were conducted using MatchIt (Ho et al., 2011).
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3.1 Correctly Specified Propensity Score Model

We used Monte Carlo simulation to evaluate the performance of PSM and BPSM under a

correctly specified propensity score and outcome model, for different sample sizes (500 and

1,500) and magnitudes of the treatment effect (determined by different values of the true

β coefficient). For each combination of sample size and magnitude of treatment effects, we

generated J = 1, 000 synthetic data sets using the following procedure:

1. Generate J covariate matrices, [X(1) . . . X(J)], where each X(j) includes a vector of ones,

a binary indicator x
(j)
1 , and a continuous variable x

(j)
2 . At each step j of the simulation

procedure, draw variables u(j) and x
(j)
2 from a multivariate normal distribution. Variable

x
(j)
1 is a binary indicator that equals one when a variable u(j) takes positive values and

otherwise equals zero. For the baseline simulation study, we assume x
(j)
1 and x

(j)
2 are

independent by setting the covariance between u(j) and x
(j)
2 to zero.

2. Conditional on simulated X(j)’s and a fixed vector of parameters Γ = [−1, 2, 2] (with

the first element being an intercept, and the second and third elements capturing the

impact of x1 and x2, respectively, on treatment assignment) generate J probabilities of

treatment assignment (i.e. true propensity scores), [PS(1) . . . PS(J)], based on a logistic

regression model similar to that given in expression (2). Then, generate J indicators

of treatment assignment, [Z(1) . . . Z(J)], by repeatedly drawing Z(j)’s from a binomial

distribution with probabilities given by true propensity scores PS(j)’s.

3. Conditional on simulated x
(j)
1 ’s, x

(j)
2 ’s, Z(j)’s, a fixed coefficient β capturing the effect of

the treatment, and fixed parameters θ1 = 1 and θ2 = −1 capturing the impact of x1 and

x2 on the outcome, respectively, generate J probabilities of success, [P
(1)
y . . . P

(J)
y ], based

on a logistic regression model similar to that given in expression (9). Then, generate J

binary outcome indicators, [Y (1) . . . Y (J)], by repeatedly drawing Y (j)’s from a binomial

distribution with probabilities given by simulated P
(j)
y ’s.

12



After generating J = 1, 000 synthetic data sets, we applied PSM and BPSM procedures

similar to those described in sections 2.1 and 2.2. For each j data set, we discarded control

units outside the support of the propensity score in the treatment group, and then performed

one-to-one matching without replacement, searching for matches within a caliper of 0.5 stan-

dard deviations of the estimated propensity score (in the case of BPSM, this was repeated at

each iteration). For both procedures (PSM and BPSM), estimates of treatment effects were

computed after performing post-matching regression adjustment. The simulation procedure

allowed us to evaluate both the bias and error associated with each matching procedure by

comparing ATEs estimated using PSM and BPSM with true ATEs. True average treatment

effects were computed by calculating individual treatment effects (which vary as a function

of x1i and x2i for each individual, since the outcome model is non-linear) and then taking

the average over the population, for each j step of the simulation procedure.

[Table 1 about here.]

The results of the initial stage of our simulation study are reported in Table 1. The first

column of Table 1 gives the percentage of observations kept in the matched sample (PSM

rows) or retained at least once during the matching procedure (BPSM rows). With the

configuration of parameters described above, between 68% (for N = 500) and 70% (for N =

1,500) of observations are matched in the case of PSM, and similar percentages are matched

on average at each iteration of BPSM. However, between 94% (for N = 500) and 97% (for N

= 1,500) of observations are matched at least once (that is, are kept in the matched sample

for at least one iteration of the matching procedure) for BPSM. These results suggest that

treatment effects computed using BPSM incorporate information from a larger number of

observations, compared to PSM.

The next six columns of Table 1 provide the following information: the mean value and

95% credible interval for the estimated ATE; the bias of the estimated ATE (average of the

absolute value of the difference between the true ATE and the estimated ATE), the mean

squared error of the estimated ATE (average of the squared difference between the true ATE
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and the estimated ATE); and the coverage probability (proportion of simulations where the

true ATE fell inside the 95% credible interval for the estimated ATE).

While both PSM and BPSM lead to measures of the estimated ATE that are relatively

close to the true ATE, the magnitude of the bias is considerably lower for BPSM for each

of the four combinations of sample sizes and magnitude of treatment effects. In order to

interpret this last result it is important to take into account all potential sources of bias.

On the one hand, neither matching procedure produces perfectly balanced samples, so part

of the bias can be explained by remaining imbalances in covariates that might lead to ad-

justed estimates of treatment effects that are slightly model-dependent. On the other hand,

within-caliper nearest-neighbor matching requires dropping control units located far from

the treatment group along the distance measure, as well as treatment observations that re-

main unmatched after all potential control matches have been used (this is the case because

matching is conducted without replacement), so part of the bias can also be explained by the

fact that the matched sample is not perfectly representative of the original sample but biased

toward specific values of observed covariates. We argue that one of the reasons why BPSM

usually produces lower bias relative to PSM is that, by making less arbitrary decisions about

which observations to keep or drop during the matching procedure, it allows incorporating

information from a larger number of observations, and as a results leads to estimated ATEs

that are more representative of true ATEs in the target population.

Additionally, the spread and MSE of estimated ATEs (both of which decrease markedly

when the sample size increases from 500 to 1,500) are always lower in the case of BPSM; and

the probability that the true ATE falls within the 95% credible interval (i.e. the coverage

probability) is always higher under BPSM than under PSM. Since BPSM leads to lower

bias, spread, and MSE, as well as higher coverage probability compared to PSM for all

configuration of parameters and sample sizes, we conclude that BPSM performs considerably

better than PSM for recovering treatment effects when the model is correctly specified.
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3.2 Misspecified Propensity Score Model

In Tables 2-4 we present the results of similar simulation studies with the alteration that the

propensity score model (as well as the outcome model used for the post-matching regression

adjustment) is misspecified due to the omission of a confounder. Table 2 corresponds to a

situation where the missing confounder is an interaction between variables x1 and x2 that has

a positive effect on both PS (the true propensity score) and Py (the probability of a successful

outcome). In the case of Table 3, the missing confounder is a third variable x3 drawn from

the same multivariate distribution as u (the continuous variable used to determine x1) and

x2 that has low covariance with included covariates (σu,x3 = 0.1 and σx2,x3 = 0.1). Lastly,

Table 4 corresponds to a situation where the missing confounder is again a third variable x3

drawn from the same multivariate distribution as u and x2, but with high covariance with

included covariates (σu,x3 = 0.7 and σx2,x3 = 0.7). In the last two cases (i.e. Tables 3 and

4), the omitted confounder x3 has a positive effect on both PS and Py.

[Tables 2-4 about here.]

The omission of a confounder leads to biased treatment effects in the case of both nearest-

neighbor propensity score matching procedures (PSM and BPSM). The magnitude of the

bias depends on the impact of the confounder on PS and Py, as well as on the correlation

between the excluded confounder and included covariates. Moreover, since the propensity

score and outcome models are non-linear, the magnitude of the bias should also depend on

the impact of the treatment and included covariates on PS and Py (in the case of logistic

link functions, the further from 0.5 the true values of PS and Py, holding constant the level

of the omitted confounder, the lower the magnitude of the bias produced by the omission of

a confounder).

We found that the bias is considerably larger for PSM than for BPSM, for the three

types of misspecifications and for all combinations of treatment effect size and sample size.

Therefore, our results suggest that the magnitude of the bias also depends on the extent
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to which the matching procedure incorporates uncertainty about the propensity score. In

the cases shown in Tables 3 and 4, we held constant the impact of the omitted confounder

on PS and Py, and varied its correlation with the two included covariates. For both PSM

and BPSM, the largest bias occurred when the true ATE was small and when the omitted

confounder was a third variable with low correlation with included covariates (see top section

of Table 3). In that case, either matching procedure would lead the researcher to conclude

that the ATE is at least 14 percentage points larger than the true ATE. However, the bias

is about 3 percentage points larger for PSM compared to BPSM.

The omission of a confounder does not only lead to biased estimates of treatment effects,

but also to higher MSE, and more so for PSM than BPSM. Although the MSE decreases

considerably for larger sample sizes (i.e. for N = 1, 500 compared to N = 500), the proba-

bility that the true ATE falls within the 95% credible interval for the estimated ATE (i.e.

the coverage probability) also decreases markedly with the sample size. The explanation for

the last result is that while the omission of a relevant confounder leads to biased credible

intervals, regardless of the sample size, the interval is narrower (and therefore less likely to

contain the true treatment effect) when the sample size is larger. Although the reduction in

coverage probability caused by the model misspecification is considerable for both match-

ing procedures (especially when the omitted confounder has low correlation with included

covariates, as in Table 3), it is always more pronounced for PSM and for BPSM.

[Figures 3 and 4 about here.]

Overall, the results of our simulation studies indicate that incorporating information

about uncertainty in the propensity score leads to: (1) lower bias of estimates of treatment

effects, and (2) lower dispersion among estimates of treatment effects. These two results hold

regardless of whether the propensity score model is correctly specified or misspecified due

to the omission of a relevant confounder. Figure 3 illustrates these findings for a simulation

study conducted under the assumption of small sample size (N = 500) and small treatment

effect (β = .25). For the four situations depicted in the figure, the distribution of bias (i.e.

16



deviations from true effects) has wider spread in the case of PSM, meaning that the absolute

value of the bias tends to be larger for this procedure compared to BPSM. Additionally,

while both methods lead to biased estimates when the propensity score model is misspecified

(panels b, c, and d), the bias is always more pronounced in the case of PSM. Similar results

are illustrated in Figure 4, which shows the relationship between bias of PSM and bias of

BPSM estimates across simulated datasets. In the case of misspecifications (c) and (d),

most points are located in the first quadrant of each plot (indicating that both methods

produce upwardly biased estimates of treatment effects), but the magnitude of the bias is

systematically higher for PSM compared to BPSM. We found comparable results for different

combinations of sample sizes and magnitude of treatment effects.

4 Application: Land Reform and Insurgency in Colom-

bia

In order to demonstrate the practical utility of BPSM, we turn in this section to an applica-

tion: a replication of a recent study by Albertus and Kaplan (2013) about the impact of land

reform on guerrilla activity in Colombia. The central question investigated by Albertus and

Kaplan (2013) is whether land reform could serve as a tool for reducing guerrilla warfare,

by addressing income inequality and improving the living conditions of peasants who might

otherwise support insurgency. The authors investigate this question using municipality and

municipal-year data covering a 12-year period ranging from 1988 to 2000. One of the meth-

ods that they employ to assess the impact of land reform is propensity score matching, where

the treatment variable is a binary indicator of “at least 300 plots reformed from 1988 to 2000,

and at least three years with fifty or more plots reformed” (Albertus and Kaplan, 2013, p.

215). The outcome variable is a count of the number of guerrilla attacks recorded over the

period.7 Contrary to expectations, the authors find that land reform is usually followed by

7Covariates included in the matching procedure include: prior plots reformed, paramilitary attacks,
government attacks, poverty, population density, other tenancy, coca region, new colonized region, altitude,
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an increase in the number of guerrilla attacks.

In this paper, we do not take issue with the selection and measurement of variables

entering the matching procedure, nor with the particular matching algorithm used by the

authors (one-to-one propensity score matching with replacement, discarding units outside

the common support of the propensity score). We merely observe that the use of one-to-

one matching in a context where the number of control units greatly exceeds the number

of treatment units, leads analysts to discard a large proportion of control units on the

basis of the estimated propensity score.8 While most of the discarded control units are not

comparable to units in the treatment group, some of them are borderline cases that are not

significantly further away from the treatment than some of the matched control units. We

argue that in situations like this, ignoring the uncertainty the propensity score might lead

to arbitrariness in the selection of control units to be kept in the matched sample. In the

rest of this section we show how results change when the Bayesian approach is used in order

to account for estimation uncertainty in the propensity score.9

[Table 5 about here.]

Table 5 provides a comparison of the results found using a PSM procedure identical to

the one used by Albertus and Kaplan (2013), and a BPSM procedure that is similar in every

way. The only difference between the latter and former procedures is that the matching

algorithm is not implemented only once on the basis of point estimates of propensity scores,

but repeatedly for numerous draws from the posterior distribution of propensity score, with

a measure of the ATE being computed at each iteration. Panel (a) of the table gives results

found using data at the municipality level, and panel (b) gives results found using data

and percent minorities.
8In the case of the municipal-level data, the ratio of control to treatment units in the unmatched data

set is larger than 13, and the use of one-to-one matching leads authors to drop 68% of control units.
9In order to ensure that we used exactly the same data as (Albertus and Kaplan,

2013), we downloaded their replication package from http://esoc.princeton.edu/files/

land-reform-counterinsurgency-policy-case-colombia. We first replicated their analysis using
the Stata code included in the replication package, as well as in R. Subsequently, we re-analyzed the data
using BPSM.
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at the municipality-year level. Consistently with what we found during simulation studies,

the proportion of units kept in the matched sample after implementing PSM (11.38% for

the municipality data and 10.38% for the municipality-year data) is considerably smaller

than the proportion of units matched at least one during the implementation of the BPSM

procedure (85.91% for the municipality data and 49.76% for the municipality-year data).

However, the fact that some control units (which would otherwise be dropped under PSM)

are used at least once during the BPSM procedure, does not necessarily mean that they are

used frequently. This feature is illustrated in Figure 5, which gives information about the

proportion of the time that treatment units (dark grey bars) and control units (light gray

bars) are kept in the matched sample during the BPSM procedure. While treatment units

(a total of 65 in municipality dataset, and 754 in in the municipality-year dataset) are used

almost all of time, most control units (a total of 893 in municipality dataset, and 10,887 in in

the municipality-year dataset) are used less than 20% of the time, with a majority being used

rarely or never. Figure 5 suggests that PSM and BPSM are actually not so different in terms

of the amount of information that they incorporate; PSM also kept most treatment units

and dropped most control units. Is the fact that some additional control units are matched

a small proportion of the time under BPSM enough to affect estimates of treatment effects?

[Figure 5 about here.]

Table 5 also gives information about the ATE estimated under each procedure, without

and with post-matching regression adjustment. In their paper, Albertus and Kaplan (2013,

Table 3, Panel A) report results corresponding to PSM without regression adjustment, to-

gether with bootstrap estimates of standard errors. For the municipal-level data, they find

that land reform leads to 34.57 more attacks, with a bootstrap standard error of 11.68. When

we replicate their analysis, we find similar results, although bootstrap standard errors are

slightly higher (12.43), which could happen for random reasons. When we re-analyze the

data using BPSM, however, we find that land reform leads to 24.22 more attacks, a consider-

ably smaller amount. Furthermore, when we perform post-matching regression adjustment
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at each iteration of the BPSM procedure, we find that land reform leads to a positive but

non-significant increase in the number of attacks (the estimated ATE drops to 13.57, with

standard error equal to 9.45, and 95% credible interval ranging between -6.71 and 30.64).

These findings can be visualized in Figure 6. This figure gives histograms and density curves

for the ATE estimated using BPSM, without (top-most panel) and with (bottom-most panel)

regression adjustment. In each plot, the smooth black line indicates the average estimated

ATE under BPSM, and the dashed grey line indicates point estimates of treatment effects

under PSM. Even though results obtained using BPSM are substantively similar to those

found by Albertus and Kaplan (2013) using PSM, the magnitude of the effects (i.e. increase

in number of attacks after land reform) is considerably smaller under BPSM, to the point

that effects are no longer statistically significant after post-matching regression adjustment.

[Figures 6 and 7 about here.]

We found comparable results for the municipality-year data. When matching is done

based on point estimates of propensity scores, estimated ATEs are considerably larger than

when matching is done repeatedly on the basis of draws from the posterior distribution of

propensity scores. In their paper, Albertus and Kaplan (2013, Table 3, Panel A) report

that land reform leads to 1.40 more attacks, with a bootstrap standard error of 0.61. When

we replicate their analysis using PSM without post-matching regression adjustment, we find

similar results. However, when we re-analyze the data using BPSM without post-matching

regression adjustment, we find that the average ATE falls to 1.07 (with standard error 0.50

and 95% credible interval ranging between -0.07 and 1.69). This result can be visualized in

the top-most plot Figure 7, which shows that the distribution of ATEs is markedly asym-

metrical in the case of BPSM, with a thick left tail, and an average value (smooth black

line) located to the left of the point estimated of the ATE found using PSM (dashed grey

line). The distribution of estimated ATEs found using BPSM becomes more symmetric

when post-matching regression adjustment is performed at each step of the BPSM proce-

dure (bottom-most plot). In contrast to the municipal level data, we find that the adjusted
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ATE estimated using BPSM with post-matching regression adjustment is still positive and

statistically significant (1.03, with standard error 0.28 and 95% credible interval ranging

between 0.47 and 1.56), although the magnitude of the effect is still considerably smaller

than the one reported by Albertus and Kaplan (2013).

5 Conclusion

Point estimates of propensity scores are commonly used for preprocessing the data by match-

ing treatment and control units with similar predicted probabilities of assignment to treat-

ment, in order to construct matched samples where covariates are well-balanced across treat-

ment and control groups. The process typically involves dropping units outside the support

of the propensity score (in the treatment, control, or both groups); control units with very

low ex-ante probability of being assigned to treatment; treatment units for which no matches

are available in the control group; or excess control units (as in cases where the number of

control units greatly exceeds the number of treatment units, and each treatment unit is

matched to a single or few control units). While propensity score matching allows analyst

to overcome the dimensionality problem that would ensue if they tried to match units on

the basis of multiple individual covariates; existing procedures also have a number of disad-

vantages. In particular, analysts tend to disregard the fact that estimated propensity scores

have associated measures of uncertainty. We argued that standard approaches that take

the propensity score as given can be problematic since they may cause the analyst to make

arbitrary decisions regarding whether to keep or drop units from the matched sample.

We proposed a simple modification of standard propensity score matching procedures

that can be easily implemented using Bayesian estimation. The Bayesian approach has

several advantages, including that it can be use to calculate point estimates of treatment

effects, as well as associated measures of uncertainty, without the need of resorting to boot-

strapping or post-matching simulation procedures. Since matching under BPSM is done
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probabilistically (on the basis of information about estimation uncertainty in the propensity

score) instead of deterministically, it leads to less arbitrary decisions about whether to keep

or drop observations from the matched sample—an attribute which we hypothesized would

lead to estimates of treatment effects exhibiting higher precision and lower bias. The results

of our simulation study were in line with our expectations; they indicated that incorporating

information about uncertainty in the propensity score leads to lower bias and dispersion of

estimates of treatment effects, compared to standard propensity score matching. Further-

more, we replicated a published study that employed PSM and showed the utility of the

BPSM approach in that application. All of the evidence presented in this paper documents

the utility of the BPSM approach.

There are many future directions in which the BPSM approach can be extended. One

important extension is the incorporation of prior information into propensity score and out-

come models. For example, we plan to explore the use of beliefs held by biased observers

regarding the direction and magnitude of treatment effects, as well as other sources for prior

information. Furthermore, the Bayesian approach used here can be extended to other causal

modeling applications.
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Table 5: Replication of Albertus and Kaplan 2012, Table 3, Panel A

a. Unit of analysis: Municipality

Units matched ATE SE
at least once (%)

PSM 11.38%
w/o reg. adj. 34.57 12.43
with reg. adj. 20.48 6.55

BPSM 85.91%
w/o reg. adj. 24.22 8.04
with reg. adj. 13.57 9.45

b. Unit of analysis: Municipality-year

Units matched ATE SE
at least once (%)

PSM 10.38%
w/o reg. adj. 1.40 0.54
with reg. adj. 1.18 0.26

BPSM 49.76%
w/o reg. adj. 1.07 0.50
with reg. adj. 1.03 0.28

Note: PSM indicates standard propensity score matching and BPSM indicates
Bayesian propensity score matching. When PSM was conducted without

regression adjustment, standard errors were computed using bootstrapping.
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Figure 1: Estimated Propensity Scores

Note: The figure illustrates information used (top-most plot) or ignored (bottom-most
plot) by standard propensity score matching procedures, for 50 observations drawn at

random from a synthetic dataset. While PSM only considers point estimates of propensity
scores, the Bayesian propensity score matching procedure proposed in this paper takes into

account information about other aspects of the posterior distribution of estimated
propensity scores, including estimation uncertainty.
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Figure 2: Example of Drop/Keep Decision for Control Observations

Note: The figure depicts the relationship between point estimates of propensity scores and
drop/keep decisions with a one-shot nearest-neighbor propensity score matching procedure,
for a synthetic dataset containing 500 observations. Drop decisions are relatively rare for
observations with point estimates of propensity score above a certain cutoff (around .2).

32



Figure 3: Simulation Study: Distribution of Bias

(a) (b)

(c) (d)

Note: Results correspond to a simulation study conducted under the assumption of small
sample size (N = 500) and small treatment effect (β = .25). Number of simulations: 1,000.
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Figure 4: Simulation Study: Comparison of Bias

(a) (b)

(c) (d)

Note: Each point corresponds to a different simulated dataset. Results correspond to a
simulation study conducted under the assumption of small sample size (N = 500) and

small treatment effect (β = .25). Number of simulations: 1,000.
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Figure 5: Land Reform and Insurgency in Colombia, Percentage of Units Used During
BPSM Procedure
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Figure 6: Land Reform and Insurgency in Colombia, Average Treatment Effects (Unit of
Analysis: Municipality)
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Figure 7: Land Reform and Insurgency in Colombia, Average Treatment Effects (Unit of
Analysis: Municipality-Year)
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