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Foreword 1

The use of mathematics in the social sciences is expanding both in breadth and 2

depth at an increasing rate. It has made its way from economics into the other social 3

sciences, often accompanied by the same controversy that raged in economics in the 4

1950’s. And its use has deepened from calculus to topology and measure theory to 5

the methods of differential topology and functional analysis. 6

The reasons for this expansion are several. First, and perhaps foremost, math- 7

ematics makes communication between researchers succinct and precise. Second, 8

it helps make assumptions and models clear; this bypasses arguments in the field 9

that are a result of different implicit assumptions. Third, proofs are rigorous, so 10

mathematics helps avoid mistakes in the literature. Fourth, its use often provides 11

more insights into the models. And finally, the models can be applied to different 12

contexts without repeating the analysis, simply by renaming the symbols. 13

Of course, the formulation of social science questions must precede the construc- 14

tion of models and the distillation of these models down to mathematical problems, 15

for otherwise the assumptions might be inappropriate. 16

A consequence of the pervasive use of mathematics in our research is a 17

change in the level of mathematics training required of our graduate students. 18

We need reference and graduate text books that address applications of advanced 19

mathematics to a widening range of social sciences. This book fills that need. 20

Many years ago, Bill Riker introduced me to Norman Schofield’s work and 21

then to Norman. He is unique in his ability to span the social sciences and apply 22

integrative mathematical reasoning to them all. The emphasis on his work and 23

his book is on smooth models and techniques, while the motivating examples for 24

presentation of the mathematics are drawn primarily from economics and political 25

science. The reader is taken from basic set theory to the mathematics used to solve 26

problems at the cutting edge of research. Students in every social science will 27

find exposure to this mode of analysis useful; it elucidates the common threads 28

in different fields. Speculations at the end of Chapter 5 provide students and 29

researchers with many open research questions related to the content of the first 30

four chapters. The answers are in these chapters, and a goal of the reader should be 31

to write Chapter 6. 32
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Author’s Preface 1

In recent years, the optimisation techniques, which have proved so useful in microe- 2

conomic theory, have been extended to incorporate more powerful topological and 3

differential methods. These methods have led to new results on the qualitative 4

behaviour of general economic and political systems. However, these developments 5

have also led to an increase in the degree of formalism in published work. This 6

formalism can often deter graduate students. My hope is that the progression of 7

ideas presented in these lecture notes will familiarise the student with the geometric 8

concepts underlying these topological methods, and, as a result, make mathematical 9

economics, general equilibrium theory, and social choice theory more accessible. 10

The first chapter of the book introduces the general idea of mathematical 11

structure and representation, while the second chapter analyses linear systems and 12

the representation of transformations of linear systems by matrices. In the third 13

chapter, topological ideas and continuity are introduced and used to solve convex 14

optimisation problems. These techniques are also used to examine existence of a 15

”social equilibrium.” Chapter four then goes on to study calculus techniques using 16

a linear approximation, the differential, of a function to study its ”local” behaviour. 17

The book is not intended to cover the full extent of mathematical economics 18

or general equilibrium theory. However, in the last sections of the third and fourth 19

chapters I have introduced some of the standard tools of economic theory, namely 20

the Kuhn Tucker Theorem, together with some elements of convex analysis and 21

procedures using the Langrangian. Chapter four provides examples of consumer and 22

producer optimisation. The final section of the chapter also discusses, in a heuristic 23

fashion, the smooth or critical Pareto set and the idea of a regular economy. The fifth 24

and final chapter is somewhat more advanced, and extends the differential calculus 25

of a real valued function to the analysis of a smooth function between ”local” vector 26

spaces, or manifolds. Modern singularity theory is the study and classification of all 27

such smooth functions, and the purpose of the final chapter to use this perspective to 28

obtain a generic or typical picture of the Pareto set and the set of Walrasian equilibria 29

of an exchange economy. 30

Since the underlying mathematics of this final section are rather difficult, I 31

have not attempted rigorous proofs, but rather have sought to lay out the natural 32
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path of development from elementary differential calculus to the powerful tools of 33

singularity theory. In the text I have referred to work of Debreu, Balasko, Smale, 34

and Saari, among others who, in the last few years, have used the tools of singularity 35

theory to develop a deeper insight into the geometric structure of both the economy 36

and the polity. These ideas are at the heart of recent notions of ”chaos.” Some 37

speculations on this profound way of thinking about the world are offered in section 38

5.6. Review exercises are provided at the end of the book. 39

I thank Annette Milford for typing the manuscript and Diana Ivanov for the 40

preparation of the figures. 41

I am also indebted to my graduate students for the pertinent questions they 42

asked during the courses on mathematical methods in economics and social choice, 43

which I have given at Essex University, the California Institute of Technology, and 44

Washington University in St. Louis. 45

In particular, while I was at the California Institute of Technology I had the 46

privilege of working with Richard McKelvey and of discussing ideas in social choice 47

theory with Jeff Banks. It is a great loss that they have both passed away. This book 48

is dedicated to their memory. 49

Norman Schofield 50

St. Louis, Missouri 51
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Chapter 1 1

Sets, Relations, and Preferences 2

In this chapter we introduce elementary set theory and the notation to be used 3

throughout the book. We also define the notions of a binary relation, of a function, as 4

well as the axioms of a group and field. Finally we discuss the idea of an individual 5

and social preference relation, and mention some of the concepts of social choice 6

and welfare economics. 7

1.1 Elements of Set Theory 8

Let U be a collection of objects, which we shall call the domain of discourse,the 9

universal set, or universe. A set B in this universe (namely a subset of U) is a 10

subcollection of objects from U . B may be defined either explicitly by enumerating 11

the objects, for example by writing 12

B D fTom; Dick; Harryg; or

B D fx1; x2:x3; � � � g

Alternatively B may be defined implictly by reference to some property P.B/, 13

which characterises the elements of B , thus 14

B D fx W x satisfiesP.B/g: 15

For example: 16

B D fx W x is an integer satisfying1 � x � 5g 17

is a satisfactory definition of the set B , where the universal set could be the 18

collection of all integers. If B is a set, write x 2 B to mean that the element x 19

is a member of B . Write fxg for the set which contains only one element, x. 20

IfA;B are two sets writeA\B for the intersection: that is the set which contains 21

only those elements which are both in A and B . Write A [ B for the it union: that 22
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is the set whose elements are either in A or B . The null set or empty set ˆ, is that 23

subset of U which contains no elements in U . 24

Finally if A is a subset of U , define the negation of A, or complement of A in U 25

to be the set UnA D NA D fx W xis in U but not in Ag. 26

1.1.1 A Set Theory 27

Now let � be a family of subsets of U , where � includes both U and ˆ, i.e., � D 28

fU ; ˆ;A;B; : : : ; g. 29

If A is a member of � , then write A 2 � . Note that in this case � is a collection 30

or family of sets. 31

Suppose that � satisfies the following properties: 32

1. for any A 2 �; NA 2 �; 33

2. for any A;B in �;A[ Bis in � , 34

3. for any A;B in �;A\ Bis in � 35

Then we say that � satisfies closure with respect to .�;[;\/, and we call � a set 36

theory. 37

For example let 2U be the set of all subsets of U , including both U andˆ. Clearly 38

2U satisfies closure with respect to .�;[;\/. 39

We shall call a set theory� that satisfies the following axioms a Boolean algebra. 40

Axioms 41

S1. Zero element A [ˆ D A;A \ˆ D ˆ 42

S2. Identity element A [ U D U ; A \ U D A 43

S3. Idempotency A[ A D A;A \ A D A 44

S4. Negativity A [ NA D U ; A\ NA D ˆ 45

S5. Commutativity
A[ B D B [A
A\ B D B [A 46

S6. De Morgan Rule
A [ B D A \ B
A \ B D A [ B 47

S7. Associativity
A [ .B [ C/ D .A [ B/ [ C
A \ .B \ C/ D .A \ B/ \ C 48

S8 . Distributivity
A[ .B \ C/ D .A[ B/\ .A[ C/
A\ .B [ C/ D .A\ B/[ .A\ C/ 49

We can illustrate each of the axioms by Venn diagrams in the following way. 50
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Fig. 1.1

Let the square on the page represent the universal set U . A subset B of points 51

within U can then represent the set B . Given two subsets A;B the union is the 52

hatched area, while the intersection is the double hatched area. 53

We shall use � to mean ”included in”. Thus 00A � B 00 means that every element 54

in A is also an element of B . Thus: 55

Fig. 1.2

Suppose now that P.A/ is the property that characterizes A, or that 56

A D fx W xsatisfiesP.A/g: 57

The symbol� means ”identical to”, so that Œx 2 A� � ” x satisfies P.A/”. 58
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Associated with any set theory is a propositional calculus which satisfies 59

properties analogous with a Boolean algebra, except that we use ^ and _ instead of 60

the symbols \ and [ for ”and” and ”or”. 61

For example: 62

A [ B D fx W “x satisfiesP.A/00 _ “x satisfiesP.B/00g
A \ B D fx W “x satisfiesP.A/00 ^ “x satisfiesP.B/00:

The analogue of “�” is “if : : : then” or “implies”, which is written ). Thus 63

A � B [“x satisfies P.A/”) “x satisfies P.B/”]. 64

The analogue of “ D” in set theory is the symbol “”” which means “if and 65

only if”, generally written “iff”. For example, 66

ŒA D B� D Œ“x satisfiesP.A/00 ” “x satisfies P.B/00�:Hence

ŒA D B� D Œ“x 2 A00 ” “x 2 B 00� D ŒA � B and B � A�:

1.1.2 A Propositional Calculus 67

Let fU ; ˆ; P1; : : : ; Pi ; : : :g be a family of simple propositions. U is the universal 68

proposition and always true, whereas ˆ is the null proposition and always false. 69

Two propositions P1; P2 can be combined to give a proposition P1 ^ P2 (i. e., P1 70

and P2) which is true iff both P1 and P2 are true, and a propositionP1 _P2 (i.e., P1 71

or P2) which is true if either P1 or P2 is true. For a proposition P , the complement 72

NP in U is true iff P is false, and is false iff P is true. 73

Now extend the family of simple propositions to a family P , by including 74

in P any propositional sentence S.P1; : : : ; Pi ; : : :/ which is made up of simple 75

propositions combined under �;_;^ . Then P satisfies closure with respect to 76

.�;_;^/ and is called a propositional calculus. 77

Let T be the truth function, which assigns to any simple proposition, P i , the 78

value 0 if Pi is false and 1 if Pi is true. Then T extends to sentences in the obvious 79

way, following the rules of logic, to give a truth function T W P ! 0; 1. If T .S1/ D 80

T .S2/ for all truth values of the constituent simple propositions of the sentences Sl 81

and S2; then S1 = S2(i.e., Sl and S2 are identical propositions). 82

For example the truth values of the proposition P1 _ P2 and P2 ^ P1 are given 83

by the table: 84

T .P1/ T .P2/ T .P1 _ P2/ T .P2 _ P1/
0 0 0 0
0 1 1 1
1 0 1 1
1 1 1 1

85
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Since T .Pl _ P2/ D T .P2 _ P1/ for all truth values it must be the case that 86

Pl _ P2 D P2 _ P1. 87

Similarly, the truth tables for Pl ^ P2 and P2 ^ P1 are: 88

T .P1/ T .P2/ T .P1 ^ P2/ T .P2 ^ P1/
0 0 0 0
0 1 0 0
1 0 0 0
1 1 1 1

89

Thus P1 ^ P2=P2 ^ P1. 90

The propositional calculus satisfies commutativity of ^ and _ . Using these truth 91

tables the other properties of a Boolean algebra can be shown to be true. 92

For example: 93

(i) P _ˆ D P;P ^ˆ D ˆ. 94

T .P / T .ˆ/ T .P _ˆ/ T .P ^ˆ/
0 0 0 0
1 0 1 0

95

(ii) P _ U D U ; P ^ U D P . 96

T .P / T .U/ T .P _ U/ T .P ^ U/
0 1 1 0
1 0 1 0

97

(iii) Negation is given by reversing the truth value. Hence
D
P D P . 98

T .P / T . NP / T .PD/
0 1 0
1 0 1

99

(iv) P _ NP D U ; P ^ NP D ˆ 100

T .P / T . NP / T .P _ NP / T .P ^ NP/
0 1 1 0
1 0 1 0

101

Example 1.1. Truth tables can be used to show that a propositional calculus P D 102

.U ; ˆ; P1; P2; : : :/ with the operators .�;_;^/ is a Boolean algebra. 103

Suppose now that S1.A1; : : : ; An; / is a compound set (or sentence) which is 104

made up of the sets A1; : : : ; An, together with the operators f[;\;� g. 105

For example suppose that 106

S1.A1; A2; A3/ D A1 [ .A2 \A3//; 107

and let P.A1/, P.A2/, P.A3/ be the propositions that characteriseAl , A2, A3. Then 108

S1.A1; A2; A3/ D fx W x satisfies“S1.P.A1/; P.A2/; P.A3//00g 109
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where S1.P.Al /; P.A2/; P.A3// has precisely the same form as S1.A1; A2; A3/ 110

except that P.A1/ is substituted for Ai and .^;_/ are substituted for .\;[/. 111

In the example 112

S1.P.A1/; .P.A2/P.A3//: D P.A1/ _ .P.A2/ ^ P.A3//: 113

Since P is a Boolean algebra, we know [by associativity] that P.A1/_ .P.A2/^ 114

P.A3// D .P.A1/_P.A2//^ .P.A1/_P.A3// D S2.P.A1/1P.A2/P.A3//, say. 115

Hence the propositionsSl.P.A1/; P.A2/; P.A3// and S2.P.A1/; P.A2/; P.A3//, 116

are identical, and the sentence 117

S1.A2; A2; A3/ D fx W x satisf ies‘..A1/ _ P.A2// ^ .P.A1/ _ P.A3//g
D .A1 [ A2/\ .A1 [A3/
D S2.A1; A2; A3/:

Consequently if � D .U ; ˆ;A1; A2; : : :/ is a set theory, then by exactly this 118

procedure �’ can be shown to be a Boolean algebra. 119

Suppose now that � is a set theory with universal set U , and X is a subset of U . 120

Let �X D .X;ˆ;A1 \ X;A2 \ X; : : :/. Since � is a set theory on U , �X must be a 121

set theory on X , and thus there will exist a Boolean algebra in �X . 122

To see this consider the following: 123

1. Since A 2 � , then NA 2 � . Now let AX D A \ X . To define the 124

complement or negation (let us call it NAX/ of A in �X we have NAX D fx W 125

x is inXbut not in Ag D X\ NA. As we noted previously this is also often written 126

X �A, or XnA. But this must be the same as the complement orA\X in X ,i.e 127

.A \X/ \X D . NA[ NX/\ X D . NA\ X/[ . NX \ X/ D NA \X . 128

2. If A;B 2 �’ then .A \ B/ \ X D .A \ X/ \ .B \ X/. (The reader should 129

examine the behaviour of union.) 130

A notion that is very close to that of a set theory is that of a topology. Say that a 131

family � D .U ; ˆ;A1; A2; : : :/ is a topology on U iff 132

T1 . when Al ; A2 2 � then Al \A2 2 �; 133

T2 . If Aj 2 � for all j belonging to some index set J (possibly infinite) then 134

[j2JAj 2 � . 135

T3 . Both U and ˆ belong to � . 136

Axioms T1 and T2 may be interpreted as saying that � is closed under finite 137

intersection and (infinite) union. 138

Let X be any subset of U . Then the relative topology �X induced from the 139

topology � on U is defined by 140

�X D .X;ˆ;A1 \ X; : : :/ 141

where any set of the form A \X , for A 2 � , belongs to �X . 142
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Example 1.2. We can show that �X is a topology. If Ul; U2 2 �X then there must 143

exist sets A1;A2 2 � such that Ui D Ai \ X; for i D 1; 2. But then 144

U1 \ U2 D .A1 \X/ \ .A2 \X/
D .A1 \A2/\X:/

Since � is a topology, A1 \ A2 2 � . Thus Ul \ U2 2 �X . Union follows similarly. 145

1.1.3 Partitions and Covers 146

If X is a set, a cover for X is a family � D .A1; A2; : : : ; Aj ; : : :/ where j belongs 147

to an index set J (possibly infinite) such that 148

X D [fAj W j 2 Jg: 149

A partition for X is a cover which is disjoint, i-e., Aj \Ak D ˆ for any distinct 150

j; k 2 J . 151

If �X is a cover for X , and Y is a subset of X then �Y D fAj \ Y W j 2 J g is 152

the induced cover on Y . 153

1.1.4 The Universal and Existential Quantifiers 154

Two operators which may be used to construct propositions are the universal and 155

existential quantifiers. 156

For example, “for all x in A it is the case that x satisfies P.A/.” The term “for 157

all” is the universal quantifier, and generally written as 8. 158

On the other hand we may say “there exists some x in A such that x satisfies 159

P.A/.” The term “there exists” is the existential quantifier, generally written 9. 160

Note that these have negations as follows: 161

notŒ9 xs:t:x satisfiesP � � Œ8x W x does not satisfyP �

notŒ8x W x satisfiesP � � Œ9 s:t:x does not satisfyP �:

We use s:t . to mean “such that”. 162
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1.2 Relations, Functions and Operations 163

1.2.1 Relations 164

IfX; Y are two sets, the Cartesian product setX�Y is the set of ordered pairs.x; y/ 165

such that x 2 X and y 2 Y . 166

For example if we let R be the set of real numbers, then R �R orR2 is the set 167

.x; y/ W x 2 R; y 2 R; 168

namely the plane. Similarly Rn D R � : : : � R (n times) is the set of n-tuples of 169

real numbers, defined by induction, i.e., Rn D R � .R � .R � : : : ; : : : ://. 170

A subset of the Cartesian product Y � X is called a relation, P , on Y � X . If 171

.y; x/ 2 P then we sometimes write yPx and say that y stands in relation P to x. 172

If it is not the case that .y; x/ 2 P then write .y; x/ … P or not .yPx/:X is called 173

the domain of P , and Y is called the target or codomain of P . 174

If V is a relation on Y �X andW is a relation onZ �Y , then define the relation 175

W ı V to be the relation on Z �X given by 176

.z; x/ 2 W ı V iffforsomey 2 Y

.z; x/ 2 Wand.y; x/ 2 V:

The new relationW ı V on Z �X is called the composition of W and V . 177

The identity relation (or diagonal) ex on X �X is 178

eX D f.x; x/ W x 2 Xg: 179

If P is a relation on Y �X , its inverse, P�1, is the relation on X � Y defined by 180

P�1 D f.x; y/ 2 X � Y W .Y;X/ 2 P g 181

Note that: 182

P�1 ı P D f.z; x/ 2 X �X W 9y 2 Y s:t.z; y/ 2 P�1and.y; x/ 2 P g: 183

Suppose that the domain of P is X , i.e., for every x 2 X there is some y 2 Y s.t. 184

.y; x/ 2 P . In this case for every x 2 X , there exists y 2 Y such that .x; y/ 2 P�1
185

and so .x; x/ 2 P�1 ı P for any x 2 X . Hence eX � P�1 ı P . In the same way 186

P ı P�1 D f.t; y/ 2 Y � Y W 9x 2 Xs:t.t; x/ 2 P and.x; y/ 2 P�1g 187

and so eY � P ı P�1. 188

189
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1.2.2 Mappings 190

A relation P on Y � X defines an assignment or mapping from X to Y , which is 191

called �p and is given by 192

�P .x/ D fy W .y; x/ 2 P g: 193

In general we write � W X ! Y for a mapping which assigns to each element of 194

X the set, �.x/, of elements in Y . As above, the set Y is called the co-domain of �. 195

The domain of a mapping, �, is the set fx 2 X W 9y 2 Ys:t:y 2 �.x/g, and the 196

image of � is y 2 Y W 9x 2 Xs:t:y 2 �.x/. 197

Suppose now that V;W are relations on Y � X;Z � Y respectively. We have 198

defined the composite relationW ı V on Z �X . This defines a mapping �W ı V W 199

X ! Z by z 2 �W ı V.x/ iff 9y 2 Y such that .y; x/ 2 V and .z; y/ 2 W . This in 200

turn means that y 2 �v.x/ and z 2 �W .y/. 201

If � W X ! Y and  W Y ! Z are two mappings then define their composition 202

 ı � W X ! Z by 203

. ı �/.x/ D  Œ�.x/� D [f .y/ W y 2 �.x/g: 204

Clearly z 2 �W ı V.x/ iff z 2 �W Œ�V.x/�. 205

Thus �W ıV.x/ D �W Œ�V.x/� D Œ.�W ıV /.x/�;8x 2 X . We therefore write 206

�W ı V D �W ı �V . 207

For example suppose V andW are given by 208

V W f.2; 3/; .3; 2/; .1; 2/; .4; 4/; .4; 1/g and

W W f.1; 4/; .4; 4/; .4; 1/; .2; 1/; .2; 3/; .3; 2/g

with mappings 209

�v �w
1 �! 4 �! 1

% &
4 1 �! 4

% &
2 �! 3 �! 2

3 �! 2 �! 3

then the composite mapping �W ı �V D �W ı V is 210
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1 �! 1

%&
4 �! 4

&
2 �! 2

3 �! 3

with relation 211

W ı V D .3; 2/; .2; 2/; .4; 2/; .1; 4/; .4; 4/; .1; 1/; .4; 1/: 212

Given a mapping � W X ! Y then the reverse procedure to the above gives a 213

relation, called the graph of �, or graph .�/, where 214

graph.�/ D [x 2 X.�.x/� fxg/ � Y �X: 215

In the obvious way if � W X ! Y and  W Y ! Z, are mappings, with 216

composition  ı � W X ! Z, then graph . ı �/ = graph . / ı graph .�/. 217

Suppose now that P is a relation on Y �X , with inverse P�1 on X � Y , and let 218

�P W X ! Y be the mapping defined by P . Then the mapping ��1
P W Y ! X is 219

defined as follows: 220

�P�1 D x W .x; y/ 2 P�1

D x W .x; y/ 2 P
D x W y 2 �p.x/:

More generally if � W X ! Y is a mapping then the inverse mapping ��1 W Y ! X 221

is given by 222

��1.y/ D x W y 2 �.x/: 223

Thus 224

�P�1 D .�P /�1 W Y ! X: 225

For example let Z4 be the first four positive integers and let P be the relation on 226

Z4 �Z4 given by 227

P D .2; 3/; .3; 2/; .1; 2/; .4; 4/; .4; 1/ 228

Then the mapping �P and inverse �P�1 are given by: 229

�P W 1 �! 4 �P�1 W 4 �! 1

% 1 1 &
4 % & 4

2 �! 3 3 �! 2

3 �! 2 2 �! 3
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If we compose P�1 and P as above then we obtain 230

P�1 ı P D .1; 1/; .1; 4/; .4; 1/; .4; 4/; .2; 2/; .3; 3/; 231

with mapping 232

�P�1 ı �P
1 �! 1

%&
4 �! 4

2 �! 2

3 �! 3

Note that P�1 ıP contains the identity or diagonal relation eD f(1, 1), (2,2), (3,3), 233

(4,4)g on Z4 D f1; 2; 3; 4g. Moreover �P�1 ı �P D �.P�1 ı P/: 234

The mapping idX W X ! X defined by idX.x/ D x is called the identity 235

mapping on X . Clearly if eX is the identity relation, the ,�eX;D idX and graph 236

.idX/ D ex. 237

If �; are two mappingsX ! Y then write  � � iff for each x 2 X; .x/ � 238

�.x/. 239

As we have seen eX � P�1 ı P and so 240

�eX D idX � �.P�1 ı P/ D �P�1 ı �P D .�P /�1 ı �P: 241

(This is only precisely true when X is the domain of P , i.e., when for every 242

x 2 X there exists some y 2 Y such that .y; x/ 2 P:/ 243

1.2.3 Function 244

If for all x in the domain of �, there is exactly one y such that y 2 �.x/ then is called 245

a function. In this case we generally write f W X C Y , and sometimes x !f y to 246

indicate that f .x/ D y. Consider the function f and its inverse f �1given by 247

f f �1 f �1 ı f
1 �! 4 �! 1 1 �! 1

% & %&
4 1 4 4 �! 4

2 �! 3 �! 2 2 �! 2

3 �! 2 �! 3 3 �! 3
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Clearly f �1 is not a function since it maps 4 to both 1 and 4, i.e., the graph of 248

f �1 is .1; 4/; .4; 4/; .2; 3/; .3; 2/. In this case idX is contained in f �l ıf but is not 249

identical to f �1 ıf . Suppose that f �1 is in fact a function. Then it is necessary that 250

for each y in the image there be at most one x such that f .x/ D y. Alternatively if 251

f .xl / D f .x2/ then it must be the case that xl D x2.In this case f is called 1 -1 or 252

injective. Then f �1 is a function and 253

idX D f �1 ı f on the domainXoff

idY D f ı f �1on the imageY off

A mapping � W X ! Y is said to be surjective (or called a surjection) iff every 254

y 2 Y belongs to the image of �; that is, 9x 2 X s.t. y 2 �.x/. 255

A function f W X ! Y which is both injective and surjective is said to be 256

bijective. 257

Example 1.3. Consider 258

� ��1
1 �! 4 �! 1

4 �! 2 �! 4

2 �! 3 �! 2

3 �! 1 �! 3

259

In this case the domain and image of � coincide and� is known as a permutation. 260

Consider the possibilities where � is a mapping R! R, with graph .�/ � R2. 261

(Remember R is the set of real numbers.) There are three cases: 262

(i) � is a mapping: 263

264

(ii) � is a non injective function: 265

266

(iii) � is an injective function. 267
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268

1.3 Groups and Morphisms 269

We earlier defined the composition of two mappings � W X ! Y and  W Y ! X 270

to be  ı � W X ! Z, given by . ı �/.x/ D  Œ�.x/� D [f .y/ W y 2 �.x/g. In 271

the case of functions f W X ! Y and g W Y ! Z this translates to 272

.g ı f /.x/ D gŒf .x/� D fg.y/ W y D f .x/g: 273

Since both f; g are functions the set on the right is a singleton set, and so g ı f is a 274

function. Write F.A;B/ for the set of functions from A to B . Thus the composition 275

operator, ı, may be regarded as a function: 276

ı W F.X; Y / � F.Y;Z/! F.X; Y /
.f; g/ ! g ı f: 277

Example 1.4. To illustrate consider the function (or matrix) F given by 278

�
a b

c d

��
x1
x2

�
D
�
ax1 C bx2
cx1 C dx2

�
279

This can be regarded as a function F W R2 ! R2 since it maps .xl ; x2/ ! 280

.ax1 C bx2; cx1 C dx2/ 2 R2. 281

Now let 282

F D
�
a b

c d

�
;H D

�
e f

g h

�
283

F ıH is represented by 284

�
x1
x2

�
F!
�
ax1 C bx2
cx1 C dx2

�
H!
�
e.ax1 C bx2/ C f .cx1 C dx2/
g.ax1 C bx2/ C h.cx1 C dx2/

�
285

Thus 286

.H ı F /
�
x1

x2

�
D
�
eaCfcjebCfd
gaChcjgbChd

��
x1

x2

�
287

or 288
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.H ı F /
�
e f

g h

�
ı
�
a b

c d

��
eaCfcjebCfd
gaChcjgbChd

�
289

The identity E is the function 290

�
x1
x2

�
D
�
a b

c d

��
x1
x2

�
D
�
x1
x2

�
291

Since this must be true for all x1; x2 , it follows that a D d D 1 and c D b D 0. 292

Thus E D
�
1 0

0 1

�
. 293

Suppose that the mapping F �1 W R2 ! R2 is actually a matrix. Then it is 294

certainly a function, and by Section 1.2.3, F�1 ı F must be equal to the identity 295

function on R2, which here we call E . To determine F �1, proceed as follows: 296

Let F�1 D
�
e f

g h

�
. We know F�1 ı F D

�
1 0

0 1

�
. 297

Thus 298

eaC fc D 1 j eb C fd D 0
gaC hc D 0 j gb C hd D 1

If a ¤ 0 and b ¤ 0 then e D � fd
b
D 1�fc

a
. 299

Now let jF j D .ad � bc/, where jF j is called the determinant of F . Clearly if 300

jF j ¤ 0, then f D �bnjF j . More generally, if jF j ¤ 0 then we can solve the 301

equations to obtain: 302

F �1 D
�
e f

g h

�
;D 1

j F j
�
d �b
�c a

�
303

If jF j D 0, then what we have called F�1 is not defined. This suggests that when 304

jF j D 0, the inverse F�1 cannot be represented by a matrix, and in particular that 305

F�1 is not a function. In this case we shall call F singular. When j F j¤ 0 then we 306

shall call F non-singular, and in this case F�1 can be represented by a matrix, and 307

thus a function. Let M.2/ stand for the set of 2x2 matrices, and let M �.2/ be the 308

subset of M.2/ consisting of non-singular matrices. 309

We have here defined a composition operation: 310

ı W M.2/�M.2/! M.2/

.H;F / ! H ı F: 311

Suppose we compose E with F then 312
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E ı F D
�
1 0

0 1

��
a b

c d

�
D
�
a b

c d

�
D F 313

Finally for any F 2 M�.2/ it is the case that there exists a unique matrix F�1 2 314

M.2/ such that 315

F �1 ı F D E: 316

Indeed if we compute the inverse .F �1/�1 of F�1 then we see that .F�1/�1 D 317

F . Thus F �1 itself belongs to M �(2). 318

M�(2) is an example of what is called a group. 319

More generally a binary operation, ı, on a set G is a function 320

ı W G �G ! G;

.x; y/ ! x ı y: 321

Definition 1.1. A groupG is a setG together with a binary operation, ı W G�G ! 322

G which 323

1. is associative: .x ı y/ ı z D x ı .y ı z/ for all x; y; z in G; 324

2. has an identity e W e ı x D x ı e D x8x 2 G; 325

3. has for each x 2 G an inverse x�1 2 G such that x ı x�1 D x�1 ı x D e: 326

When G is a group with operation, ı, write .G; ı/ to signify this. 327

Associativity simply means that the order of composition in a sequence of 328

compositions is irrelevant. For example consider the integers, Z , under addition. 329

Clearly a C .b C c/ D .a C b/ C c, where the left hand side means add b to c, 330

and then add a to this, while the right hand side is obtained by adding a to b, and 331

then adding c to this. Under addition, the identity is that element e 2 Z such that 332

aCe D a. This is usually written 0. Finally the additive inverse of an integer a 2 Z 333

is .�a/ since aC .�a/ D 0. Thus .Z;C/ is a group. 334

However consider the integers under multiplication, which we shall write as “.”. 335

Again we have associativity since 336

a � .b � c/ D .a � b/ � c: 337

Clearly 1 is the identity since 1:a D a. However the inverse of a is that object 338

a�1 such that a � a�1 D 1. Of course if a D 0, then no such inverse exists. For 339

a ¤ 0; a�1 is more commonly written 1
a

When a is non-zero, and different from˙1, 340

then 1
a

is not an integer. Thus .Z; �/ is not a group. Consider the set Q of rationals, 341

i.e., a 2 Q iff a D p

q
, where both p and q are integers. Clearly 1 2 Q Moreover, if 342

a D p

q
then a�1 D q

p
and so belongs to Q. Although zero does not have an inverse, 343

we can regard .Qnf0g; �/ as a group. 344

Lemma 1.1. If .G; ı/ is a group, then the identity e is unique and for each x 2 G 345

the inverse x�1 is unique. By definition e�1 D e. Also .x�1/�1 D x for any x 2 G. 346
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Proof. 347

1. Suppose there exist two distinct identities, e; f . Then e ı x D f ı x for some 348

x. Thus .e ı x/ ı x�1 D .f ı x/ ı x�1. This is true because the composition 349

operation 350

..e ı x/; x�1/! .e ı x/ ı x�1
351

gives a unique answer. 352

By associativity .e ı x/ ı x�1 D e ı .x ı x�1/, etc. 353

Thus e ı .x ı x�1/ D f ı .x ı x�1/. But x ı x�1 D e, say. 354

Since e is an identity, e ı e D f ı e and so e D f . Since e ı e D e it must be 355

the case that e�1 D e. 356

2. In the same way suppose x has two distinct inverses, y; z; sox ı y D x ı z D e. 357

Then 358

y ı .c ı y/ D y ı .x ı z/

.y ı x/ ı y D .y ı x/ ı z

e ı y D e ı z

y D z:

3. Finally consider the inverse of x�1. Since x ı .x�1/ D e and by definition
.x�1/�1 ı .x�1/ D e by part (2), it must be the case that .x�1/� 1 D x. ut

We can now construct some interesting groups. 359

Lemma 1.2. The set M �(2) of 2 � 2 non-singular matrices form a group under 360

matrix composition, ı. 361

Proof. We have already shown that there exists an identity matrix E in M �.2/. 362

Clearly j E jD 1 and so E has inverse E . 363

As we saw in example 1.4, when we solvedH ı F D E we found that 364

H D F �1 D 1

j F j
�
d �b
�c a

�
; 365

By Lemma 1.1, .F�1/�1 D F and so F�1 must have an inverse, i.e., j F�1 j¤ 0, 366

and so F �1 is non-singular. Suppose now that the two matrices H;F belong to 367

M �(2). Let 368

F D
�
a b

c d

�
; 369

and 370

H D
�
e f

g h

�
; 371

As in Example 1.4, j H ı F j 372
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D j
�
eaC fc eb C fd
gaC hc gb C hd

�
jD .eaC fc/.gb C hd/ � .gaC hc/.eb C fd/

D .eh� gf /.ad � bc/ Dj H jj F j :

Since both H and F are non-singular, j H j¤ 0 and j F j¤ 0 and so j Hı j¤ 0. 373

Thus H ı F belongs to M�(2), and so matrix composition is a binary operation 374

M �.2/ �M �.2/!M �.2/. 375

Finally the reader may like to verify that matrix composition on M �(2) is 376

associative. That is to say if F;G;H are non-singular 2 � 2 matrices then 377

H ı .G ı F / D .H ıG/ ı F: 378

As a consequence .M �.2/; ı/ is a group. ut
Example 1.5. For a second example consider the addition operation on M.2/ 379

defined by 380�
e f

g h

�
C
�
a b

c d

�
D
�
aC e f C b
g C c hC d

�
381

Clearly the identity matrix is

�
0 0

0 0

�
, and the inverse of F is 382

�F D �
�
a b

c d

�
D
��a �b
�c �d

�
383

Thus .M.2/;C/ is a group. 384

Finally consider those matrices which represent rotations in R2. 385

If we rotate the point .1; 0/ in the plane through an angle � in the anticlockwise 386

direction then the result is the point .cos�; sin�/, while the point .0; 1/ is 387

transformed to .�sin�; cos�/. As we shall see later, this rotation can be represented 388

by the matrix 389�
cos� �sin�
�sin� cos�

�
390

which we will call ei
�
. 391

Let ‚ be the set of all matrices of this form, where � can be any angle between 392

0 and 360ı. If ei
�

and ei
�

are rotations by �;  respectively, and we rotate by � first 393

and then by , then the result should be identical to a rotation by  C� . To see this: 394
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Fig. 1.3

�
cos �sin 
�sin cos 

�
;

�
cos� �sin�
�sin� cos�

�

D
�
cos cos� � sin sin� j � cos sin� � sin cos�
sin cos� C cos sin� j � sin sin� C cos cos�

�

D
�
cos. C �/� sin. C �/
sin. C �/cos. C �/

�
D ei.�C /

Note that jei� j = cos2� C sin2� D 1. Thus 395

.ei� /�1 D
�
cos� sin�

�sin� cos�
�
D
�

cos� �sin.��/
sin.��/ cos�/

�
D ei.��/: 396

Hence the inverse to ei� is a rotation by .��/, that is to say by � but in the 397

opposite direction. Clearly E D ei� , a rotation through a zero angle. Thus .‚; ı/ is 398

a group. Moreover ‚ is a subset of M �(2), since each rotation has a non-singular 399

matrix. Thus‚ is a subgroup of M �.2/. 400

A subset ‚ of a group .G; o/ is a subgroup of G iff the composition operation, 401

ı, restricted to ‚ is “closed”, and ‚ is a group in its own right. That is to say (i) if 402

x; y 2 ‚ then x ı y 2 ‚, (ii) the identity e belongs to ‚ and (iii) for each x in ‚ 403

the inverse, x�1, also belongs to ‚. 404

Definition 1.2. Let .X; ı/ and .Y; �/ be two sets with binary operations, ı; �, 405

respectively. A function f W X ! Y is called a morphism (with respect to .ı; �/) 406

iff f .x ı y/ D f .x/ � f .y/, for all x; y 2 X . If moreover f is bijective as a 407

function,then it is called an isomorphism. If .X; ı/; .Y; �/ are groups then f is called 408

a homomorphism. 409
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A binary operation on a set X is one form of mathematical structure that the 410

set may possess. When an isomorphism exists between two sets X and Y then 411

mathematically speaking their structures are identical. 412

For example let Rot be the set of all rotations in the plane. If rot.�/ and rot. / 413

are rotations by �;  respectively then we can combine them to give a rotation rot 414

. ;C�/ ,i.e., 415

rot. / ı rot.�/ D rot. C �/: 416

Here ı means do one rotation then the other. To the rotation, rot.�/ let f assign 417

the 2 � 2 matrix, called ei� as above. Thus 418

f W .rot; ı/! .‚; ı/; 419

where f .rot.�// = ei� . 420

Moreover 421

f .rot . / ı rot.�/ D f .rot. C �//
ei ı ei� D ei. C�/

Clearly the identity rotation is rot.0/ which corresponds to the zero matrix eiı, 422

while the inverse rotation to rot.�/ is rot.��/ corresponding to e�i� . Thus f is a 423

morphism. 424

Here we have a collection of geometric objects, called rotations, with their own 425

structure and we have found another set of “mathematical” objects namely 2 � 2 426

matrices of a certain type, which has an identical structure. 427

Lemma 1.3. If f W .X; ı/! .Y; �/ is a morphism between groups then 428

(1) f .eX/ D eY where eX; eY are the identities in X; Y . 429

(2) for each x in X; f .x�1/ D Œf .x/��1 . 430

Proof. 431

1. Since f is a morphism f .x ı eX/ D f .x/ � f .eX/ D f .x/. By Lemma 1.2, eY 432

is unique and so f .eX/ D eY . 433

2. f .x ı x�1/ D f .x/:f .x�1/ D f .eX/ D eY . By lemma 1.2, Œf .x/��1 is unique,
and so f .x�1/ D Œf .x/��1. ut
As an example, consider the determinant function det : M.2/! R. 434

From the proof of Lemma 1.3, we know that for any 2 � 2 matrices, H and F , it 435

is the case that jH ı F j D jH jjF j . Thus det : .M.2/; ı/ ! .R; �/ is a morphism 436

with respect to matrix composition, ı, in M.2/ and multiplication, �, in R. 437

Note also that if F is non-singular then det.F / D jF j ¤ 0, and so det W 438

M �.2/! Rnf0g. 439

It should be clear that Rnf0g; �/ is a group. 440



UNCORRECTED
PROOF

1 Sets, Relations, and Preferences

Hence det : .M �.2/; ı/ ! .Rnf0g; �/ is a homomorphism between these 441

two groups. This should indicate why those matrices in M.2/ which have zero 442

determinant are those without an inverse in M.2/. 443

From Example 1.4, the identity in M �.2/ is E , while the multiplicative identity 444

in R is 1. By Lemma 1.3, det.E/ D 1. 445

Moreover jF j�1 D 1
jF j and so, by Lemma 1.3, jF�1j D 1

jF j . This is easy to check 446

since 447

jF�1j D
ˇ̌̌
ˇ 1F

�
d �b
�c a

�ˇ̌̌
ˇ D da � bc

jF j2 D jF jjF j2 D
1

jF j : 448

However the determinant det W M �.2/ ! Rn0 is not injective, since it is clearly 449

possible to find two matrices, H;F such that jH j D jF j although H and F are 450

different. 451

Example 1.6. It is clear that the real numbers form a group .R;C/ under addition 452

with identity 0, and inverse (to a) equal to �a. Similarly the reals form a group 453

.Rf0g; �/ under multiplication, as long as we exclude 0. 454

Now let Z2 be the numbers 0,1 and define “addition modulo 2,” written C, on 455

Z2, by 0 C 0 D 0; 0 C 1 D 1; 1 C 0 D 1; 1 C 1, and “multiplication modulo 2,” 456

written �, on Z2, by 0:0 D 0; 0 � 1 D 1 � 0 D 0; 1 � 1 D 1. 457

Under “addition modulo 2,” 0 is the identity, and 1 has inverse 1. Associativity is 458

clearly satisfied, and so Z2;C/ is a group. Under multiplication, 1 is the identity and 459

inverse to itself, but 0 has no inverse. ThusZ; �/ is not a group. Note thatZ2nf0g; �/ is 460

a group, namely the trivial group containing only one element. Let Z be the integers, 461

and consider the function 462

f W Z ! Z2 463

defined by f .x/ D 0 if x is even, 1 if x is odd. 464

We see that this is a morphism f W .Z;C/! .Z2;C/; 465

1. if x and y are both even then f .x/ D f .y/ D 0; since xCy is even, f .xCy/ D 466

0. 467

2. if x is even and y odd, f .x/ D 0, f .y/ D 1 and f .x/ C f .y/ D 1. But x C y 468

is odd, so f .x C y/ D 1. 469

3. if x and y are both odd, then f .x/ D f .y/ D 1, and so f .x/C f .y/ D 0. But 470

x C y is even, so f .x C y/ D 0. 471

SinceZ;C/ and .Z2;C/ are both groups, f is a homomorphism. Thus f .�a/ D 472

f .a/. 473

On the other hand consider 474

f W .Z; �/! .Z2; �/I 475

1. if x and y are both even then f .x/ D f .y/ D 0 and so f .x/ � f .y/ D 0 D 476

f .xy/. 477

2. if x is even and y odd, then f .x/ D 0; f .y/ D 1 and f .x/ � f .y/ D 0. But xy 478

is even so f .xy/ D 0. 479
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3. if x and y are both odd, f .x/ D f .y/ D 1 and so f .x/f .y/ D 1. But xy is 480

odd, and f .xy/ D 1. 481

Hence f is a morphism. However, neither .Z; �/ nor .Z2; �/ is a group, and so f 482

is not a homomorphism. 483

A computer, since it is essentially a “finite” machine, is able to compute in binary 484

arithmetic, using the two groups .Z2;C/, .Z2nf0g; �/ rather than with the groups 485

.R;C/, .Rnf0g; �/ 486

This is essentially because the additive and multiplicative groups based on Z2 487

form what is called a field. 488

Definition 1.3. 489

1. A group .G; ı/ is commutative or abelian iff for all a; b 2 G; a ı b D b ı a. 490

2. A field .F ;C; �/ is a set together with two operations called addition (+) and 491

multiplication .�/ such that .F ;C/ is an abelian group with zero, or identity 0, 492

and .Fnf0g; �/ is an abelian group with identity 1. For convenience the additive 493

inverse of an element a 2 F is written .�a/ and the multiplicative inverse of 494

a non zero a 2 F is written .�a/ or 1
a

. Moreover, multiplication is distributive 495

over addition, i.e., for all a; b; c in F ; a � .b C c/ D a � b C a � c. 496

To give an indication of the notion of abelian group, consider M�.2/ again. As 497

we have seen 498

H ı F D
�
e f

g h

�
ı
�
a b

c d

�
D
�
eaC fc eb C fd
gaC hc gb C hd

�
499

However, 500

F ıH D
�
a b

c d

�
ı
�
e f

g h

�
D
�
eaC bg af C bh
ce C dg cf C dh

�
501

Thus H ı F ¤ F ıH in general and so M �.2/ is non abelian. However, if we 502

consider two rotations ei� , ei then ei ı ei� D ei. C�/ D ei� ı ei Thus the group 503

.‚; ı/ is abelian. 504

Lemma 1.4. Both .R;C; �/ and .Z2;C; �/ are fields. 505

Proof. Consider .Z2;C; �/ first of all. As we have seen .Z2;C/ and .Z2nf0g; �/ are 506

groups. .Z2;C/,is obviously abelian since 0C 1 D 1C 0 D 1, while .Z2nf0g; ı/ is 507

abelian since it has one element. 508

To check for distributivity, note that 509

1 � .1C 1/ D 1 � 0 D 0 D 1 � 1C 1 � 1 D 1C 1 510

Finally to see that .R;C; �/ is a field, we note that for any real numbers,
a; b; c;R; .b C c/ D ab C ac. ut
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Given a field .F ;C; �/ we define a new object called Fn where n is a positive 511

integer as follows. Any element x 2 Fn is of the form

0
@ x1�
xn

1
A where x1; : : : ; xn all 512

belong to F . 513

F1. If a 2 F , and x 2 Fn define ˛x 2 Fn by 514

˛

0
@ x1�
xn

1
A D

0
@ ˛x1�
˛xn

1
A � 515

F2. Define addition in Fn by 516

x C y D
0
@ x1�
xn

1
AC

0
@ y1�
yn

1
A D

�
x1 C y1
xn C yn

�
517

Since F , by definition, is an abelian additive group, it follows that 518

x C y D
0
@ x1 C y1�
xn C yn

1
A D

0
@ y1 C x1�
yn C xn

1
A D y C x: 519

Now let 520

0 D
0
@0�
0

1
A 521

Clearly 522

x C 0 D
0
@ x1�
xn

1
AC

0
@0�
0

1
A D x: 523

Hence 0 belongs to Fn and is an additive identity in Fn. 524

Suppose we define 525

.�x/ D �
0
@ x1�
xn

1
A D

0
@�x1�
�xn

1
A � 526

Clearly 527

x C .�x/ D �
0
@ x1�
xn

1
AC

0
@�x1�
�xn

1
A D

�
x1 � x1
xn � xn

�
D 0: 528
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Thus for each x 2 Fn there is an inverse, .�x/, in Fn. 529

Finally, since F is an additive group 530

x C .x C z/ D
0
@x1�
xn

1
AC

0
@ y1 C z1

�
yn C zn

1
A D

�
x1 C y1
xn � yn

�
C
0
@ z1
�

zn

1
A

D .x C y/C z:

Thus FnC/, is an abelian group, with zero 0. 531

The fact that it is p d b l e to multiply an element x 2 Fn by a scalar a 2 F 532

endows Fn with further structure. To see this consider the example of R2. 533

1. If a 2 R and both x; y belong to R2, then 534

˛

��
x1
x2

�
C
�
y1
y2

��
D ˛

�
x1 C y1
x2 C y2

�
D
�
˛x1 C ˛y1
˛x2 C ˛y2

�
535

by distribution, and 536

D
�
˛x1
˛x2

�
C
�
˛y1
˛y2

�
DD ˛

�
x1
x2

�
C D ˛

�
y1
y2

�
537

by F1. Thus ˛.x C y/ D ˛x C ˛y. 538

2.

.˛ C ˇ/
�
x1
x2

��
.˛ C ˇ/x1
.˛ C ˇ/x2

�
539

by F1 540

D
�
˛x1 C ˇx1
˛x2 C ˇx2

�
D
�
˛x1
˛x2

�
C
�
ˇx1
ˇx2

�
541

by F2 542

D ˛
�
x1
x2

�
C ˇ

�
x1
x2

�
543

by F1. Therefore, .˛ C ˇ/x D ˛x C ˇx. 544

3.

.˛ˇ/

�
x1
x2

�
D
�
.˛ˇ/x1
.˛ˇ/x2

�
545

by F1 =˛

�
ˇx1

ˇx2

�
by associativity and F1, and = ˛.ˇx/ by F1. Thus .˛ˇ/x D 546

˛.ˇx/ 547

4. �
x1
x2

�
D
�
1 � x1
1 � x2

�
D
�
x1
x2

�
548
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Therefore 1.x/ D x. 549

These four properties characterise what is known as a vector space. 550

Finally, consider the operation of a matrix F on the set of elements in R2. By 551

definition F.x C y/ 552

D
�
a b

c d

�
D
��
x1

x2

�
C
�
y1

y2

��
D
�
a b

c d

��
x1 C y1
x2 C y2

�

D
�
a.x1 C y1/C b.x2 C y2/
c.x1 C y1/C d.x2 C y2/

�
DD

�
ax1 C bx2
cx1 C dx2

�
C
�
ay1 C by2
cy1 C dy2

�

by F2 553

D
�
a b

c d

��
x1
x2

�
C
�
a b

c d

��
y1
y2

�
DD F.x/C F.y/: 554

Hence F W .R2;C/ ! .R2;C/ is a morphism from the abelian group .R2;C/ 555

into itself. 556

By Lemma 1.3, we know that F.0/ D 0, and for any element 4x 2 R2, 557

F.�x/ D F.�1.x// D �F.x/ D �1F.x/: 558

A morphism between vector spaces is called a linear transformation. Vector 559

spaces and linear transformations are discussed in Chapter 2. 560

1.4 Preferences and Choices 561

1.4.1 Preference Relations 562

1.4.1 563

A binary relation P on X is a subset of X � X ; more simply P is called a 564

relation on X . For example let X � R (the real line) and let P be “>” meaning 565

strictly greater than. The relation “>” clearly satisfies the following properties: 566

1. it is never the case that x > x 567

2. it is never the case that x > y and y > x 568

3. it is always the case that x > y and y > z implies x > z. 569

These properties can be considered more abstractly. A relation P on X is: 570

1. symmetric iff xPy C yPx 571

asymmetric iff xPy ) not .yPx/ 572

antisymmetric iff xPy and yPx ) x D y 573

2. reflexive iff .xPx/8x 2 X 574

irreflexive iff not .xPx/8x 2 X 575
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3. transitive iff xPy and yP z) xP z 576

4. connected iff for any x; y 2 X either xPy or yPx. 577

By analogy with the relation “>” a relation P , which is both irreflexive and 578

asymmetric is called a strict preference relation. 579

Given a strict preference relation P onX , we can define two new relations called 580

I , for indifference, and R for weak preference as follows. 581

1. xIy iff not .xPy/ and not .yPx/ 582

2. xRy iff xPy or xIy. 583

Fig. 1.4

By de Morgan’s rule xIy iff not .xPy _ yPx/. Thus for any x; y 2 X either 584

xIy or xPy or yPx. Since P is asymmetric it cannot be the case that both xPy and 585

yPx are true. Thus the propositions “xPy”, “yPx”, “xIy” are disjoint, and hence 586

form a partition of the universal proposition,U . 587

Note that .xPy _ xIy/ � not.yPx/ since these three propositions form a 588

(disjoint) partition. Thus .xRy/ iff not .yPx/. 589

In the case that P is the strict preference relation “>”, it should be clear that 590

indifference is identical to “D” and weak preference to “> or D” usually written 591

“	”. 592

Lemma 1.5. If P is a strict preference relation then indifference .I / is reflexive 593

and symmetric, while weak preference .R/ is reflexive and connected. Moreover if 594

xRy and yRx then xIy. 595

Proof. 1. Since not .xPx/ this must imply xIx,so I is reflexive 596

2. xIy” not .xPy/^ not .yPx/ 597

” not .yPx/^ not .xPy/ 598

” yIx. Hence I is symmetric. 599

3. xRy” xPy or xIy. 600

Thus xIx ) xRx, so R is reflexive. 601

4. xRy” xPy or yIx and 602

yRx” yPx or yIx. 603

Not .xRy _ yRx/” not .xPy _ yPx _ xIy/. But xPy _ yPx _ xIy 604

is always true since these three propositions form a partition of the universal set. 605

Thus not .xRy _ yRx/ is always false, and so xRy _ yRx is always true. Thus 606

R is connected. 607
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5. Clearly xRy and yRx 608

” .xPy ^ yPx/ _ xIy 609

” xly 610

since xPy ^ yPx is always false by asymmetry. ut
In the case that P corresponds to “>” then x 	 y and y 	 x ) x D y, so “	” 611

is antisymmetric. 612

Suppose that P is a strict preference relation on X , and there exists a function 613

u W X ! R, called a utility function, such that xPy iff u.x/ > u.y/. Therefore 614

xRy iff u.x/ 	 u.y/

xIy iff u.x/ D u.y/

The order relation “>” on the real line is transitive (since x > y > z ) x > z/. 615

Therefore P must be transitive when it is representable by a utility function. 616

We therefore have reason to consider “rationality” properties, such as transitivity, 617

of a strict preference relation. 618

1.4.2 Rationality 619

Lemma 1.6. If P is irreflexive and transitive on X then it is asymmetric. 620

Proof. To show that A ^ B ) C we need only show that B ^ not.C /) not.A/. 621

Therefore suppose that P is transitive but fails asymmetry. By the latter
assumption there exists x; y 2 X such that xPy and yPx. By transitivity this gives
xPx, which violates irreflexivity. ut

Call a strict preference relation, P; onX negatively transitive iff it is the case 622

that, for all x; y; z 2 X , not .xPy/ ^ not.yP z/) not.xP z/. Note that xRy” 623

not.yPx/. Thus the negative transitivity of P is equivalent to the property 624

yRx ^ zRy ) zRx 625

Hence R must be transitive. 626

Lemma 1.7. If P is a strict preference relation that is negatively transitive then 627

P; I;R are all transitive. 628

Proof. 1. By the previous observation,R is transitive. 629

2. To prove P is transitive, suppose otherwise, i.e., that there exist x; y; z such that 630

xPy, yP z but not .xP z/. By definition not .xP z/” zRx. Moreover yP z or 631

yI z” yRz. Thus yP z) yRz. By transitivity ofR; zRx and yRz gives yRx, 632

or not .xPy/. But we assumed xPy. By contradiction we must have xP z. 633

3. To show I is transitive, suppose xIy; yI z but not .xI z/. Suppose xP z, say.
But then xRz. Because of the two indifferences we may write zRyandyRx.



UNCORRECTED
PROOF

1.4 Preferences and Choices

By transitivity of R; zRx. But zRx and xRz imply xI z, a contradiction. In the
same way if zPx, then zRx, and again xI z. Thus I must be transitive. ut
Note that this lemma also implies that P; I and R combine transitively. For 634

example, if xRy and yP z then xP z. 635

To show this, suppose, in contradiction, that not .xP z/. 636

This is equivalent to zRy. If xRy, then by transitivity of R, we obtain zRy and 637

so it not .yP z/. Thus xRy and not .xP z/ ) not.yP z/. But yP z and not .yP z/ 638

cannot both hold. Thus xRy and yP z ) xP z. Clearly we also obtain xIy and 639

yP z) xP z for example. 640

When P is a negatively transitive strict preference relation on X , then we call it 641

a weak order on X . Let O.X/ be the set of weak orders on X . If P is a transtive 642

strict preference relation on X , then we call it a strict partial order. Let T .X/ be 643

the set of strict partial orders on X . By Lemma 1.7,O.X/ � T .X/. 644

Finally call a preference relation acyclic if it is the case that for any finite 645

sequence x1; : : : ; xr , of points in X if xjPxjC1
for J D 1; : : : ; r � 1 then it cannot 646

be the case that xr ; Pxl . 647

Let A.X/ be the set of acyclic strict preference relations on X . To see that 648

T .x/ � A.X/, suppose that P is transitive, but cyclic, i.e., that there exists a finite 649

cycle x1Px2 : : : PxrPxl . By transitivity xr�1Pxr ; Px1 givess xr�1Px1, and by 650

repetition we obtain x2Px1. .But we also have xlPx2, which violates asymmetry. 651

1.4.3 Choices 652

As we noted previously, ifP is a strict preference relation on a setX , then a maximal 653

element, or choice, on X is an element x such that for no y 2 X is it the case that 654

yPx. We can express this another way. Since P � X �X , there is a mapping 655

�P W X ! X where �P .x/ D fy W yPxg: 656

We shall call d �p the preference correspondence of P . The choice of P onX is the 657

set Cp.X/ D x W �p.X/ D ˆ. Suppose now that P is a strict preference relation on 658

X . For each subset Y of X , let 659

Cp.Y / D fx 2 y W �P .X/ \ Y D ˆg: 660

This defines a choice correspondence Cp W 2X ! 2X from 2X , the set of all 661

subsets of X , into itself. 662

An important question in social choice and welfare economics concerns the exis- 663

tence of a “social” choice correspondence, CP , which guarantees the nonemptiness 664

of the social choice CP .Y / for each feasible set, Y , in X , and an appropriate social 665

preference, P . 666
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Lemma 1.8. If P is an acyclic strict preference relation on a finite set X , then 667

Cp.Y / is non-empty for each subset Y of X . 668

Proof. Suppose thatX D x1; : : : ; xr . If all elements inX are indifferent then clearly 669

CP .X/ D X . 670

So we can assume that if the cardinality jY j of Y is at least 2, then x2Px1 for 671

some x2; x1. We proceed by induction on the cardinality of Y . 672

If Y D fxlg then obviously xl D Cp.Y /. 673

If Y D fxl ; x2g then either x1Px2; x2Px1, or x1Ix2 in which case CP .Y / D 674

fxlg; fx2gorfx1; x2g respectively. Suppose CP .Y / ¤ ˆ whenever the cardinality 675

jY j of Y is 2, and consider Y 0 D fx1; x2; x3g. 676

Without loss of generality suppose that x2 2 CP .fx1; x2g/, but that neither x1 677

nor x2 2 CP .Y 0/. There are two possibilities (i) If x2Pxl then by asymmetry of 678

P , not .x1Px2/. Since x2 … Cp.Y 0/ then x3Px2, so not .x2Px3/. Suppose that 679

CP .Y
0/ D ˆ. Then x1Px3, and we obtain a cycle x1Px3Px2Px1. This contradicts 680

acyclicity, so x3 2 CP .Y 0/. (ii) If x2Ix1and x3 62 CP .Y 0/ then either x1Px3 or 681

x2Px3. But neither x1norx2 2 CP .Y
0/ so x3Px1 and x3Px2. This contradicts 682

asymmetry of P . Consequently x3 2 CP .Y 0/. 683

It is clear that this argument can be generalised to the case when jY j D k and Y 0
684

is a superset of Y (i.e., Y � Y 0 with jY 0j D k C 1.) So suppose CP .Y / ¤ ˆ . To 685

show Cp.Y
0/ ¤ ˆ when Y 0 D Y [ fxk C 1g, suppose ŒCP .Y /[fxkC1g�CP .Y 0/ ¤ 686

ˆ. Then there must exist some x 2 Y such that xPxkC1. 687

If x 2 CP .Y / then xk C 1Px Since x 62 CP .Y
0/ and zPx for no z 2 Y . 688

Hence we obtain the asymmetry xPxkC1Px .On the other hand if x 2 Y nCP .Y /, 689

then there must exist a chain xr ; Pxr�1P : : : x1Px with r < k, such that xr 2 690

CP .Y /. Since xr 62 CP .Y 0/ it must be the case that xk C 1Pxr this gives a cycle 691

xPxk C 1PxrP : : : x By contradiction,CP .Y 0/ ¤ ˆ. 692

By induction if CP .Y / ¤ ˆ then Cp.Y 0/ ¤ ˆ for any superset Y 0 of Y . Since
CP .Y / ¤ ˆ whenever jY j D 2, it is evident that CP .Y / ¤ ˆ for any finite subset
Y of X . ut

If P is a strict preference relation on X and P is representable by a utility 693

function u W X ! R then it must be the case that all of P; I;R re transitive.To 694

see this, we note the following: 695

1. xRy and yRz iff u.x/ 	 u.y/ 	 u.z/. Since “	” on R is transitive it follows that 696

u.x/ 	 u.z/ and so xRz. 697

2. xIy and yI z iff u.x/ D u.y/ D u.z/, and thus xI z. 698

In this case indifference, I , is reflexive, symmetric and transitive. Such a relation 699

on X is called an equivalence relation. 700

For any point x in X, let [x] be the equivalence class of x in X , i.e., Œx� D fy W 701

yIxg. 702

Every point in X belongs to exactly one equivalence class. To see this suppose 703

that x 2 Œy� and x 2 Œz�, then xIy and xI z. By symmetry zIx, and by transitivity 704

zIy. Thus Œy� D Œz�. 705
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The set of equivalence classes in X under an equivalence relation, I , is written 706

X=I . Clearly if u W X CR is a utility function then an equivalence class [x] is of 707

the form 708

Œx� D y 2 X W u.x/ D u.y/; 709

which we may also write as u�1Œu.x/�. 710

If X is a finite set, and P is representable by a utility function then 711

CP .X/ D x 2 X W u.x/ D s 712

where s is max Œu.y/ W y 2 X�, the maximum value of u on X . 713

Social choice theory is concerned with the existence of a choice under a social 714

preference relation P which in some sense aggregates individual preferences for all 715

members of a society M D 1; : : : i; : : : m. Typically the social preference relation 716

cannot be representable by a “social” utility function. For example suppose a society 717

consists of n individuals, each one of whom has a preference relation Pi on the 718

feasible set X . 719

Define a social preference relation P on X by xPy iff xPiy for all i 2 M (P is 720

called the strict Pareto rule). 721

It is clear that if each Pi is transitive, then so must be P . As a result, P must be 722

acyclic. If X is a finite set, then by Lemma 1.8, there exists a choice CP .X/ on X . 723

The same conclusion follows if we define xQy iff xRj y8j 2M , and xPiy for 724

some i 2M . 725

If we assume that each individual has negatively transitive preferences, then 726

Q will be transitive, and will again have a choice. Q is called the weak Pareto 727

rule. Note that a point x belongs to CQ.X/ iff it is impossible to move to another 728

point y which makes nobody “worse off, but makes some members of the society 729

”better off. The set CQ.X/ is called the Pareto set. Although the social preference 730

relationQ has a choice, there is no social utility function which representsQ. To see 731

this suppose the society consists of two individuals 1,2 with transitive preferences 732

xP1yP1z and zP2xP2y. 733

By the definition xQy, since both individuals prefer xtoy. However conflict of 734

preference between y and z, and between x and z gives yI z and xI z, where I is 735

the social indifference rule associated with Q. Consequently I is not transitive and 736

there is no “social utility function” which represents Q. Moreover the elements of 737

X cannot be partitioned into disjoint indifference equivalence classes. 738

To see the same phenomenon geometrically define a preference relation P on R2
739

by 740

.x1; x2/P.y1; Y2/” X1 > Y1 ^ x2 > y2: 741

From Figure 1.5 .x1; x2/P.yl ; y2/. However .x1; x2/I.z1; z2/ and .y1; y2/I.zl ; z2/. 742

Again there is no social utility function representing the preference relation Q. 743

Intuitively it should be clear that when the feasible set is “bounded” in some way in 744

R2, then the preference relation Q has a choice. We shall show this more generally 745

in a later chapter. (See Lemma 3.9. below.) 746
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Fig. 1.5

Fig. 1.6

In Figure 1.5, we have represented the preference Q in R2 by drawing the set 747

preferred to the point .yl ; y2/, say, as a subset of R2. 748

An alternative way to describe the preference is by the graph of �p. For example, 749

suppose X is the unit interval [O,1] in R, and let the horizontal axis be the domain 750

of �p, and the vertical axis be the co-domain of �P . In Figure 1.6, the preference P 751

is identical to the relation > on the interval (so yPx iff y > x/. The graph of �p is 752

then the shaded set in the figure. Note that yPx iff xP�l y. Because P is irreflexive, 753

the diagonal ex D f.x; x/ W x 2 Xg cannot belong to graph .�P / To find graph 754

.��1
P / we simply “reflect” graph .�p/ in the diagonal. 755

The shaded set in Figure 1.7 represents graph .��1
P /. Because P is asymmetric, 756

it is impossible for both yPx and xPy to be true. This means that graph .�P / \ 757

graph.��1
P / D ˆ (the empty set). This can be seen by superimposing Figures 1.6 758

and 1.7. A preference of the kind illustrated in Figure 1.6 is often called monotonic 759

since increasing values of x are preferred. 760

To illustrate a transitive, but non-monotonic strict preference, consider Figure 1.8 761

which represents the preferenceyPx iff x < y < 1�x, for x � 1
2
,or 1�x < y < x, 762

for x > 1
2
. For example if x D 1

4
, then �P .x/ is the interval . 1

4
; 3
4
/namely all points 763

between 1
4
, and 3

4
, excluding the end points. 764

It is obvious that P represents a utility function 765
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Fig. 1.7

Fig. 1.8

Fig. 1.9
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Fig. 1.10

u.x/ D x if x � 1

2

ux D 1 � x if
1

2
< x � 1:

Clearly the choice of P is CP .x/ D 1
2
. Such a most preferred point is often 766

called a “bliss point” for the preference. Indeed a preference of this kind is usually 767

called “Euclideann, since the preference is induced from the distance from the bliis 768

point. In other words, yPx iff
ˇ̌
y � 1

2
j < jx � 1

2

ˇ̌
. Note again that this preference is 769

transitive and of course acyclic. The fact that the P is asymmetric can be seen from 770

noting that the shaded set in Figure 1.8 (graph �p) and the shaded set in Figure 1.9 771

(graph ��1
P ) do not intersect. 772

Figure 1.10 represents a more complicated asymmetric preference. Here 773

�P .x/ D .x; x C 1

2
/ if x � 1

2

D .1
2
; x/ [ .0; x � 1

2
/ if x >

1

2
:

Clearly there is a cycle, say 1
4
P 1
8
P 11
16
P 1
4
. Moreover the choice Cp.X/ is empty. 774

This example illustrates that when acyclicity fails,then it is possible for the choice 775

to be empty. 776

To give an example where P is both acyclic on the interval, yet no choice exists, 777

consider Figure 1.11. Define 778

�P .x/ D .x; x C 1

2
/ if x � 1

2
and �p.x/ D .1

2
; x/ if x >

1

2
: 779
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Fig. 1.11

P is still asymmetric, but we cannot construct a cycle. For example, if x D 1
4

780

then yPx for y 2 . 1
4
; 3
4
/ but if zPy then z > 1

4
. Note however that �P.1

2
/ D . 1

2
; 1/ 781

so CP .x/ D ˆ. 782

This example shows that Lemma 1.8 cannot be extended directly to the case that 783

X is the interval. In Chapter 3 below we show that we have to impose “continuity” 784

on P to obtain an analogous result to Lemma 1.8. 785

1.5 Social Choice and Arrow’s Impossibility Theorem 786

The discussion following Lemma 1.8 showed that even the weak Pareto rule, Q, 787

did not give rise to transitive indifference, and thus could not be represented by a 788

“social utility function”. HoweverQ does give rise to transitive strict preference. We 789

shall show that any rule that gives transitive strict preference must be “oligarchic” 790

in the same way that Q is oligarchic. In other words any rule that gives transitive 791

strict preference must be based on the Pareto (or unanimity) choice of some subset, 792

say ‚ of the society, M . Arrow’s Theorem (1951) shows that if it is desired that 793

indifference be transitive, then the rule must be “dictatorial”, in the sense that it 794

obeys the preference of a single individual. 795

1.5.1 Oligarchies and Filters 796

The literature on social choice theory is very extensive and technical, and this 797

section will not attempt to address its many subtleties. The general idea to examine 798

the possible rationality properties of a “social choice rule” 799

� W S.X/M �! S.X/ 800
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Here S.X/ stands for the set of strict preference relations on the setX and 801

M D f1; : : : ; i; : : :g is a society. Usually M is a finite set of cardinality m. 802

Sometimes however M will be identified with the set of integers Z . S.X/M is the 803

set of strict preference profiles for this society. For example if jM j D m, then a 804

profile� D fP1; : : : ; Pm; g is a list of preferences for the members of the society. We 805

useA.X/M ; T .X/M ;O.X/M , for profiles whose individual preferences are acyclic, 806

strict partial orders or weak orders, respectively. Social choice theory is based on 807

binary comparisons. This means that if two profiles �1 and �2 agree on a pair of 808

alternatives fx; yg, say, then the social preferences �.�l / and �.�2/ also agree on 809

fx; yg. A key idea is that of a decisive coalition. Say a subset A � M is decisive 810

under the rule � iff for any profile � D .P1; : : : ; Pm; / such that xPiy for all i 2 A 811

then x.�.�//y That is to say whenever A is decisive, and its members agree that 812

x is preferred to y then the social preference chooses x over y. The set of decisive 813

coalitions under the rule is written D� , or more simply, D. To illustrate this idea, 814

supposeM D f1; 2; 3g and D� , comprises any coalition with at least two members. 815

It is easy to construct a profile � 2 A.x/M such that � is not even acyclic. For 816

example, choose a profile. � on the alternatives fx; y; zg such that 817

xP1yP1z; yP2zP2x; zP3xP3y: 818

Since both 1 and 2 prefer y to z we must have y�.�/z But in the same way 819

we find that z�.�/x and x�.�/y, giving a social preference cycle on fx; y; zg.In 820

general restricting the image of � so that it lies in A.X/; T .X/, and O.X/ imposes 821

constraints on D. We now examine these constraints. 822

Lemma 1.9. If � W T .X/M �! T .X/, andM;A;B all belong to D� , thenA\B 2 823

D� . 824

Outline of Proof. Partition M into the four sets V1 D A \ B , V2 D AnB; V3 D 825

BnA; V4 D Mn.A [ B/ and suppose that each individual has preferences on the 826

alternatives fx; y; zg as follows: 827

i 2 Vl W zPixPiy 828

i 2 V2 W xPiy, with preferences for z unspecified 829

i 2 V3 W zPix, with preferences for y unspecified 830

i 2 V4 : completely unspecified. 831

Now AnB D fi 2 A; but i … Bg, so V1 [ V 2 D A. Since A is decisive and
every individual in A prefers x to y we obtain x�.�/y. In the same way V1 �
V3 D B , and B is decisive, so z�.�/x Since we require �.�/ to be transitive, it is
necessary that z�.�/y. Since individual preferences are assumed to belong to T .X/,
we require that zPiy for all i 2 V1. We have not however specified the preferences
for the rest of the society. Thus V1 D A\B must be decisive for fx; zg in the sense
that V1 can choose between x and z, independently of the rest of the society. But this
must be true for every pair of alternatives. Thus A\ B 2 D� . ut
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In general it could be possible forD� to be empty. However it is usual to assume 832

that � satisfies the strict Panzto rule. That is to say for any x; y if xPiy, for all 833

i 2 M then x�.�/y. This simply means that M 2 D� . Moreover, this implies that 834

ˆi 2 D� . To see this, suppose that ˆ 2 D� and consider a profile with xPiy8i 2 835

M . Since nobody prefers y to x, and the empty set is decisive, we obtain y�.�/x. 836

But by the Pareto rule, we have x�.�/y. We assume however that �.r/ is always a 837

strict preference relation, and so y�.�/x cannot occur. Finally if A 2 D� then any 838

set B which contains A must also be decisive. Thus Lemma 1.9 can be interpreted 839

in the following way. 840

Lemma 1.10. If � W T .x/M �! T .X/ and � satisfies the strict Pareto rule, then 841

D� satisfies the following conditions: 842

Dl. (monotonicity)A � B and A 2 D� implies B 2 D� . 843

D2. (identity) A 2 D� and ˆ … D� . 844

D3. (closed under intersection) A;B 2 D� implies A \ B 2 D� . 845

A collection D. of subsets of M which satisfy Dl;D2, and D3 is called a filter. 846

Note also that when M is finite, then D� ., must also be finite. By repeating 847

Lemma 1.9 for each pair of coalitions, we find that ‚ D \Ai W Ai 2 D� . must be 848

non-empty and also decisive. This set ‚ is usually called the oligarchy. In the case 849

that � is simply the strict Pareto rule, then the oligarchy is the whole society,M . 850

However, any rule that gives a transitive strict preference relation must be 851

equivalent to the Pareto rule based on some oligarchy, possibly a strict subset of 852

M . 853

For example, majority rule for the society M D f1; 2; 3g defines the decisive 854

coalitions f1; 2g; f1; 3g; f2; 3g. These three coalitions contain no oligarchy. We can 855

immediately infer that this rule cannot be transitive. In fact, as we have seen, it 856

is not even acyclic. Below, we explore this further. If we require the rule always 857

to satisfy the condition of negative transitivity then the oligarchy will consist of a 858

single individual, in the case when M is finite. 859

Lemma 1.11. If � W T .x/M ! O.X/ andM 2 D� and A � M and A … D� ,then 860

MnA 2 D� 861

Proof. Since A … D� , we can find a profile. � and a pair fx; yg such that yPix 862

for all i 2 A, yet not .y�.�/x/. Let us write this latter condition as xRy, where R 863

stands for weak social preference. 864

Suppose now there is an alternative z such that xPi z for all i 2 MnA, and that
yPi z for all i 2 M . By the Pareto condition .M 2 D� / we obtain yPz (where
P stands for �.�//. By negative transitivity of P; xRy and yP z implies xP z (see
Lemma 1.7). However we have not specified the preferences of A on fx; zg. But we
have shown that if the members of MnA prefer x to z, then so does the society. It
then .follows that MnA must be decisive. ut

It follows from this lemma that if � W T .X/M ! O.X/ and M 2 D� , then 865

whenever A 2 D� there is some proper subset B (such that B � A yet B ¤ 866

A/ with B 2 D� . To see this consider any proper subset C of A with C … D� . 867
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By Lemma 1.11, MnC 2 D� . But since O.X/ belongs to T .X/, we can use the 868

property D3 of Lemma 1.10 to infer that A \ .MnC/ 2 D� . But A \ .MnC/ D 869

AnC , and since C is a proper subset of A;AnC ¤ ˆ. Hence AnC 2 D� . In the 870

case M has finite cardinality, we can repeat this argument to show that there must 871

be some individual i such that fig 2 D� . But then i is a dictator in the sense that, 872

for any x; y if .� is a profile with xPiy then x�.pi/y. 873

Arrow’s Impossibility Theorem. If a : O.X/M ! O.X/ and M 2 D� with jM j 874

finite, then there is a dictator fig, say, such that fig 2 D� . 875

It is obvious that if D� , is non-empty, then all the coalitions in D� , must contain 876

the dictator fig. In particular fig D \fMi W i 2 D�g and fig 2 D� . 877

A somewhat similar result holds when M is a “space” rather than a finite set. 878

In this case there need not be a dictator in M . However in this case, the filter D� , 879

defines an “invisible dictator”. That is to say, we can imagine the coalitions in D� , 880

becoming smaller and smaller, so that they define the invisible dictator in the limit., 881

1.5.2 Acyclicity and The Collegium 882

As Lemma 1.8 demonstrated, if P is an acyclic preference relation on a finite set, 883

then the choice for P will be non-empty. Given Arrow’s Theorem, it is therefore 884

useful to examine the properties of a social choice rule that are compatible with 885

acyclicity. To this end we introduce the notion of the Nakamura number for a rule, 886

� (Nakamura, 1979). 887

Definition 1.4. Let D be a family of subsets of the finite set M . The collegium 888

K.D/ is the intersection 889

\fAi W Ai 2 Dg: 890

That is to sayK.D/ is the largest set in M such that K.D/ � A for all A 2 2/:D 891

IfK.D/ is empty then D is said to be non-collegial. Otherwise D is collegial.If � 892

is a social choice rule, andD� , its family of decisive coalitions, thenK.�/ D K.D� / 893

is the collegium for � . Again � is called collegial or noncollegial depending on 894

whether K.�/ is non-empty or empty. The Nakamura number of a non-collegial 895

family D is written k.D/ and is the cardinality of the smallest non-collegial 896

subfamily of D. That is, there exists some subfamily D0 of D with jD0j D k.D/ 897

such that K.D0/ D ˆ. Moreover if D00 is a subfamily of D with jD00j � k.D/ � 1 898

then K.D00/ ¤ ˆ. 899

In the case D is collegial define k.D/ D 1. For a social choice rule define 900

k.�/ D k.D⊃/, where D⊃ is the family of decisive coalitions for � . 901

Example 1.7. (i) To illustrate this definition, suppose D consists of the four 902

coalitions, fA1;A2; A3; A4g where A1 D f2; 3; 4g; A2 D f1; 3; 4g; A3 D 903

f1; 2; 4; 5g and A4 D f1; 2; 3; 5g. Of course D will be monotonic, so supersets 904

of these coalitions will be decisive. It is evident that A1 \ A2 \ A3 D f4g and 905
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so if D0 D fA1;A2; A3g then KD0 ¤ ˆ. However K.D0 \ A4 D ˆ and so 906

K.D/ D ˆ. Thus k.D/ D 4. 907

(ii) An especially interesting case is of a q-majority rule where each individual has 908

one vote, and any coalition with at least q voters (out of m) is decisive. In this 909

case it is easy to show then that k.�/ D 2C Œ q

m�q �where Œ q

m�q �is the greatest 910

integer strictly less than q

m�q . In the case that m D 4 and q D 3, then we find 911

that Œ 3
1
� D 2, so k.�/ D 4. 912

On the other hand for all other simple majority rules where m D 2s C 1 or 913

2s and q D s C 1 (and s is integer) then 914

�
q

m� q
�
D
�
s C 1
s

�
or

�
s C 1
s � 1

�
: 915

depending on whetherm is odd or even. In both cases Œ q

m�q � D 1. Thus k.�/ D 916

3 for any simple majority rule with m ¤ 4. 917

(iii) Finally, observe that for any simple majoritarian rule, ifM1;M2 both belong 918

to D, then A1 \ A2 ¤ ˆ. So in general, any non-collegial subfamily of D 919

must include at least three coalitions. Consequently any majoritarian rule, � , 920

has k.�/ 	 3. 921

The Nakamura number allows us to construct social preference cycles. 922

Nakarnura Lemma. Suppose that � is a non-collegial voting rule, with Nakamura 923

number k.�/ D k. Then there exists an acyclic profile � D .P1; : : : ; Pn; / for the 924

society M , on a set X D .xl ; : : : ; xk/ of cardinality k, such that �.�/ is cyclic on 925

W , and the choice of �.�/ is empty. 926

Proof. We wish to construct a cycle by considering k different decisive coalitions, 927

A1; : : : ; Ak and assigning preferences to the members of each coalition such that 928

xiPix2 for all i 2 A1
:::

xk�1Pixk for all i 2 Ak � 1
xkPix1 for all i 2 Ak

We now construct such a profile, � . Let Dk D fA1; : : : ; Ak�lg. By the definition 929

of the Nakamura number, this must be collegial. Hence there exists some individual 930

k, say, with k 2 Al \ : : : \ Ak � l . We can assign k the acyclic preference profile 931

x1Pkx2Pk : : : Pkxk . 932

In the same way, for each subfamily Dj D fA; : : : ; Aj � 1;Aj C 1; : : : ; Akg 933

there exists a collegium containing individual j , to whom we assign the preference 934

xjC1Pj xjC2 : : : xkPj x1 : : : xjPj xj : 935
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We may continue this process to assign acyclic preferences to each member of
the various collegia of subfamilies of D,so as to give the required cyclic social
preference. ut
Lemma 1.12. A necessary condition for a social choice rule a to be acyclic on the 936

finite set X of cardinality at least m D jM j, for each acyclic profile � on X , is that 937

� be collegial. 938

Proof. Proof. Suppose � is not collegial. It is easy to show that the Nakamura
number k.�/ will not exceed m. By the Nakamura Theorem there is an acyclic
profile � on a set X of cardinality m, such that �.�/ is cyclic on X . Thus acyclity
implies that � must be collegial. ut

Note that this lemma emphasizes the size of the set of alternatives. It is worth 939

observing here that in the previous proofs of Arrow’s Theorem, the cardinality of 940

the set of alternatives was implicitly assumed to be at least 3. 941

These techniques using the Nakamura number can be used to show that a simple 942

social rule will be acyclic whenever it is collegial. Say a social choice rule is simple 943

iff whenever x�.�/y for the profile � , then xPiy for all i in some coalition that is 944

decisive for � . 945

Note that a social choice rule need not, in general, be simple. If � is simple then 946

all the information necessary to analyse the rule is contained in D� . 947

Lemma 1.13. . Let � be a simple choice rule on a finite set X : 948

(i) If � is dictatorial, then �.�/ � O.X/ for all � 2 O.X/M 949

(ii) If � is oligarchic, then �.�/ � T .X/ for all � 2 T .X/M 950

(iii) If � is collegial, then �.�/ � A.X/ for all � 2 A.X/M . 951

Proof. (i) If i is a dictator, then xIiy implies that x and y are socially indifferent. 952

Because Pi belongs to O.X/ so must �.�/. 953

(ii) In the same way, if ‚ is the oligarchy and x�.�/y then xPiy for all i in ‚. 954

Thus x�.�/ must be transitive. 955

(iii) If there is a cycle xl�.�/ : : : ; xk�.�/xl then each of these social preferences
must be supported by a decisive coalition. Since the collegium is nonempty,
there is some individual, i , say, who has such a cyclic preference. This
contradicts the assumption that � 2 A.x/M . ut

Another way of expressing part (iii) of this lemma is to introduce the idea of 956

a prefilter. Say D is a prefilter if and only if it satisfies Dl (monotonicity) and 957

D2 (identity) introduced earlier, and also non-empty intersection .soK.D/ ¤ ˆ/. 958

Clearly if � is simple, and D� , is a prefilter, then � is acyclic and consistent with 959

the Pareto rule. 960

In Chapter 3 we shall further develop the notion of social choice using the notion 961

of the Nakamura number, in the situation where X has a geometric structure. 962
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Chapter 2 1

Linear Spaces and Transformations 2

2.1 Vector Spaces 3

We showed in Section 1.3 that when F was a field, the n-fold product set Fn had an 4

additional operation defined on it, which was induced from addition in F , so that 5

.Fn;C/ became an abelian group with zero 0. Moreover we were able to define a 6

product � W F � Fn ! Fn which takes .˛; x/ to a new element of Fn called .˛x/. 7

Elements of Fn are known as vectors, and elements of F as scalars. The properties 8

that we discovered in Fn characterise a vector space. A vector space is also known 9

as a linear space. 10

Definition 2.1. A vector space .V;C/ is an abelian additive group with zero 0, 11

together with a field .F ;C; �/ with zero 0 and identity 1. An element of V is called 12

a vector and an element of F a scalar. Moreover for any ˛ 2 F ; v 2 V there is a 13

scalar multiplication .˛; v/! ˛v 2 V which satisfies the following properties: 14

V1: ˛.v1 C v2/ D ˛v1 C ˛v2; for any ˛ 2 F ; v1; v2 2 V:
V2: .˛ C ˇ/v D ˛v C ˇv; for any ˛; ˇ 2 F ; v 2 V:
V3: .˛ˇ/v D ˛.ˇv/; for any ˛; ˇ 2 F ; v 2 V:
V4: 1 � v D v; for 1 2 F ; and for any v 2 V:

15

Call V a vector space over the field F . From the previous discussion the set 16

Rn becomes an abelian group .Rn;C/ under addition. We shall frequently write 17

x D

0
B@
x1
:::

xn

1
CA for a vector in Rn, where x1; : : : ; xn are called the coordinates of x. 18

Vector addition is then defined by x C y D

0
B@
x1
:::

xn

1
CAC

0
B@
y1
:::

yn

1
CA D

0
B@
x1 C y1

:::

xn C yn

1
CA : 19

A vector space over ffR is called a real vector space. 20
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Fig. 2.1

For example .Z2;C; �/ is a field and so .Z2/n is a vector space over the field 21

Z2. It may not be possible to represent each vector in a vector space by a list of 22

coordinates. For example, consider the set of all functions with domainX and image 23

in R. Call this set RX . If f; g 2 RX , define f C g to be that function which maps 24

x 2 X to f .x/ C g.x/. Clearly there is a zero function 0 defined by 0.x/ D 0, 25

and each f has an inverse .�f / defined by .�f /.x/ D �.f .x//. Finally for ˛ 2 26

R; f 2 RX , define f̨ W X ! R by . f̨ /.x/ D ˛.f .x//. Thus RX is a vector 27

space over R. 28

Definition 2.2. Let .V;C/ be a vector space over a field, F . A subset V 0 of V is 29

called a vector subspace of V if and only if 30

1. v1; v2 2 V 0 ) v1 C v2 2 V 0, and 31

2. if ˛ 2 F and v 2 V 0 then ˛v0 2 V 0. 32

Lemma 2.1. If .V;C/ is a vector space with zero 0 and V 0 is a vector subspace, 33

then, for each v 2 V 0, the inverse .�v/ 2 V 0, and 0 2 V 0, so .V 0;C/ is a subgroup 34

of .V;C/. 35

Proof. Suppose v 2 V 0. Since F is a field, there is an identity 1, with additive
inverse �1. But by V2, .1 � 1/v D 1 � v C .�1/v D 0 � v, since 1 � 1 D 0. Now
.1 C 0/v D 1 � v C 0 � v, and so 0 � v D 0. Thus .�1/v D .�v/. Since V 0 is a
vector subspace, .�1/v 2 V 0, and so .�v/ 2 V 0. But then v C .�v/ D 0, and so
0 2 V 0. ut

From now on we shall simply write V for a vector space, and refer to the field 36

only on occasion. 37

Definition 2.3. Let V 0 D fv1; : : : ; vrg be a set of vectors in the vector space V . A 38

vector v is called a linear combination of the set V 0 iff v can be written in the form 39

v D
Xr

iD1 �ivi 40

where each �i ; i D 1; : : : ; r belongs to the field F . The span of V 0, written 41

Span .V 0/ is the set of vectors which are linear combinations of the set V 0. If 42

V 00 D Span.V 0/, then V 0 is said to span V 00. 43
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For example, suppose V 0 D
��

1

2

��
2

1

�	
. 44

Since we can solve the equation 45

�
x

y

�
D ˛

�
1

2

�
C ˇ

�
2

1

�
46

for any .x; y/ 2 R2, by setting ˛ D 1
3
.2y � x/ and ˇ D 1

3
.2x � y/, it is clear that 47

V 0 is a span for R2. 48

Lemma 2.2. If V 0 is a finite set of vectors in the vector space, V , then Span(V 0/ is 49

a vector subspace of V . 50

Proof. We seek to show that for any ˛; ˇ 2 F and any u;w 2 Span.V 0/, then 51

˛u C ˇw 2 Span.V 0/. By definition, if V 0 D fv1; : : : ; vr g, then u D Pr
iD1 	ivi 52

and w D Pr
iD1 
ivi , where 	i ; 
i 2 F for i D 1; : : : ; r . But then ˛u C ˇw D 53

˛
Pr

iD1 	ivi C ˇ
Pr

iD1 
ivi D
Pr

iD1 �ivi , where �i D ˛	i C ˇ
i 2 F , for 54

i D 1; : : : ; r . Thus ˛uC ˇw 2 Span.V 0/. 55

Note that, by this lemma, the zero vector 0 belongs to Span (V 0). ut
Definition 2.4. Let V 0 D fv1; : : : ; vrg be a set of vectors in V . V 0 is called a frame 56

iff
Pr

iD1 ˛i vi D 0 implies that ˛i D 0 for i D 1; : : : ; r . (Here each ˛i belongs to 57

the field F ). In this case the set V 0 is called a linearly independent set. If V 0 is not 58

a frame, the vectors in V 0 are said to be linearly dependent. Say a vector is linearly 59

dependent on V 0 D fv1; : : : ; vrg iff v 2 Span.V 0/. 60

Note that if V 0 is a frame, then 61

1. 0 … V 0 since ˛0 D 0 for every non-zero ˛ 2 F . 62

2. If v 2 V 0 then .�v/ … V 0, otherwise 1 � v C 1.�v/ D 0 would belong to V 0, 63

contradicting (1). 64

Lemma 2.3. 1. V 0 is not a frame iff there is some vector v 2 V 0 which is linearly 65

dependent on V 0 fvg. 66

2. If V 0 is a frame, then any subset of V 0 is a frame. 67

3. If V 0 spans V 00, but V 0 is not a frame, then there exists some vector v 2 V 0 such 68

that V 000 D V 0 fvg spans V 00. 69

Proof. Let V 0 D fv1; : : : ; vrg be the set of vectors in the vector space V . 70

1. Suppose V 0 is not a frame. Then there exists an equation
Pr

jD1 ˛j vj D 0, where, 71

for at least one k, it is the case that ˛k ¤ 0. But then vk D � 1
˛k
.
P

j¤k ˛j vj /. 72

Let vk D v. Then v is linearly dependent on V 0 fvg. On the other hand suppose 73

that v1, say, is linearly dependent on fv2; : : : ; vrg. Then v1 D Pr
jD2 ˛j vj , and 74

so 0 D �v1 CPr
jD2 ˛j vj D

Pr
jD1 ˛j vj where ˛1 D �1. Since ˛1 ¤ 0; V 0

75

cannot be a frame. 76

2. Suppose V 00 is a subset of V 0, but that V 00 is not a frame. For convenience let 77

V 00 D fv � 1; : : : ; vkg where k � r . Then there is a non-zero solution 78
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0 ¤
Xk

jD1 ˛j vj : 79

Since V 00 is a subset of V 0, this implies that V 0 cannot be a frame. Thus if V 0 is 80

a frame, so is any subset V 00. 81

3. Suppose that V 0 is not a frame, but that it spans V 00. By part (1), there exists a 82

vector v1, say, in V 0 such that v1 belongs to Span .V 0 fv1g/. 83

Thus v1 D Pr
jD2 ˛j vj . Since V 0 is a span for V 00, any vector v in V 00 can be 84

written 85

v D
Xr

jD1 ˇj vj

D ˇ1
�Xr

jD2 ˛j vj
�
C
Xr

jD2 ˇj vj :

Thus v is a linear combination of V 0 fv1g and so V 00 D Span.V 0 fv1g/. 86

Let V 000 D V 0 fv1g to complete the proof. Q. E. D. 87

Definition 2.5. A basis for a vector space V is a frame V 0 which spans V . 88

For example, we previously considered V 0 D
��

1

2

�
;

�
2

1

�	
and showed that 89

any vector in R2 could be written as 90

�
x

y

�
D
�
2y � y
3

��
2

1

�
D �1

�
1

2

�
C �2

�
2

1

�
: 91

Thus V 0 is a span for R2. Moreover if .x; y/ D .0;O/ then �1 D �2 D 0 and so V 0
92

is a frame. Hence V 0 is a basis for R2. If V 0 D fv1; : : : ; vng is a basis for a vector 93

space V then any vector v 2 V can be written 94

v D
Xn

jD1 ˛j vj 95

and the elements .˛1; : : : ; ˛n/ are known as the coordinates of the vector v, with 96

respect to the basis V 0. 97

For example the natural basis for Rn is the set V 0 D fe1; : : : ; eng where 98

ei D .0; : : : ; 1; : : : ; 0g with a 1 in the i th position. 99

Lemma 2.4. fe1; : : : ; eng is a basis for Rn. 100

Proof. We can write any vector x in Rn as fx1; : : : xng. Clearly 101

x D

0
B@
x1
:::

xn

1
CA D x1

0
@10
�

1
AC : : : xn

0
B@
0
:::

1

1
CA : 102
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If x D 0 then x1 D : : : D xn D 0 and so fe1; : : : ; eng is a frame, as well as a span,
and thus a basis for Rn. ut

However a single vector x will have different coordinates depending on the basis 103

chosen. For example the vector .x; y/ has coordinates .x; y/ in the basis fe1; e2g but 104

coordinates
�
2y�x
3
;
2x�y
3

�
with respect to the basis

��
1

2

�
;

�
2

1

�	
. 105

Once the basis is chosen, the coordinates of any vector with respect to that basis
are unique. ut
Lemma 2.5. Suppose V 0 D fv1; : : : ; vng is a basis for V . 106

Let v D Pn
iD1 ˛i vi . Then the coordinates .˛1; : : : ; ˛n/, with respect to the basis, 107

are unique. 108

Proof. If the coordinates were not unique then it would be possible to write v D 109Pn
iD1 ˇivi D

Pn
iD1 ˛ivi with ˇi ¤ ˛i for some i . 110

But 0 D v � v DPn
iD1 ˛ivi �

Pn
iD1 ˇivi D

Pn
iD1.˛i � ˇi /vi . 111

Since V 0 is a frame, ˛i � ˇi D 0 for i D 1; : : : ; n. Thus ˛i D ˇi for all i , and so
the coordinates are unique. ut

Note in particular that with respect to any basis fv1; : : : ; vng for V , the unique 112

zero vector 0 always has coordinates .0; : : : ; 0/. 113

Definition 2.6. A space V is finitely generated iff there exists a span V 0, for V , 114

which has a finite number of elements. 115

Lemma 2.6. If V is a finitely generated vector space, then it has a basis with a 116

finite number of elements. 117

Proof. Since V is finitely generated, there is a finite set V1 D fv1; : : : ; vng which 118

spans V . If V1 is a frame, then it is a basis. If V1 is linearly dependent, then by 119

Lemma 2.3(3) there is a vector v 2 V1, such that Span .V2/ D V , where V2 D 120

V1 fvg. Again if V2 is a frame, then it is a basis. If there were no subset Vr D 121

fv1; : : : ; Vn�rC1g of V1 which was a frame, then V1 would have to be the empty set, 122

implying that V was an empty set. But this contradicts 0 2 V . Q. E. D. 123

Lemma 2.7. If V is a finitely generated vector space, and V1 is a frame, then there 124

is a basis V2 for V which includes V1. 125

Proof. Let V1 D fv1; : : : ; vrg. If Span .V1/ D V then V1 is a basis. So suppose that 126

Span .V1/ ¤ V . Then there exists an element vrC1 2 V which does not belong 127

to Span .V1/. We seek to show that V2 D V1 [ fvrC1g is a frame. Consider 0 D 128

˛rC1vrC1 CPr
iD1 ˛i vi . 129

If ˛rC1 D 0, then the linear independence of V1 implies that ˛i D 0, for i D 130

1; : : : ; r . Thus V2 is a frame. If ˛rC1 ¤ 0, then 131

vrC1 D � 1

˛rC1

�Xr

iD1 ˛ivi
�
: 132
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But this implies that vrC1 belongs to Span .V1/ and therefore that V D Span.V1/. 133

Thus V2 is a frame. If V2 is a span for V , then it is a basis. If V2 is not a span, reiterate 134

this process. Since V is finitely generated, there must be some frame Vn�rC1 D 135

fv1; : : : ; vr ; vrC1; : : : ; vn/ which is a span, and thus a basis for V . Q. E. D. 136

These two lemmas show that if V is a finitely generated vector space, and 137

fv1; : : : ; vmg is a span then some subset fv1; : : : ; vng, with n � m, is a basis. A 138

basis is a minimal span. 139

On the other hand if X D fv1; : : : ; vrg is a frame, but not a span, then elements 140

may be added to X in such a way as to preserve linear independence, until this 141

“superset” of X becomes a basis. Consequently a basis is a maximal frame. These 142

two results can be combined into one theorem. 143

Exchange Theorem. Suppose that V is a finitely generated vector space. Let 144

X D fx1; : : : ; xng be a frame and Y D fy1; : : : ; yng a span. Then there is some 145

subset Y 0 of Y such that X [ Y 0 is a basis for V . 146

Proof. By induction, let XS D fx1; : : : ; xsg, for each s D 1; : : : ; n, and let
X0 D �: ut

We know already from Lemma 2.6 that there is some subset Y0 of Y such that 147

X0 [ Y0 is a basis for V . Suppose for some s < m, there is a subset Ys of Y such 148

that Xs [ Ys is a basis. 149

Let Ys D fy1; : : : ; yt g. Now xsC1 … Span.Xs[Ys/ sinceXs[Ys is a basis. Thus 150

xsC1 D Ps
1 ˛1x1 C

Pt
1 ˇiyi . But XsC1 D fx1; : : : ; xsC1g is a frame, since it is a 151

subset of X . 152

Thus at least one ˇj ¤ 0. Let YsC1 D Ys fyj g, so Yj … Span .XsC1 [ YsC1/ and 153

so XsC1 [ YsC1 D fx1; : : : ; xsC1g [ fy1; : : : ; yj�1; yjC1; : : : ; yt g is a basis for V . 154

Thus if there is some subset Ys of Y such that Xs [Ys is a basis, there is a subset 155

YsC1 of Y such that XsC1 [ YsC1 is a basis. 156

By induction, there is a subset Ym D Y 0 of Y such that Xm [ Ym D X [ Y 0 is a
basis. ut
Corollary 2.8. If X D fx1; : : : ; xmg is a frame in a vector space V , and Y D 157

fy1; : : : ; yng is a span for V , then m � n. 158

Lemma 2.9. If V is a finitely generated vector space, then any two bases have the 159

same number of vectors, where this number is called the dimension of V , and written 160

dim.V /. 161

Proof. LetX; Y be two bases withm; n number of elements. ConsiderX as a frame 162

and Y as a span. Thusm � n. However Y is also a frame andX a span. Thus n � m. 163

Hence m D n. Q. E. D. 164

If V 0 is a vector subspace of a finitely generated vector space V , then any basis 165

for V 0 can be extended to give a basis for V . To see this, there must exist some finite 166

set V 00 D fv1; : : : ; vr g of vectors all belonging to V 0 such that Span.V 00/ D V 0. 167

Otherwise V could not be finitely generated. As before eliminate members of V 00
168

until a frame is obtained. This gives a basis for V 0. Clearly dim.V 0/ � dim.V /. 169
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Moreover if V 0 has a basis V 000 D fv1; : : : ; vrg then further linear independent 170

vectors belonging to V V 0 can be added to V 000 to give a basis for V . 171

As we showed in Lemma 2.3, the vector space Rn has a basis fe1; : : : ; eng 172

consisting of n elements. Thus dim.Rn/ D n. 173

If V m is a vector subspace of Rn of dimension m, where of course m � n, then 174

in a certain sense V m is identical to a copy of Rm through the origin 0. We make 175

this more explicit below. 176

2.2 Linear Transformations 177

In Chapter 1 we considered a morphism from the abelian group .R2;C/ to itself. A 178

morphism between vector spaces is called a linear transformation. 179

Definition 2.7. Let V;U be two vector spaces of dimension n;m respectively, over 180

the same field F . Then a linear transformation T W V ! U is a function from V to 181

U with domain V , such that 182

1. for any a 2 F , any v 2 V; T .˛v/ D ˛.T .v// 183

2. for any v1; v2 2 V; T .v1 C v2/ D T .v1/C T .v2/. 184

Note that a linear transformation is simply a morphism between .V;C/ and 185

.U;C/ which respects the operation of the field F . We shall show that any linear 186

transformation T can be represented by an array of the form 187

M.T / D

0
B@
a11 a1n
:::
:::
:::

am1 amn

1
CA 188

consisting of n � m elements in F . An array such as this is called an n by m (or 189

n �m) matrix. The set of n �m matrices we shall write as M.n;m/. 190

2.2.1 Matrices 191

For convenience we shall consider finitely generated vector spaces over R, so that 192

we restrict attention to linear transformations between Rn and Rm, for any integers 193

n andm. Now let V D fv1; : : : ; vng be a basis for Rn and U D fu1; : : : ; umg a basis 194

for Rm. 195

Since V is a basis for Rn, any vector x 2 Rn can be written as x DPn
jD1 xj vj , 196

with coordinates .x1; : : : ; xn/. 197

If T is a linear transformation, then T .˛v1 C ˇv2/ D T .˛v1/ C T .ˇv2/ D 198

˛T .v1/C ˇT .v2/. Therefore 199
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T .x/ D T
�Xn

jD1 xj vj
�

D
Xn

jD1 xj T .vj /:

Since each T .vj / lies in Rm we can write T .vj / D Pm
iD1 aijui , where 200

.a1j ; a2j ; : : : ; amj/ are the coordinates of T .vj / with respect to the basis U for Rm. 201

Thus T .x/ DPn
jD1 xj

Pm
iD1 aijui DPm

iD1 yiui where the i th coordinate, yi , of 202

T .x/ is equal to
Pn

jD1 aijxj . 203

We obtain a set of linear equations: 204

y1 D a11x1 Ca12x2 C : : : a1j xj C : : : a1nxn
:::

:::

yi D ai1x1 Cai2x2 C : : : aijxj C : : : ainxn
:::

:::

ym D am1x1 Cam2x2 C : : : amjxj C : : : amnxn

205

This set of equations is more conveniently written 206

row i

0
BBBBBB@

a11��� aij��� a1n
:::

ai1 aij ain
:::

am1��� amj��� amn

1
CCCCCCA

0
BBBBBB@

x1
:::

xj
:::

xn

1
CCCCCCA
D

0
BBBBBB@

y1
:::

yi
:::

ym

1
CCCCCCA
:

j th column

or as M.T /x D y, where M.T / is the n � m array whose i th row is .ai1; : : : ; ain/ 207

and whose j th column is .a1j ; : : : ; amj/. This matrix is commonly written as .aij/ 208

where it is understood that i D 1, and j D 1; : : : ; n. 209

Note that the operation of M.T / on x is as follows: to obtain the i th coordinate, 210

yi , take the i th row vector .a11; : : : ; a1n/ and form the scalar product of this with the 211

column vector .x1; : : : ; xn/, where this scalar product is defined to be
Pn

jD1 aijxj . 212

The coefficients of T .vj / w.r.t. the basis .u1; : : : ; um/ are .a1j ; : : : ; amj/. These 213

turn up as the j th column of the matrix. Thus we could write the matrix as 214

M.T / D .T .v1/ : : : T .vj / : : : T .vn// 215

where T .vj / is the column of coordinates in Rm. Suppose now that W D 216

fw1; : : : ;wpg is a basis for RP and S W Rm ! RP is a linear transformation. 217

Then to represent S as a matrix with respect to the two sets of bases, U and W , for 218

each i D 1; : : : ; m, we need to know 219
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S.ui / D
Xp

kD1 bkiwk: 220

Then as before S is represented by the matrix 221

M.S/ D

0
B@
b11��� b1i ��� b1m
::: bki

:::

bp1��� bpi��� bpm

1
CA 222

where the i th column is the column of coordinates of S.ui / in Rp. 223

We can compute the composition 224

.S ı T / W Rn T!Rm S!Rp: 225

The question is how should we compose the two matrices M.S/ and M.T / so 226

that the result “corresponds” to the matrixM.S ı T / which represents S ı T . 227

First of all we show that S ı T W Rn ! Rp is a linear transformation, so that we 228

know that it can be represented by an .n � p/ matrix. 229

Lemma 2.10. If T W Rn ! Rm and S W Rm ! Rp are linear transformations, 230

then S ı T W Rn ! Rp is a linear transformation. 231

Proof. Consider ˛; ˇ 2 R; v1; v2 2 Rn. Then 232

.S ı T /.˛v1 C ˇv2/ D SŒT .˛v1 C ˇv2/�
D S.˛T .v1/C ˇT .v2// since T is linear

D ˛S.T .v1//C ˇS.T .v2// since S is linear

D ˛.S ı T /.v1/C ˇ.S ı T /.v2/:

Thus S ı T is linear. 233

By the previous analysis, .S ıT / can be represented by an .n�p/matrix whose 234

j th column is .S ı T /.vj /. Thus 235

.S ı T /.vj / D S.
Xm

iD1 aijui /

D
Xm

iD1 aijS.ui /

D
Xm

iD1 aij

Xp

kD1 bkiwk

D
Xp

kD1.
Xm

iD1 aijbki/wk:

Thus the kth entry in the j th column of M.S ı T / is
Pm

iD1 bkiaij. 236

Thus .S ı T / can be represented by the matrix 237
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M.S ı T / D kth row

0
BBB@

 n!
� � �Pm

iD1 bkiaij � � �
j th column

1
CCCAp 238

The j th column in this matrix can be obtained more simply by operating the 239

matrixM.S/ on the j th column vector T .vj / in the matrixM.T /. 240

ThusM.S ı T / D .M.S/.T .v1// : : :M.S/.T .vn/// D M.S/ ıM.T /. 241

kth row of p rows

�
bk1��� bki��� bkm

 m columns !
�

0
BBBBBBBBBBB@

 n!
aij
:::

aij
:::

amj

j th column

1
CCCCCCCCCCCA

m rows

DM.S/ ıM.T /: Q:E:D:

Thus the “natural” method of matrix composition corresponds to the composition 242

of linear transformations. 243

Now let L.Rn;Rn/ stand for the set of linear transformations from Rn to 244

Rn. As we have shown, if S; T belong to this set then S ı T is also a linear 245

transformation from Rn to Rn. Thus composition of functions .ı/ is a binary 246

operation L.Rn;Rn/ � L.Rn;Rn/! L.Rn;Rn/. 247

Let M W L.Rn;Rn/ ! M.n; n/ be the mapping which assigns to any linear 248

transformation T W Rn ! Rn the matrixM.T / as above. Note thatM is dependent 249

on the choice of bases fv1; : : : ; vng and fu1; : : : ; ung for the domain and codomain, 250

Rn. There is in general no reason why these two bases should be the same. 251

Now let ı be the method of matrix composition which we have just defined. Thus 252

the mappingM satisfies 253

M.S ı T / D M.S/ ıM.T / 254

for any two linear transformations, S and T . Suppose now that we are given a linear 255

transformation, T 2 L.Rn;Rn/. Clearly the matrixM.T / which represents T with 256

respect to the two bases is unique, and so M is a function. 257

On the other hand suppose that T; S are both represented by the same matrix 258

A D .aij/. 259

By definition T .vj / D S.vj / DPm
iD1 aijui for each j D 1; : : : ; n. 260

But then T .x/ D S.x/ for any x 2 Rn, and so T D S . ThusM is injective. 261

Moreover if A is any matrix, then it represents a linear transformation, and soM 262

is surjective. Thus we have a bijective morphism 263
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M W .L.Rn;Rn/; ı/! .M.n; n/; ı/: 264

As we saw in the case of 2 � 2 matrices, the subset of non-singular matrices in 265

M.n; n/ forms a group. We repeat the procedure for the more general case. 266

2.2.2 The Dimension Theorem 267

Let T W V ! U be a linear transformation between the vector spaces V;U of 268

dimension n;m respectively over a field F . The transformation is characterised by 269

two subspaces, of V and U . 270

Definition 2.8. 1. the kernel of a transformation T W V ! U is the set 271

Ker.T / D fx 2 V W T .x/ D 0/ in V . 272

2. The image of the transformation is the set 273

Im.T / D fy 2 U W 9x 2 V s:t: T .x/ D yg. 274

Both these sets are vector subspaces of U; V respectively. To see this suppose 275

v1; v2 2 Ker.T /, and ˛; ˇ;2 F . Then T .˛v1 C ˇv2/ D ˛T .v1/ C ˇT .v2/ D 276

0C 0 D 0. Hence ˛v1 C ˇv2 2 Ker.T /. 277

If u1; u2 2 =.T / then there exists v1; v2 2 V such that T .v1/ D u1; T .v2/ D u2. 278

But then 279

˛
1 C ˇ
2 D ˛T .v1/C ˇT .v2/
D T .˛v1 C ˇv2/:

Since V is a vector space, ˛v1 C ˇv2 2 V and so ˛u1 C ˇu2 2 =.T /. 280

By the exchange theorem there exists a basis k1; : : : ; kp for Ker.T /, where p D 281

dim Ker.T / and a basis u1; : : : ; us for=.T / where s D dim.=.T //. Here p is called 282

the kernel rank of T , often written kr.T /, and s is the rank of T , or rk.T /. 283

The Dimension Theorem. If T W V ! U is a linear transformation between 284

vector spaces over a field F , where dimension .V / ¤ n, then the dimension of the 285

kernel and image of T satisfy the relation 286

dim.=.T //C dim.Ker.T // D n: 287

Proof. Let fu1; : : : ; usg be a basis for =.T / and for each i D 1; : : : ; s, let vi be the 288

vector in V n such that T .vi / D ui . 289

Let v be any vector in V . Then 290
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T .v/ D
Xs

iD1 ˛iui ; for T .v/ 2 =.T /:So

T .v/ D
Xs

iD1 ˛iT .vi /

D T .
Xs

iD1 ˛ivi /; and

T .v �
Xs

iD1 ˛ivi / D 0;

the zero vector in U , i.e., v �Ps
iD1 ˛ivi 2 kernel T . Let fk1; : : : ; kpg be the basis 291

for Ker.T /. 292

Then v �Ps
iD1 ˛ivi D

Pp
jD1 ˇj kj , or v D Ps

iD1 ˛ivi C
Pp

jD1 ˇj kj . Thus 293

.v1; : : : ; vs ; k1; : : : ; kp/ is a span for V . 294

Suppose we consider
Ps

iD1 ˛i vi C
Pp

jD1 ˇj kj D 0:.�/ 295

Then, since T .kj / D 0 for j D 1; : : : ; p, 296

T
�Xs

iD1 ˛ivi C
Xp

jD1 ˇj kj
�
D
Xs

iD1 ˛iT .vi /C
Xp

jD1 ˇj T .kj /

D
Xs

iD1 ˛iT .vi / D
Xs

iD1 ˛iui D 0:

Now fui ; : : : ; usg is a basis for =.T /, and hence these vectors are linearly 297

independent. So ˛i D 0; i D 1; : : : ; s. Therefore .�/ gives
Pp

jD1 ˇj kj D 0. 298

However fk1; : : : ; kpg is a basis for Ker.T / and therefore a frame, so ˇj D 0 for 299

j D 1; : : : ; p. Hence fv1; : : : ; vs; k1; : : : ; kpg is a frame, and therefore a basis for 300

V . By the exchange theorem the dimension of V is the unique number of vectors in 301

a basis. Therefore s C p D n. Q. E. D. 302

Note that this theorem is true for general vector spaces. We specialise now to 303

vector spaces Rn and Rm. 304

Suppose fv1; : : : ; vng is a basis for Rn. The coordinates of vj with respect to this 305

basis are .0; : : : ; 1; : : : ; 0/ with 1 in the j th place. As we have noted the image of vj 306

under the transformation T can be represented by the j th column .aij; : : : ; amj/ in 307

the matrix M.T /, with respect to the original basis .e1; : : : ; em/, say, for Rm. Call 308

the n different column vectors of this matrix a1; : : : ; aj ; : : : ; an. 309

Then the equation M.T /.x/ D y is identical to the equation
Pn

jD1 xj aj D y 310

where x D .x1; : : : ; xn/. 311

Clearly any vector y in the image ofM.T / can be written as a linear combination 312

of the columns A D fa1; : : : ; ang. Thus Span.A/ D =.M.T //. Suppose now 313

that A is not a frame. In this case an, say, can be written as a linear combination 314

of fa1; : : : ; an�1g, i.e.,
Pn

jD1 k1j aj D 0 and k1n ¤ 0. Then the vector k1 D 315

.k11; : : : ; k1n/ satisfies M.T /.k1/ D 0. Thus k1 belongs to Ker.M.T //. 316

Eliminate an, say, and proceed in this way. After p iterations we will have 317

obtained p kernel vectors fk � 1; : : : ; kpg and the remaining column vectors 318

fa1; : : : ; an�pg will form a frame, and thus a basis for the image of M.T /. 319
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Consequently dim.=.M.T // D n � p D n � dim.Ker.M.T //. The number 320

of linearly independent columns in the matrix M.T / is called the rank of M.T /, 321

and is clearly the dimension of the image of M.T /. In particular if M1.T / and 322

M2.T / are two matrix representations with respect to different bases, of the linear 323

transformation T , then rankM1.T / D rank M2.T / D rank.T /. 324

Thus rank.T / is an invariant, in the sense of being independent of the particular 325

bases chosen for Rn and Rm. 326

In the same way the kernel rank of T is an invariant; that is, for any matrix 327

representationM.T / of T we have ker rank.M.T // D ker rank.T /. 328

In general if y 2 =.T /; x0 satisifes T .x0/ D y, and k belongs to the kernel, then 329

T .x0 C k/ D T .x0/C T .k/ D y C 0 D y: 330

Thus if x0 is a solution to the equation T .x0/ D y, the point x0 C k is also a 331

solution. More generally x0 C Ker.T / D fx0 C k W k 2 Ker.T /g will also be the 332

set of solutions. Thus for a particular y 2 =.T /; T �1.y/ D fx W T .x/ D yg D 333

x0 C Ker.T /. 334

By the dimension theorem dim Ker.T / D n � rank .T /. Thus T �1.y/ is a 335

geometric object of “dimension” dim Ker.T / D n � rank.T /. 336

We defined T to be injective ” T .x0/ D T .x/ implies x0 D x. Thus T is 337

injective ” Ker.T / D f0g. In this case, if there is a solution to the equation 338

T .x0/ D y, then this solution is unique. 339

Suppose that n � m, and that the n different column vectors of the matrix are 340

linearly independent. In this case rank .T / D n and so dim Ker.T / D 0. Thus T 341

must be injective. In particular if n < m then not every y 2 Rm belongs to the 342

image of T , and so not every equation T .x/ D y has a solution. Suppose on the 343

other hand that n > m. In this case the maximum possible rank ism (since n vectors 344

cannot be linearly independent in Rm when n > m). If rank.T / D m, then there 345

must exist a kernel of dimension .n �m/. 346

Moreover =.T / D Rm, and so for every y 2 Rm there exists a solution to this 347

equation T .x/ D y. Thus T is surjective. However the solution is not unique, since 348

T �1.y/ D x C Ker.T / is of dimension (n�m) as before. 349

Suppose now that n D m, and that T W Rn ! Rn has maximal rank n. Then T is 350

both injective and surjective and thus an isomorphism. Indeed T will have an inverse 351

function T �1 W Rn ! Rn. Moreover T �1 is linear. To see this note that if x1 D 352

T �1.y1/ and x2 D T �1.y2/ then T .x1/ D y1 and T .x2/ D y2 so T .x1 C x2/ D 353

y1 C y2. Thus T �1.y1 C y2/ D x1 C x2 D T �1.y1/C T �1.y2/. Moreover if x D 354

T �1.˛y/ then T .x/ D ˛y. If ˛ ¤ 0, then 1
˛
T .x/ D T . 1

˛
x/ D y or 1

˛
x D T �1.y/. 355

Hence x D ˛T �1.y/. Thus T �1.˛y/ D ˛T �1.y/. Since T �1 is linear it can be 356

represented by a matrixM.T �1/. As we knowM W .L.Rn;Rn/; ı/! .M.n; n/; ı/ 357

is a bijective morphism, so M maps the identity linear transformation, Id, to the 358

identity matrix 359
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M.Id/ D I D

0
B@
1 : : : 0
:::

:::

0 : : : 1

1
CA : 360

When T is an isomorphism with inverse T �1, then the representation M.T �1/ 361

of T �1 is ŒM.T /��1. We now show how to compute the inverse matrix ŒM.T /��1 of 362

an isomorphism. 363

2.2.3 The General Linear Group 364

To compute the inverse of an n�nmatrixA, we define, by induction, the determinant 365

of A. For a 1 � 1 matrix (a11) define det.A11/ D a11, and for a 2 � 2 matrix 366

A D
�
a11 a12

a21 a22

�
define det A D a11a22 � a21a12. 367

For an n � n matrix A define the .i; j /th cofactor to be the determinant of the 368

.n � 1/ � .n � 1/ matrix A.i; j / obtained from A by removing the i th row and j th
369

column, then multiplying by .�1/iCj . Write this cofactor as Aij. For example in the 370

3 � 3 matrix, the cofactor in the .1; 1/ position is 371

A11 D det

�
a22 a23
a32 a33

�
D a22a33 � a32a23: 372

The n � n matrix .Aij/ is called the cofactor matrix. 373

The determinant of the n � n matrix A is then
Pn

jD1 a1jA1j . The determinant is 374

also often written as jAj. 375

This procedure allows us to define the determinant of an n � n matrix. For 376

example if A D .aij/ is a 3 � 3 matrix, then 377

jAj D a11
ˇ̌̌
ˇa22 a23a32 a33

ˇ̌̌
ˇ� a12

ˇ̌̌
ˇa21 a23a31 a33

ˇ̌̌
ˇC a13

ˇ̌̌
ˇa21 a22a31 a32

ˇ̌̌
ˇ

D a11.a22a33 � a32a23/� a12.a21a33 � a31a23/C a13.a21a32 � a31a22/:

An alternative way of defining the determinant is as follows. A permutation of n 378

is a bijection s W f1; : : : ; ng ! f1; : : : ; ng, with degree d.s/ the number of exchanges 379

needed to give the permutation. 380

Then jAj D P
s.�1/d.s/…n

iD1ais.i/ D a11a22a33 : : : C : : : where the summation 381

is over all permutations. The two definitions are equivalent, and it can be shown that 382
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jAj D
Xn

jD1 aijAij .for any i D 1; : : : ; n/

D
Xn

iD1 aijAij .for any j D 1; : : : ; n/ while

0 D
Xn

iD1 aijAik if j ¤ k

D
Xn

jD1 aijAkj if i ¤ k:

Thus .aij/ .Ajk/
t D

�Xn

jD1 aijAkj

�

D

0
B@
jAj : : : 0
:::

:::

0 : : : jAj

1
CA D jAjI:

Here .Ajk/
t is the n � n matrix obtained by transposing the rows and columns of 383

.Ajk/. Now the matrixA�1 satisfies AıA�1 D I , and if A�1 exists then it is unique. 384

Thus A�1 D 1
jAj .Aij/

t . 385

Suppose that the matrix A is non-singular, so jAj ¤ 0. Then we can construct an 386

inverse matrix A�1. 387

Moreover if A.x/ D y then y D A�1.x/ which implies that A is both injective 388

and surjective. Thus rank .A/ D n and the column vectors of A must be linearly 389

independent. 390

As we have noted, however, if A is not injective, with Ker .A/ ¤ f0g, then rank 391

.A/ < n, and the column vectors of A must be linearly dependent. In this case the 392

inverse A�1 is not a function and cannot therefore be represented by a matrix and 393

so we would expect jAj to be zero. 394

Lemma 2.11. If A is an n � n matrix with rank .A/ < n then jAj D 0. 395

Proof. Let A0 be the matrix obtained from A by adding a multiple (˛) of the kth
396

column of A to the j th column of A. The j th column of A0 is therefore aj C ˛ak . 397

This operation leaves the j th column of the cofactor matrix unchanged. Thus 398

jA0j D
Xn

iD1 a
0
ijAij

D
Xn

iD1.aij C ˛aik/Aij

D
Xn

iD1 aijAij C ˛
Xn

iD1 aikAij

D jAj C 0 D jAj:

Suppose now that the columns of A are linearly dependent, and that aj D 399P
k¤j ˛kak for example. Let A0 be the matrix obtained from A by substituting 400

a0
j D 0 D aj �

P
k¤j ˛kak for the j th column. 401
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By the above jA0j DPn
iD1 a0

ijAij D 0 D jAj:Q:E:D: 402

Suppose now that A;B are two non-singular matrices .aij/; .bki/. The composi- 403

tion is then B ı A D .Pm
iD1 bkiaij/ with determinant 404

jB ı Aj D
X
s

.�1/d.s/…n
kD1 ı

 
mX
iD1

bkiais.k/

!
: 405

This expression can be shown to be equal to 406

X
s
.�1/d.s/…n

iD1ais.i/

�X
s
.�1/d.s/…n

iD1bks.k/ D jBjjAj ¤ 0 : 407

Hence the composition .B ı A/ has an inverse .B ı A/�1 given by A�1 ı B�1. 408

Now let .GL.Rn;Rn/; ı/ be the set of invertible linear transformations, with ı 409

composition of functions, and letM �.n; n/ be the set of non-singular n�nmatrices. 410

Choice of bases fv1; : : : ; vng; fu1; : : : ; ung for the domain and codomain defines a 411

morphism 412

M W .GL.Rn;Rn/; ı/! .M �.n; n/; ı/: 413

Suppose now that T belongs to GL.Rn;Rn/. As we have seen this is equivalent 414

to jM.T /j ¤ 0, so the image ofM is preciselyM �.n; n/. Moreover if jM.T /j ¤ 0 415

then jM.T �1/j D 1
jM.T /j and M.T �1/ belongs to M �.n; n/. On the other hand if 416

S; T 2 GL.Rn;Rn/ then S ı T also has rank n, and has inverse T �1 ı S�1 with 417

rank n. 418

The matrix M.S ı T / representing T ı S has inverse 419

M.T �1 ı S�1/ D M.T �1/ ıM.S�1/

D ŒM.T /��1 ı ŒM.S/��1:

Thus M is an isomorphism between the two groups .GL.Rn;Rn; ı/ and 420

.M �.n; n/; ı/. 421

The group of invertible linear transformations is also called the general linear 422

group. 423

2.2.4 Change of Basis 424

Let L.Rn;Rm/ stand for the set of linear transformations from Rn to Rm, and let 425

M.n;m/ stand for the set of n �m matrices. We have seen that the choice of bases 426

for Rn;Rm defines a function. 427

M W L.Rn;Rm/!M.n;m/ 428
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which take a linear transformation T to its representation M.T /. We now examine 429

the relationship between two representations M1.T /;M2.T / of a single linear 430

transformation. 431

Basis Change Theorem. Let fv1; : : : ; vng and fu1; : : : ; umg be bases for Rn;Rm
432

respectively. 433

Let T be a linear transformation which is represented by a matrix A D .aij/ with 434

respect to these bases. If V 0 D fv0
1; : : : ; v

0
ng; U 0 D fu0

1; : : : ; u
0
mg are new bases for 435

Rn;Rm then T is represented by the matrix B D Q�1 ı A ı P , where P;Q are 436

respectively .n � n/ and .m �m/ invertible matrices. 437

Proof. For each v0
k 2 V 0 D fv0

1; : : : ; v
0
ng let v0

k D
Pn

iD1 bikvi and bk D 438

.b0
1k; : : : ; bnk/. 439

Let P D .b1; : : : ; bn/ where the kth column of P is the column of coordinates 440

of bk. With respect to the new basis V 0; v0
k has coordinates ek D .0; : : : ; 1; : : : ; 0/ 441

with a 1 in the kth place. 442

But then P.ek/ D bk the coordinates of v0
k with respect to V . 443

Thus P is the matrix that transforms coordinates with respect to V 0 into 444

coordinates with respect to V . Since V is a basis, the columns of P are linearly 445

independent, and so rank P D n, and P is invertible. 446

In the same way let u0
k D

Pm
iD1 cikui ; ck D .c1k; : : : ; cmk/ andQ D .c1; : : : ; cm/ 447

the matrix with columns of these coordinates. 448

HenceQ represents change of basis fromU 0 toU . SinceQ is an invertiblem�m 449

matrix it has inverseQ�1 which represents change of basis from U to U 0. 450

Thus we have the diagram 451

fv1; : : : ; vng A!fu1; : : : ; umg
P " Q�1 # " Q

fv0
1; : : : ; v

0
ng

B!fu0
1; : : : ; u

0
mg

from which we see that the matrix B , representing the linear transformation T W 452

Rn ! Rm with respect to the new bases is given by B D Q�1 ı A ı P . Q. E. D. 453

Isomorphism Theorem. Any linear transformation T W Rn ! Rm of rank r can 454

be represented, by suitable choice of bases for Rn and Rm, by an n �m matrix 455

�
Ir 0

0 0

�
where Ir D

�
1 0

0 1

�
is the .r � r/ identity matrix. 456

In particular 457

1. if n < m and T is injective then there is an isomorphism S W Rm ! Rm such 458

that S ı T .x1; : : : ; xn/ D .x1; : : : ; xn;O; : : : ; 0/ with .n � m/ zero entries, for 459

any vector .x1; : : : ; xn/ in Rn
460
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2. if n 	 m and T is surjective then there are isomorphisms R W Rn ! Rn; S W 461

Rm ! Rm such that S ı T ı R.x1; : : : ; x � n/ D .x1; : : : ; xm/. If n D m, then 462

S ı T ıR is the identity isomorphism. 463

Proof. Of necessity rank .T / D r � min.n;m/. If r < n, let p D n� r and choose 464

a basis k1; : : : ; kp for Ker.T /. Let V D fv1; : : : ; vng be the original basis for Rn. 465

By the exchange theorem there exists r D .n � p/ different members fv1; : : : ; vrg 466

say of V such that V 0 D fv1; : : : ; vr ; k1; : : : ; kpg is a basis for Rn. 467

Choose V 0 as the new basis for Rn, and let P be the basis change matrix 468

whose columns are the column vectors in V 0. As in the proof of the dimension 469

theorem the image of the vectors v1; : : : ; vn�p under T provide a basis for the 470

image of T . Let U D fu1; : : : ; umg be the original basis of Rm. By the exchange 471

theorem there exists some subset U 0 D fu1; : : : ; umg of U such that U 00 D 472

fT .v1/; : : : ; T .vr /; u1; : : : ; um�rg form a basis for Rm. Note that T .v1/; : : : T .vr / 473

are represented by the r linearly independent columns of the original matrix A 474

representing T . Now let Q be the matrix whose columns are the members of U 00. 475

By the basis change theorem,B D Q�1 ıAıP , where B is the matrix representing 476

T with respect to these new bases. Thus we obtain 477

fv1; : : : ; vng A! fu1; : : : ; umg
P " Q�1 #

fv1; : : : ; vr ; k1 : : :g B! fT .v1/ : : : T .vr /; u1; : : : ; um�rg:
478

With respect to these new bases, the matrixB representing T has the required form: 479�
Ir 0

0 0

�
. 480

1. If n < m and T is injective then r D n. Hence P is the identity matrix, and so 481

B D Q�1 ı A. 482

But Q�1 is an m � m invertible matrix, and thus represents an isomorphism 483

Rn ! Rn, while 484

B

�
x1
xn

�
D
�
In
0

��
x1
xn

�
D

0
BBBBBB@

x1
:::

xn
:::

0

1
CCCCCCA
: 485

Write a vector x D Pn
iD1 xivi as .x1; : : : ; xn/, and let S be the linear transfor- 486

mation Rm ! Rm represented by the matrix Q�1. Then S ı T .x1; : : : ; xn/ D 487

.x1; : : : ; xn; 0; : : : ; 0/. 488
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2. If n 	 m and T is surjective then rank .T / D m, and dim Ker.T / D n�m. Thus 489

B D .Im 0/ D Q�1 ı A ı P . Let S;R be the linear transformations represented 490

by Q�1 and P respectively. 491

Then S ı T ı R.x1; : : : ; xn/ D .x1; : : : ; xm/. If n D m then S ı T ı R is the 492

identity transformation. Q. E. D. 493

Suppose now that V;U are the two bases for Rn, Rm as in the basis theorem. A 494

linear transformation T W Rn ! Rm is represented by a matrixM1.T / with respect 495

to these bases. If V 0; U 0 are two new bases, then T will be represented by the matrix 496

M2.T /, and by the basis theorem 497

M2.T / D Q�1 ıM1.T / ı P 498

where Q;P are non-singular .m � m/ and .n � n/ matrices respectively. Since 499

M1.T / andM2.T / represent the same linear transformation, they are in some sense 500

equivalent. We show this more formally. 501

Say the two matrices A;B 2 M.n;m/ are similar iff there exist non singular 502

square matrices P 2 M �.n; n/ and Q 2 M �.m;m/ such that B D Q�1 ı A ı P , 503

and in this case write B 
 A. 504

Lemma 2.12. The similarity relation .
/ on M.n;m/ is an equivalence relation. 505

Proof. 1. To show that 
 is reflexive note that A D I�1
m ı A ı In where Im; In are 506

respectively the .m �m/ and .n � n/ identity matrices. 507

2. To show that 
 is symmetric we need to show that B 
 A implies that A 
 B . 508

Suppose therefore that B D Q�1 ı A ı P . 509

Since Q 2M �.m;m/ it has inverseQ�1 2M �.m;m/. 510

Moreover .Q�1/�1 ıQ�1 D Im, and thusQ D .Q�1/�1. Thus 511

Q ı B ı P�1 D .Q ıQ�1/ ı A ı .P ı P�1/

D A
D .Q�1/�1 ı B ı .P�1/:

Thus A 
 B . 512

3. To show 
 is transitive, we seek to show that C 
 B 
 A implies C 
 A. 513

Suppose therefore that C D R�1 ı B ı S and B D Q�1 ı A ı P , 514

where R;Q 2M �.m;m/ and S;P 2M �.n; n/. Then 515

C D R�1 ıQ�1/ ı A ı P ı S
D .Q ıR/�1 ı A ı .P ı S/:

Now .M �.m;m/; ı/; .M �.n; n/; ı/ are both groups and so Q ı R 2 516

M �.m;m/; P ı S 2M �.n; n/. Thus C 
 A Q.E.D. 517
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The isomorphism theorem shows that if there is a linear transformation 518

T W Rn ! Rm of rank r , then the .n � m/ matrix M1.T / which represents T , 519

with respect to some pair of the bases, is similar to an n �m matrix 520

B D
�
Ir 0

0 0

�
i:e:; M.T / 
 B: 521

If S is a second linear transformation of rank r thenM1.S/ 
 B . 522

By lemma 2.12,M1.S/ 
M1.T /. 523

Suppose now that U 0; V 0 are a second pair of bases for Rn, Rm and let 524

M2.S/;M2.T / represent S and T . Clearly M2.S/ 
M2.T /. 525

Thus if S; T are linear transformations Rm ! Rn we may say that S; T are 526

equivalent iff for any choice of bases the matrices M.S/;M.T / which represent 527

S; T are similar. 528

For any linear transformation T 2 L.Rn;Rm/ let ŒT � be the equivalence class 529

fS 2 L.Rn;Rm/ W S 
 T g. Alternatively a linear transformation S belongs 530

to ŒT � iff rank .S/ D rank .T /. Consequently the equivalence relation partitions 531

L.Rn;Rm/ into a finite number of distinct equivalence classes where each class is 532

classified by its rank, and the rank runs from 0 to min.n;m/. 533

2.2.5 Examples 534

Example 2.1. To illustrate the use of these procedures in the solution of linear 535

equations, consider the case with n < m and the equation A.x/ D y where 536

A D

0
BB@

1 �1 2

5 0 3

�1 �4 5

3 2 �1

1
CCA and y1 D

0
BB@
�1
1

�1
1

1
CCA ; y2 D

0
BB@

0

5

�5
5

1
CCA : 537

To find =.A/, we first of all find Ker.A/. The equation A.x/ D 0 gives four 538

equations 539

x1 � x2 C 2x3 D 0

5x1 C 0C 3x3 D 0

�x1 � 4x2 C 5x3 D 0

3x1 C 2x2 � x3 D 0

with solution k D .x1; x2; x3/ D .�3; 7; 5/. 540
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Thus Ker.A/ � f�k 2 R3 W � 2 Rg. Hence dim =.A/ � 2. Clearly the first 541

two columns .a1; a2/ of A are linearly independent and so dim =.A/ D 2. However 542

y2 D a1Ca2. Thus a particular solution to the equationA.x/ D y2 is x0 D .1; 1; 0/. 543

The full set of solutions to the equation is 544

x0 C Ker.A/ D f.1; 1; 0/C �.�3; 7; 5/ W � 2 Rg: 545

To see whether y1 2 =.A/ we need only attempt to solve the equation y1 D ˛a1 C 546

ˇa2. This gives 547

�1 D ˛ � ˇ
1 D 5˛
�1 D �˛ � 4ˇ
1 D 3˛ C 2ˇ:

From the first two equations a D 1
5
; ˇ D 6

5
, which is incompatible with the 548

fourth equation. Thus y1 cannot belong to =.A/. 549

Example 2.2. Consider now an example of the case n > m, where 550

A D
�
2 1 1 1 1

1 2 �1 1 1
�
W R5 ! R2: 551

Obviously the first two columns are linearly independent and so dim =.A/ 	 2. 552

Let fai W i D 1; : : : ; 5g be the five column vectors of the matrix and consider the 553

equation 554�
2

1

�
�
�
1

2

�
�
�

1

�1
�
D
�
0

0

�
: 555

Thus k1 D .1;�1;�1; 0;O/ belongs to Ker.A/. On the other hand 556

�
2

1

�
C
�
1

2

�
� 3

�
1

1

�
D
�
0

0

�
: 557

Thus k2 D .1; 1; 0;�3; 0/ and k3 D .1; 1; 0; 0;�3/ both belong to Ker.A/. 558

Consequently the rank of A has its maximal value of 2, while the kernel is three- 559

dimensional. Hence for any y 2 R2 there is a set of solutions of the form x0 C 560

Span fk1; k2; k3g to the equation A.x/ D y. 561

Change the bases of R5 and R2 to 562
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0
BBBBB@

1

0

0

0

0

1
CCCCCA
;

0
BBBBB@

0

1

0

0

0

1
CCCCCA
;

0
BBBBB@

1

�1
�1
0

0

1
CCCCCA
;

0
BBBBB@

1

1

0

�3
0

1
CCCCCA
;

0
BBBBB@

1

1

0

0

�3

1
CCCCCA

563

and

�
2

1

�
;

�
1

2

�
respectively, then 564

B D
�
2 1

1 2

��1 �
2 1 1 1 1

1 2 �1 1 1
�
0
BBBBB@

1 0 1 1 1

0 1 �1 1 1

0 0 �1 0 0

0 0 0 �3 0

0 0 0 0 �3

1
CCCCCA

D 1

3

�
2 �1
�1 2

��
2 1 0 0 0

1 2 0 0 0

�
D
�
1 0 0 0 0

0 1 0 0 0

�
:

Example 2.3. Consider the matrix 565

Q D

0
BB@

1 �1 0 0
5 0 0 0

�1 �4 1 0
3 2 0 1

1
CCA : 566

Since jQj D 5 we can compute its inverse. The cofactor matrix .Qij/ of Q is 567

0
BB@
0 �5 �20 10
1 1 5 �5
0 0 5 0

0 0 0 5

1
CCA 568

and thus 569

Q�1 D 1

jQj.Qij/
t D

0
BB@

0 1
5
0 0

�1 1
5
0 0

�4 1 1 0

2 �1 0 1

1
CCA : 570

Example 2.4. Let T W R3 ! R4 be the linear transformation represented by the 571

matrix A of Example 2.1, with respect to the standard bases for R3;R4. We seek to 572

change the bases so as to represent T by a diagonal matrix 573
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B D
�
Ir
0

�
: 574

By example 2.1, the kernel is spanned by .�3; 7; 5/, and so we choose a new 575

basis 576

e1 D
0
@10
0

1
A ; e2 D

0
@01
0

1
A ; k D

0
@�37

5

1
A 577

with basis change matrix P D .e1; e2; k/. Note that jP j D 5 and P is nonsingular. 578

Thus fe1; e2; kg form a basis for R3. Now =.A/ is spanned by the first two columns 579

a1; a2, of A. Moreover A.e1/ D a1 and A.e2/ D a2. Thus choose 580

a1 D

0
BB@

1

5

�1
3

1
CCA ; a2 D

0
BB@
�1
0

�4
2

1
CCA ; e0

3 D
0
@ 0 01

0

1
A ; e0

4 D

0
BB@
0

0

0

1

1
CCA 581

as the new basis for R4. Let Q D .a1; a2; e
0
3; e

0
4/ be the basis change matrix. The 582

inverseQ�1 is computed in Example 2.3. Thus we have .B/ D Q�1 ı A ı P . 583

To check that this is indeed the case we compute: 584

Q�1 ı A ı P D

0
BB@

0 1
5
0 0

�1 1
5
0 0

�4 1 1 0

2 �1 0 1

1
CCA
0
BB@

1 1 2

5 0 3

�1 �4 5

3 2 �1

1
CCA
0
@1 0 �30 1 7

0 0 5

1
A

D

0
BB@
1 0 0

0 1 0

0 0 0

0 0 0

1
CCA

as required. 585

2.3 Canonical Representation 586

When considering a linear transformation T W Rn ! Rn it is frequently convenient 587

to change the basis of Rn to a new basis V D fv1; : : : ; vng such that T is now 588

represented by a matrix 589

M2.T / D P�1 ıM1.T / ı P: 590
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In this case it is generally not possible to obtain M2.T / in the form

�
Ir 0

0 0

�
as 591

before. 592

Under certain conditions however M2.T / can be written in a diagonal form 5930
@�1 0

�
0 �n

1
A, where �1; : : : ; �n are known as the eigenvalues. 594

More explicitly, a vector x is called an eigenvector of the matrix A iff there is a 595

solution to the equationA.x/ D �x where � is a real number. In this case, � is called 596

the eigenvalue associated with the eigenvector x. (Note that we assume x ¤ 0). 597

2.3.0.1 Eigenvectors and Eigenvalues 598

Suppose that there are n linearly independent eigenvectors fx1; : : : ; xng for A, 599

where (for each i D 1; : : : ; n/�i is the eigenvalue associated with xi . Clearly 600

the eigenvector xi belongs to Ker.A/ iff �i D 0. If rank .A/ D r then there 601

would a subset fx1; : : : ; ; xrg of eigenvectors which form a basis for =.A/, while 602

fx1; : : : ; xng form a basis for Rn. Now let Q be the .n � n/ matrix representing a 603

basis change from the new basis to the original basis. That is to say the i th column, 604

vi , of Q is the coordinate of xi with respect to the original basis. 605

After transforming, the original becomes 606

Q�1 ı A ı P D

0
B@
�1 : : : 0
::: �r

:::

0 0

1
CA D ^; 607

where rank ^ D rank A D r . 608

In general we can perform this diagonalisation only if there are enough eigen- 609

vectors, as the following lemma indicates. 610

Lemma 2.13. If A is an n � n matrix, then there exists a non-singular matrix Q, 611

and a diagonal matrix ^ such that ^ D Q�1AQ iff the eigenvectors of A form a 612

basis for Rn. 613

Proof. 1. Suppose the eigenvectors form a basis, and let Q be the eigenvector 614

matrix. By definition, if vi is the i th column of Q, then A.vi / D �ivi , where 615

�i is real. Thus AQ D Q^. But since fv1; : : : ; vng is a basis, Q�1 exists and so 616

^ D Q�1AQ. 617

2. On the other hand if^ D Q�1AQ, whereQ is non-singular then AQ D Q^ . But 618

this is equivalent to A.v1/ D �ivi for i D 1; : : : ; n where �i is the i th diagonal 619

entry in ^, and vi is the i th column of Q. 620

Since Q is non-singular, the columns fv1; : : : ; vng are linearly independent, and 621

thus the eigenvectors form a basis for Rn. Q.E.D. 622
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If there are n distinct (real) eigenvalues then this gives a basis, and thus a 623

diagonalisation. 624

Lemma 2.14. If fv1; : : : ; vmg are eigenvectors corresponding to distinct eigenval- 625

ues f�1; : : : ; �mg, of a linear transformation T W Rn ! Rn, then fv1; : : : ; vmg are 626

linearly independent. 627

Proof. Since v1 is assumed to be an eigenvector, it is non-zero, and thus fv1g is a 628

linearly independent set. Proceed by induction. 629

Suppose Vk D fv1; : : : ; vkg, with k < m, are linearly independent. Let vkC1 be 630

another eigenvector and suppose 631

v D
kC1X
rD1

arvr D 0: 632

Then 0 D T .v/ DPkC1
rD1 arT .vr/ D

PkC1
rD1 ar�rvr . 633

If �kC1 D 0, then �i ¤ 0 for i D 1; : : : ; k and by the linear independence of 634

Vk; ar�r D 0, and thus ar D 0 for r D 1; : : : ; k. 635

Suppose �kC1 ¤ 0. Then 636

�kC1v D
kC1X
rD1

�kC1arvr D
kC1X
rD1

ar�rvr D 0: 637

Thus
Pk

rD1.�kC1 � �r/arvr D 0. 638

By the linear independence of Vk; .�kC1 � �r/ar D 0 for r D 1; : : : ; k. 639

But the eigenvalues are distinct and so ar D 0, for r D 1; : : : ; k. 640

Thus akC1VkC1 D 0 and so ar D 0; r D 1; : : : ; k C 1. Hence 641

VkC1 D fv1; : : : ; vkC1g; k < m; 642

is linearly independent. 643

By induction Vm is a linearly independent set. Q.E.D. 644

Having shown how the determination of the eigenvectors gives a diagonalisation, 645

we proceed to compute eigenvalues. 646

Consider again the equation A.x/ D �x. This is equivalent to the equation 647

A0.x/ D 0, where 648

A0 D

0
BBB@
a11 � � a12 : : : a1n
a21 a22 � � :

:::
:::

:::
:::

an1 ann � �

1
CCCA : 649
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For this equation to have a non zero solution it is necessary and sufficient that 650

jA0j D 0. Thus we obtain a polynomial equation (called the characteristic equation) 651

of degree n in �, with n roots �1; : : : ; �n, not necessarily all real. In the 2 � 2 case 652

for example this equation is �2� �.a11C a22/C .a11a22 � a21a12/ D 0. If the roots 653

of this equation are �1; �2 then we obtain 654

.� � �1/.� � �2/ D �2 � �.�1 C �2/C �1�2: 655

Hence 656

�1�2 D .a11a22 � a21a22/ D jAj
�1 C �2 D a11 C a22:

The sum of the diagonal elements of a matrix is called the trace ofA. In the 2�2 657

case therefore 658

�1�2 D jAj; �1 C �2 D a11 C a22 D trace.A/: 659

In the 3� 3 case we find .�� �1/.�� �2/.�� �3/ D �3 � �2.�1C �2 C �3/C 660

�.�1�2C�1�3C�2�3/��1�2�3 D �3��2.trace A/C�.A11CA22CA33/�jAj D 0, 661

where Aii is the i th diagonal cofactor of A. Suppose all the roots are non-zero (this 662

is equivalent to the non-singularity of the matrix A). Let ^ D
0
@�1 0 0

0 �2 0

0 0 �3

1
A be the 663

diagonal eigenvalue matrix, with j ^ j D �1�2�3. 664

The cofactor matrix of ^ is then 665

0
@�2�3 0 0

0 �1�3 0

0 0 �1�2

1
A : 666

Thus we see that the sum of the diagonal cofactors of A and ^ are identical. 667

Moreover trace .A/ D trace.^/ and j ^ j D jAj. 668

Now let 
 be the equivalence relation defined on L.Rn;Rn/ by B 
 A iff there 669

exist basis change matrices P;Q and a diagonal matrix ^ such that 670

^ D P�1AP D Q�1BQ: 671

On the set of matrices which can be diagonalised, 
 is an equivalence relation, 672

and each class is characterised by n invariants, namely the trace, the determinant, 673

and .n � 2/ other numbers involving the cofactors. 674
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2.3.1 Examples 675

Example 2.5. Let 676

A D
0
@2 1 �10 1 1

2 0 �2

1
A : 677

The characteristic equation is 678

.2 � �/Œ.1 � �/.�2 � �/� � 1.�2/� .�2.1� �/ D ��.�2 � � � 2/
D ��.� � 2/.�C 1/
D 0:

Hence .�1; �2; �3/ D .0; 2;�1/. Note that �1 C �2 C �3 D trace.A/ D 1 and 679

�2�3 D �2 D A11 C A22 CA33: 680

Eigenvectors corresponding to these eigenvalues are 681

x1 D
0
@ 1

�1
1

1
A ; x2 D

0
@21
1

1
A ; x3 D

0
@ 1

�1
2

1
A : 682

Let P be the basis change matrix given by these three column vectors. The 683

inverse can be readily computed, to give P�1AP D 684

0
@ 1 �1 �1

1
3

1
3

0

� 2
3

1
3

1

1
A
0
@2 1 �10 1 1

2 0 2

1
A
0
@ 1 2 1

�1 1 �1
1 1 2

1
A D

0
@0 0 0

0 2 0

0 0 �1

1
A : 685

Suppose we now computeA2 D A ıA W R3 ! R3. This can easily be seen to be 686

0
@2 3 1

2 1 �1
0 2 2

1
A : 687

The characteristic function of A2 is .�3 � 5�2 C 4�/ with roots 
1 D O;
2 D 688

4; 
3 D 1. 689

In fact the eigenvectors of A2 are x1; x2; x3, the same as A, but with eigenvalues 690

�21; �
2
2; �

2
3. In this case =.a/ D =.A2/ is spanned by fx2; x3g and Ker.A/ D Ker.A2/ 691

has basis fx1g. 692
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More generally consider a linear transformation A W Rn ! Rn. Then if x is an 693

eigenvector with a non-zero eigenvalue �;A2.x/ D AıA.x/ D AŒ�x� D �A.x/ D 694

�2x, and so x 2 =.A/ \ =.A2/. 695

If there exist n distinct real roots to the characteristic equation of A, then a basis 696

consisting of eigenvectors can be found. Then A can be diagonalized, and =.A/ D 697

=.A2/;Ker.A/ D Ker.A2/. 698

Example 2.6. Let 699

A D
0
@3 �1 �11 3 �7
5 �3 1

1
A 700

Then Ker.A/ has basis f.1; 2; 1/g, and =.A/ has basis f.3; 1; 5/; .�1; 3;�3/g. 701

The eigenvalues of A are 0,0,7. Since we cannot find three linearly independent 702

eigenvectors,A cannot be diagonalised. Now 703

A2 D
0
@ 3 �3 3

�29 29 �29
17 �17 17

1
A 704

and thus =.A2/ has basis f.3;�29; 17/g. Note that 705

0
@ 3

�29
17

1
A D �2

0
@31
5

1
A � 9

0
@�13
�3

1
A 2 Im.A/ 706

and so =.A2/ is a subspace of =.A/. 707

Moreover Ker.A2/ has basis f.1; 2; 1/; .1;�1; 0/g and so Ker.A/ is a subspace 708

of Ker.A2/. 709

This can be seen more generally. Suppose f W Rn ! Rn is linear, and x 2 710

Ker.f /. Then f 2.x/ D f .f .x// D 0, and so x 2 Ker.f 2/. Thus Ker.f / � 711

Ker.f 2/. On the other hand if v 2 =.f 2/ then there exists w 2 Rn such that 712

f 2.w/ D v. But f .w/ 2 Rn and so f .f .w// D v 2 =.f /. Thus =.f 2/ � =.f /. 713

2.3.2 Symmetric Matrices and Quadratic Forms 714

Given two vectors x D .x1; : : : ; xn/ and y D .y1; : : : ; yn/ in Rn, let hx; yi D 715Pn
iD1 xiyi 2 R be the scalar product of x and y. Note that h�x; yi D �hx; yi D 716

hx; �yi for any real �. (We use h�;�i to distinguish the scalar product from a vector 717

in R2. However the notations .x; Y / or x � y are often used for scalar product.) 718

An n�nmatrix A D .aij/may be regarded as a map A� W Rn�Rn ! R, where 719

A�.x; y/ D hx;A.y/i. 720
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A� is linear in both x and y and is called bilinear. By definition hx;A.y/i D 721Pn
iD1

Pn
jD1 xiaijyj . 722

Call an n � n matrix A symmetric iff A D At where At D .aji/ is obtained from 723

A by exchanging rows and columns. 724

In this case hA.x/; yi D Pn
iD1.

Pn
jD1 ajixi / yj D Pn

iD1
Pn

jD1 xiaijyj , since 725

aij D aji for all i; j . 726

Hence hA.x/; yi D hx;A.y/i for any x; y 2 Rn whenever A is symmetric. 727

Lemma 2.15. If A is a symmetric n � n matrix, and x; y are eigenvectors of A 728

corresponding to distinct eigenvalues then hx; yi D 0, i.e., x and y are orthogonal. 729

Proof. Let �1 ¤ �2 be the eigenvalues corresponding to the distinct eigenvectors 730

x; y . Now 731

hA.x/; yi D hx;A.y/i
D h�1x; yi D hx; �2yi
D �1hx; yi D �2hx; yi:

732

Here hA.x/; yi D hx;A.y/i since A is symmetric. Moreover hx; �yi DPn
iD1 xi .�yi / D �hx; yi. Thus .�1 � �2/hx; yi D 0. If �1 ¤ �2 then hx; yi D 0.

ut
Lemma 2.16. If there exist n distinct eigenvalues to a symmetric n � n matrix A, 733

then the eigenvectorsX D fx1; : : : ; xng form an orthogonal basis for Rn. 734

Proof. Directly by Lemmas 2.14 and 2.15. 735

We may also give a brief direct proof of Lemma 2.16 by supposing that 736Pn
iD1 ˛ixi D 0. But then for each j D i; : : : ; n, 737

0 D hxj ; 0i D
nX
iD1

˛i hxj ; xi i D ˛j hxj ; xj i: 738

But since xj ¤ 0; hxj ; xj i > 0 and so ˛j D 0 for each j . ThusX is a frame. Since 739

the vectors in X are mutually orthogonal,X is an orthogonal basis for Rn. 740

For a symmetric matrix the roots of the cheracteristic equation will all be real. 741

To see this in the 2 � 2 case, consider the characteristic equation 742

.� � �1/.� � �2/ D �2 � �.a11 C a22/ D .a11a22 � a21a12/: 743

The roots of this equation are �bCp
b2�4c
2

with real roots iff b2 � 4c 	 0. 744

But this is equivalent to 745

.a11 C a22/2 � 4.a11a22 � a21a12/ D .a11 � a22/2 C 4.a12/2 	 0; 746

since a12 D a21. 747

Both terms in this expression are non-negative, and so �1; �2 are real. 748
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In the case of a symmetric matrix, A, let E� be the set of eigenvectors associated 749

with a particular eigenvalue, �, of A together with the zero vector. Suppose x1; x2 750

belong toE�. Clearly A.x1Cx2/ D A.x1/CA.x2/ D �.x1Cx2/ and so x1Cx2 2 751

E�. If x 2 E�, then A.˛x/ D ˛A.x/ D ˛.�x/ D �.˛x/ and ˛x 2 E� for each 752

non-zero real number, ˛. 753

Since we also now suppose that for each eigenvalue, �, the eigenspace E� 754

contains 0, then E� will be a vector subspace of Rn. If � D �1 D : : : D �r are 755

repeated roots of the characteristic equation, then, in fact, the eigenspace, E�, will 756

be of dimension r , and we can find r mutually orthogonal vectors in E�, forming a 757

basis for E�. 758

Suppose now that A is a symmetric n�n matrix. As we shall show we may write 759

^ D P�1AP where P is the n � n basis change matrix whose columns are the n 760

linearly independent eigenvectors of A. 761

Now normalise each eigenvector xj by defining zj D 1
kxj k .x1j ; : : : ; xnj/ where 762

kxj k D
pP

.xkj/2 D
phxj ; xj i is called the norm of xj . 763

Let Q D .z1; : : : ; zn/ be the n � n matrix whose columns consist of z1; : : : ; zn. 764

Now 765

qT q D
0
@ z11 z21 zn1

z1j znj

z1n znn

1
A
0
BBB@

z11 z1j z1n
z21 z2j z2n
:::

:::
:::

zn1 znj znn

1
CCCA D

0
B@
hz1; z1i : : : hz1; zni
hz2; z1i
::: : : : hzn; zni

1
CA 766

since the .i; k/th entry in QtQ is
Pn

rD1 zrizrk D hzi ; zki. 767

But .zi ; zk/ D h xikxik ;
xkkxkki D 1

kxikkxkk hxi ; xki D O if i ¤ k. On the other 768

hand hzi ; zi i D 1
kxik2 hxi ; xi i D 1, and QtQ D In the n � n identity matrix. Thus 769

Qt D Q�1. 770

Since fz1; : : : ; zng are eigenvectors of A with real eigenvalues f�1; : : : ; �ng we 771

obtain 772

^ D
0
@�1 0

�r
0 0

1
A D QtAQ 773

where the last .n � r/ columns of Q correspond to the kernel vectors of A. 774

When A is a symmetric n � n matrix the function A� W Rn �Rn ! R given by 775

A�.x; y/ D hx;A.y/i is called a quadratic form, and in matrix notation is given by 776

.x1; : : : ; xn/


aij

� � y1
yn

�
777

Consider 778
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A�.x; x/ D hx;A.x/i
D hx;Q ^At.x/i
D hQt.x/;^Qt.x/i:

Now Qt.x/ D .x0
1 : : : ; x

0
n/ is the coordinate representation of the vector x with 779

respect to the new basis fz1; : : : ; zng for Rn. Thus 780

A�.x; x/ D .x0
1; : : : ; x

0
n/

0
@�1 �r

0

1
A
0
@ x

0
1

x0
n

1
A D

rX
iD1

�i .x
0
i /
2: 781

Suppose that rank A D r and all eigenvalues of A are non-negative. In this 782

case, A�.x; x/ D Pn
iD1 j�i j.xi /2 	 0. Moreover if x is a non-zero vector then 783

Qt.x/ ¤ 0, since Qt must have rank n. 784

Define the nullity of A� to be fx W A�.x; x/ D 0g. Clearly if x is a non-zero 785

vector in Ker.A/ then it is an eigenvector with eigenvalue 0. Thus the nullity of 786

A� is a vector subspace of Rn of dimension at least n � r , where r D rank.A/. 787

If the nullity of A� is f0g then call A� non-degenerate. If all eigenvalues of A are 788

strictly positive (so that A� is non-degenerate) then A�.x; x/ > 0 for all non-zero 789

x 2 Rn. In this case A� is called positive definite. If all eigenvalues of A are non- 790

negative but some are zero, then A� is called positive semi-definite, and in this case 791

A�.x; x/ > 0, for all x in a subspace of dimension r in Rn. Conversely if A� is 792

non-degenerate and all eigenvalues are strictly negative, then A� is called negative 793

definite. If the eigenvalues are non-positive, but some are zero, then A� is called 794

negative semi-definite. 795

The index of the quadratic form A� is the maximal dimension of the subspace 796

on which A� is negative definite. Therefore index .A�/ is the number of strictly 797

negative eigenvalues of A. 798

When A has some eigenvalues which are strictly positive and some which are 799

strictly negative, then we call A� a saddle. 800

We have not as yet shown that a symmetric n � n matrix has n real roots to its 801

characteristic equation. We can show however that any (symmetric) quadratic form 802

can be diagonalised. 803

Let A D .aij/ and hx;A.x/i D Pn
iD1

Pn
jD1 aijxixj . If aii D 0 for all i D 804

1; : : : ; n then it is possible to make a linear transformation of coordinates such that 805

aij ¤ 0 for some j . After relabelling coordinates we can take a11 ¤ 0. In this case 806

the quadratic form can be written 807

hx;A.x/i D a11x
2
1 C 2a12x1x2; : : :

D a11

�
x1 C a12

a11
x2 : : :

�2
C
 
a22 � a

2
12

a11

2
!
.x2 C : : :/2 C : : :

D
Xn

iD1 ˛iy
2
i :
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Here each yi is a linear combination of fx1; : : : ; xng. Thus the transformation x ! 808

P.x/ D y is non-singular and has inverseQ say. 809

Letting x D Q.y/ we see the quadratic form becomes 810

hx;A.x/i D hQ.y/; A ıQ.y/i
D hy;QtAQ.y/i
D hy;D.y/i;

whereD is a diagonal matrix with real diagonal entries .˛1; : : : ; ˛n/. Note thatD D 811

QtAQ and so rank .D/ D rank .A/ D r , say. Thus only r of the diagonal entries 812

may be non zero. Since the symmetric matrix, A, can be diagonalised, not only 813

are all its eigenvalues real, but its eigenvectors form a basis for Rn. Consequently 814

^ D P�1AP where P is the n � n basis change matrix whose columns are these 815

eigenvectors. Moreover, if � is an eigenvalue with multiplicity r (i.e., � occurs as a 816

root of the characteristic equation r times) then the eigenspace,E�, has dimension r . 817

2.3.3 Examples 818

Example 2.7. To give an illustration of this procedure consider a matrix 819

A D
0
@0 0 10 1 0

1 0 0

1
A 820

representing the quadratic form x22 C 2x1x3. 821

Let P1.x/ D
0
@ 0 1 01 0 0

1 0 1

1
A
0
@x1x2
x3

1
A D

0
@ z1

z2
z3

1
A 822

giving the quadratic form z21 � 2.z2 � 1
2
z3/2 C 1

2
z23 and 823

P2.z/ D
0
@1 0 0

0 1 � 1
2

0 0 1

1
A
0
@ z1

z2
z3

1
A D

0
@y1y2
y3

1
A : 824

Then hx;A.x/i D hy;D.y/i, where 825

D D
0
@1 0 0

0 �2 0
0 0 1

2

1
A D

0
@˛1 0 0

0 ˛2 0

0 0 ˛3

1
A ; and A D P t

1P
t
2DP2P1: 826
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Consequently the matrix A can be diagonalised. A has characteristic equation 827

.1 � �/.�2 � 1/ with eigenvalues 1; 1;�1. 828

Then normalized eigenvectors of A are 829

1p
2

0
@10
1

1
A ;
0
@01
0

1
A ; 1p

2

0
@ 1

0

�1

1
A ; 830

corresponding to the eigenvalues 1; 1;�1. 831

ThusA� is a non-degenerate saddle of index 1. LetQ be the basis change matrix 832

1p
2

0
@1 0 1

0 2 0

1 0 �1

1
A : 833

Then 834

QtAQ D 1

2

0
@1 0 1

0 2 0

1 0 �1

1
A
0
@0 0 10 1 0

1 0 0

1
A
0
@1 0 1

0 2 0

1 0 �1

1
A D

0
@ 1 0 0

0 1 0

0 0 �1

1
A : 835

As a quadratic form 836

.x1; x2; x3/A

0
@x1x2
x3

1
A D .x1; x2; x3/

0
@x3x2
x1

1
A D x1x3 C x22 : 837

We can also write this as 838

.x1; x2; x3/
1

2

0
@1 0 1

0
p
2 0

1 0 �1

1
A
0
@1 0 0

0 1 0

0 0 �1

1
A
0
@1 0 1

0
p
2 0

1 0 �1

1
A
0
@x1x2
x3

1
A

D 1

2
.x1 C x3;

p
2x2; x1 � x3/

0
@1 0 0

0 1 0

0 0 �1

1
A
0
@x1 C x3p

2x2
x1 � x3

1
A D

1

2
.x1 C x3/2 C 2x22 � .x1 � x3/2:

839

Note that A is positive definite on the subspace fx1; x2; x3/ 2 R3 W .x1 D x3/g 840

spanned by the first two eigenvectors. 841

We can give a geometric interpretation of the behaviour of a matrix A with both 842

positive and negative eigenvalues. For example 843
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A D
�
1 2

2 1

�
844

has eigenvectors 845

z1 D
�
1

1

�
z2 D

�
1

�1
�

846

corresponding to the eigenvalues 3;�1 respectively. Thus A maps the vector z1 to 847

3z1 and z2 to �z2. The second operation can be regarded as a reflection of the vector 848

z2 in the line f.x; y/ W x � y D 0g, associated with the first eigenvalue. The first 849

operation z1 ! 3z1 is a translation of z1 to 3z1. Consider now any point x 2 R2. 850

We can write x D ˛z1 C ˇz2. Thus A.x/ D 3˛z1 � ˇz2. In other words A may 851

be decomposed into two operations: a translation in the direction z1, followed by a 852

reflection about z1. 853

Fig. 2.2

2.4 Geometric Interpretation of a Linear Transformation 854

More generally suppose A has real roots to the characteristic equation and has 855

eigenvectors fx1; : : : ; xs; z1; : : : zt ; k1; : : : kpg. 856

The first s vectors correspond to positive eigenvalues, the next t vectors to 857

negative eigenvalues, and the final p vectors belong to the kernel, with zero 858

eigenvalues. 859

Then A may be described in the following way: 860

1. collapse the kernel vectors on to the image given by fx1; : : : ; xs; z1; : : : ; zt g. 861

2. translate each xi to �ixi . 862
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3. reflect each zj to �zj , and then translate to �j
j jzj (where 
j is the negative 863

eigenvalue associated with zj ). 864

These operations completely describe a symmetric matrix or a matrix, A, which 865

is diagonalisable. When A is non-symmetric then it is possible for A to have 866

complex roots. 867

For example consider the matrix 868

�
cos � � sin �
sin � cos �

�
: 869

As we have seen this corresponds to a rotation by � in an anticlockwise direction 870

in the plane R2. To determine the eigenvalues, the characteristic equation is .cos �� 871

�/2 C sin2 � D �2 � 2� cos � C .cos2 � C sin2 �/ D 0. But cos2 � C sin2 � D 1. 872

Thus � D 2 cos �˙2pcos2 ��1
2

D cos � ˙ i sin � . 873

More generally a 2 � 2 matrix with complex roots may be regarded as a 874

transformation �ei� where � corresponds to a translation by � and ei� corresponds 875

to rotation by � . 876

Example 2.8. Consider A D
�
2 �2
2 2

�
with trace .A/ D tr.A/ D 4 and jAj D 8. 877

As we have seen the characteristic equation for A is �2 � .trace A//C jAj D 0, 878

with roots
trace.A/˙

p
.trace A/2�4jAj
2

. Thus the roots are 2˙ 1
2

p
16 � 32 D 2˙ 2i D 879

2
p
2Œ 1p

2
C ip

2
� where cos � D sin � D 1p

2
and so � D 45ı. Thus A W

�
x

y

�
! 880

2
p
2

�
x cos 45 �y sin 45
x sin 45 Cy cos 45

�
. 881

Consequently A first sends .x; y/ by a translation to .2
p
2x; 2
p
2y/ and then 882

rotates this vector through an angle 45ı. 883

Fig. 2.3
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More abstractly if A is an n � n matrix with two complex conjugate eigenvalues 884

.cos � C i sin �/; .cos � � i sin �/, then there exists a two dimensional eigenspace 885

E� such that A.x/ D �ei� .x/ for all x 2 E� , where �ei� .x/ means rotate x by � 886

within E� and then translate by �. 887

In some cases a linear transformation,A, can be given a canonical form in terms 888

of rotations, translations and reflections, together with a collapse onto the kernel. 889

What this means is that there exists a number of distinct eigenspaces 890

fE1; : : : ; Ep;X1; : : : Xs;Kg 891

where A maps 892

1. Ej to Ej by rotating any vector in Ej through an angle �j ; 893

2. Xj to Xj by translating a vector x in Xj to �jx, for some non-zero real number 894

�j ; 895

3. the kernelK to f0g. 896

In the case that the dimensions of these eigenspaces sum to n, then the canonical 897

form of the matrix A is

0
@ e

i� 0 0

0 ^ 0
0 0 0

1
A where ei� consists of p different 2�2matrices, 898

and ^ is a diagonal s � s matrix, while 0 is an .n� r/� .n� r/ zero matrix, where 899

r D rank .A/ D 2p C s. 900

However, even when all the roots of the characteristic equation are real, it need 901

not be possible to obtain a diagonal, canonical form of the matrix. 902

To illustrate, in Example 2.6 it is easy to show that the eigenvalue � D 0 occurs 903

twice as a root of the characteristic equation for the non-symmetric matrix A, even 904

though the kernel is of dimension 1. The eigenvalue � D 7 occurs once. Moreover 905

the vector .3;�29; 17/ clearly must be an eigenvector for � D 7, and thus span the 906

image of A2. However it is also clear that the vector .3;�29; 17/ does not span the 907

image of A. Thus the eigenspace E7 does not provide a basis for the image of A, 908

and so the matrix A cannot be diagonalised. 909

However, as we have shown, for any symmetric matrix the dimensions of the 910

eigenspaces sum to n, and the matrix can be expressed in canonical, diagonal, form. 911

In Chapter 4 below we consider smooth functions and show that “locally” such 912

a function can be analysed in terms of the canonical form of a particular symmetric 913

matrix, known as the Hessian. 914
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Chapter 3 1

Topology and Convex Optimisation 2

3.1 A Topological Space 3

In the previous chapter we introduced the notion of the scalar product of two 4

vectors in Rn. More generally if a scalar product is defined on some space, then 5

this permits the definition of a norm, or length, associated with a vector, and this 6

in turn allows us to define the distance between two vectors. A distance function or 7

metric may be defined on a space, X , even when X admits no norm. For example 8

let X be the surface of the earth. Clearly it is possible to say what is the shortest 9

distance, d.x; y/, between two points, x; y, on the earth’s surface, although it is 10

not meaningful to talk of the “length” of a point on the surface. More general than 11

the notion of a metric is that of a topology. Essentially a topology on a space is a 12

mathematical notion for making more precise the idea of “nearness”. The notion 13

of topology can then be used to precisely define the property of continuity of a 14

function between two topological spaces. Finally continuity of a preference gives 15

proof of existence of a social choice and of an economic equilibrium in, a world 16

that is bounded. 17

3.1.1 Scalar Product and Norms 18

In � 2.3 we defined the Euclidean scalar product of two vectors 19

x D
Xn

iD1 xi ei ; and y D
Xn

iD1 yi ei in Rn; 20

where fe1; : : : ; eng is the standard basis, to be 21

hx; yi D
nX
iD1

xiyi : 22
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More generally suppose that fv1; : : : ; vng is a basis for Rn, and .x1; : : : ; xn/, 23

.y1; : : : ; yn/ are the coordinates of x; y with respect to this basis. Then 24

hx; yi D
nX
iD1

nX
jD1

xiyj hvi ; vj i; 25

where .vi ; vj / is the scalar product of vi and vj . Thus 26

hx; yi D .x1; : : : ; xn/

0
BB@
:::

aij
:::

1
CCA
0
B@
y1
:::

yn

1
CA 27

where A D .aij/ D hvi ; vj iiD1;:::;nIjD1;:::;n. If we let vi D Pn
kD1 vikek , then clearly 28

hvi ; vi i D Pn
kD1.vik/

2 > 0. Moreover hvi ; vj i. Thus the matrix A is symmetric. 29

Since Amust be of rank n, it can be diagonalized to give a matrix ^ D QtAQ, all of 30

whose diagonal entries are positive. HereQ rep resents the orthogonal basis change 31

matrix and Qt.x1; : : : ; xn/ D .x0
1; : : : ; x

0
n/ gives the coordinates of x with respect 32

to the basis of eigenvectors of A. Hence 33

hx; yi D hx;A.y/i D hx;Q ^Qt.y/i
D hQt.x/; ^Qt.y/i
D
Xn

iD1 �ix
0
i y

0
i :

Thus a scalar product is a non-degenerate positive definite quadratic form. Note 34

that the scalar product is bilinear since 35

hx1 C x2; yi D hx1; yi C hx2; yi and hx; y1 C y2i D hx; y1i C hx; y2i; 36

and symmetric since 37

hx; yi D hx;A.y/i D hy;A.x/i D hy; x:i 38

We shall call the scalar product given by hx; yi D Pn
iD1 xiyi the Euclidean 39

scalar product. 40

We define the Euclidean norm, kkE , by kxkE D
phx; xi D qPn

iD1 x2i . Note 41

that kxkE 	 0 if and only if x D .0; : : : ; 0/. Moreover, if a 2 R, then 42

kaxkE D
vuut nX

iD1
a2x2i D jajkxkE: 43
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Lemma 3.1. If x; y 2 Rn, then kx C ykE � kxkE C kykE . 44

Proof. For convenience write kxkE as kxk. Now 45

kx C yk2 D hx C y; x C yi D hx; xi C hx; yi C hy; xi C hy; yi: 46

But the scalar product is symmetric. Therefore 47

kx C yk2 D kxk2 C kyk2 C 2hx; yi: 48

Furthermore .kxk C kyk/2 D kxk2 C kyk2 C 2kxkkyk. Thus kx C yk � kxk C
kykiffhx; yi � kxkkyk. To show this note that

P
i<j .xiyj � xj yi /2 	 0. ThusP

i<j .x
2
i y

2
j Cx2j y2i / 	 2

P
i<j xi yixj yj . Add

Pn
iD1 x2i y2i to both sides. This gives
Pn

iD1 x2i
� 
Pn

iD1 y2i
� 	 
Pn

iD1 xiyi
�2

. Therefore kxk2kyk2 	 hx; yi2 and so
.x;y/

kxkkyk � 1, or kx C yk � kxk C kyk. ut
In this lemma we have shown that 49

�1 � hx; yikxkkyk � 1: 50

This ratio can be identified with cos � , where � is the angle between the two vectors 51

x; y. In the case of unit vectors, hx; yi can be identified with the perpendicular 52

projection of y onto x as in Figure 3.1. 53

Fig. 3.1

The property kx C yk � kxk C kyk is known as the triangle inequality,(see 54

Figure 3.2). 55

Definition 3.1. Let X be a vector space over the field R. A norm, k k, on X is a 56

mapping kk W X ! R which satisfies the following three properties: 57

N1. kxk 	 0 for all x 2 X , and kxk D 0 iff x D 0. 58
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N2. kaxk D jaj kxk for all x 2 X , and a 2 R. 59

N3. kx C yk � kxk C kyk for all x; y 2 X . 60

Fig. 3.2

There are many different norms on a vector space. For example if A is a non- 61

degenerate positive definite symmetric matrix, we could define kkA by kxkA D 62phx;Axi. 63

The Cartesian norm is kxkc D k.x1; : : : ; xn/kc maxfjx1j; : : : ; jxnjg. 64

Clearly kxkc 	 0 and kxkc D 0 iff xi D 0 for all i D 1; : : : ; n. Moreover 65

kaxkc D maxfjax1j; : : : ; jaxnjg D maxfjaj C x1j; : : : ; jajjxnjg D jajjxi j, for some 66

i . 67

Thus kaxkc D jmaxfjx1j; : : : ; jxnjg D jajkxkc . 68

Finally, kxC ykc D jxi C yi j for some i � jxi j C jyi j � maxfjx1j; : : : ; jxnjg C 69

maxfjy1j; : : : ; jynjg D kxkckykc . Define the city block norm kxkB to kxkB D 70Pn
iD1 jxi j. Clearly kx C ykB D Pn

iD1 jxi C yi j �
Pn

iD1.jxi j C jyi j/ D kxkB C 71

kykB . If kk is a norm on the vector space X , the distance function or metric d on 72

X induced by kk is the function d W X � X ! R W d.x; y/ D kx � yk. Note 73

that d.x; y/ 	 for all x; y 2 X and that d.x; y/ D 0 iff x � y D 0, i.e., x D y. 74

Moreover, d.x; y/ C d.y; z/ D kx � yk C ky � zk 	 k.x � y/ C .y � z/k D 75

kx � zk D d.x; z/. Hence d.x; z/ � d.x; y/C d.y; z/. 76

Definition 3.2. A metric on a set X is a function d W X �X ! R such that 77

D1. d.x; y/ 	 0 for all x; y 2 X and d.x; y/ D 0 iff x D y 78

D2. d.x; z/ � d.x; y/C d.y; z/ for all x; y; z 2 X . 79

Note that a metric d may be defined on a set X even when X is not a vector 80

space. In particular d may be defined without reference to a particular norm. At the 81

beginning of the chapter for example we mentioned that the surface of the earth, 82

S2, admits a metric d , where the distance between two points x; y on the surface is 83

measured along a great circle through x; y. A second metric on S2 is obtained by 84

defining d.x; y/ to be the angle, � , subtended at the centre of the earth by the two 85

radii to x; y (see Figure 3.3). 86
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Fig. 3.3

Any set X which admits a metric, d , we shall call metrisable, or a metric space. 87

To draw attention to the metric, d , we shall sometimes write .X; d/ for a metric 88

space. 89

In a metric space .X; d/ the open ball at x of radius r in X is 90

Bd.x; r/ D fy 2 X W d.x; y/ < rg; 91

and the closed ball centre x of radius r is 92

Clos Bd.x; r/ D fy 2 X W d.x; y/ � rg: 93

The sphere of radius r at x is 94

Sd .x; r/ D fy 2 X W d.x; y/ D rg: 95

In Rn, the Euclidean sphere of radius r is therefore 96

S.x; r/ D fy W
nX
iD1
.xi � yi /2 D r2i g: 97

For convenience a sphere in Rn is often written as Sn�1. Here the superfix is 98

n� 1 because as we shall see the sphere in Rn is (n� 1)-dimensional, even though 99

it is not a vector space. If .X; d/ is a metric space, say a set V in X is d�open iff 100

for any x 2 V there is some radius rx (dependent on x) such that 101

Bd .x; rx/ � V: 102

Lemma 3.2. Let �d be the family of all sets in X which are d -open. Then �d 103

satisfies the following properties: 104

T1. If U; V 2 �d , then U \ V 2 �d . 105
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T2. If Uj 2 �d for all j belonging to an index set J (which is possibly infinite), 106

then [j2JUj 2 �d . 107

T3. Both X and the empty set, ˆ, belong to �d . 108

Proof. Clearly X and ˆ are d�open. If U and V 2 �d , but U \ V D ˆ, then 109

U \ V is d�open. Suppose on the other hand that x 2 U \ V . Since both U and 110

V are open, there exist r1; r2 such that Bd .x; r1/ � U and Bd.x1; r2/ � V . Let 111

r D min.r1; r2/. By definition 112

Bd.x; r/ D Bd .x; r1/ \ Bd .x; r2/ � U \ V: 113

Thus there is an open ball, centre x, of radius r contained in U \ V . 114

Finally suppose x 2 [j2JUj D U . Since x belongs to at least one Uj , say 115

U1, there is an open ball B D B.x; r1/ contained in U1. Since U1 is open so is U . 116

Q:E:D. 117

Note that by T1 the finite intersection of open sets is an open set, but infinite 118

intersection of open sets need not be open. To see this consider a set of the form 119

I D .a; b/ D fx 2 R W a < x < bg: 120

For any x 2 I it is possible to find an " such that a C " < x < b � ". Hence the 121

open ball B.x; "/ D fy W x � " < y < x C "g belongs to I , and so I is open. 122

Now consider the family fUr W r D 1; : : : ;1g of sets of the form Ur D

� 1

r
; 1
r

�
. 123

Clearly the origin, 0, belongs to each Ur , and so 0 2 \Ur D U . Suppose that 124

U is open. Since 0 2 U , there must be some open ball B.0; "/ belonging to U . Let 125

ro be an integer such that r0 > 1
"
, so 1

r0
< ". But then Ur0 D

�
� 1
r0
; 1
r0

�
is strictly 126

contained in .�"; "/. 127

Therefore the ball B.0; "/ D fy 2 R W jyj < "g D .�"; "/ is not contained in 128

Ur0 , and so cannot be contained in U . Hence U is not open. 129

3.1.2 A Topology on a Set 130

We may define a topology on a setX to be any collection of sets inX which satisfies 131

the three properties T10, T20, T30. 132

Definition 3.3. A topology � on a set X is a collection of sets in X which satisfies 133

the following properties: 134

T10. If U; V 2 � then U \ V 2 � . 135

T20. If J is any index set and Uj 2 � for each j 2 J , then [jUj 2 � . 136

T30. Both X and the empty set belong to � . 137
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A set X which has a topology� is called a topological space, and written .X; �/. 138

The sets in � are called ��open, or simply open. An open set in � which contains 139

a point x is called a neighbourhood (or nbd.) of x. 140

A base H for a topology � is a collection of ��open sets such that any member 141

U of � can be written as a union of members of B. Equivalently if x belongs to a 142

��open set U , then there is a member V of the base such that x 2 V � U . 143

By Lemma 3.2, the collection rd of sets which are open with respect to the metric 144

d comprise a topology called the metric topology�d onX . We also said that a set U 145

belonged to �d iff each point x 2 U had a neighbourhoodBd .x; r/ which belonged 146

to U . Thus the family of sets 147

B D fBd.x; r/ W x 2 X; r > 0g 148

forms a base for the metric topology �d on X . 149

Consider again the metric topology on R. As we have shown any set of the form 150

.a; b/ is open. Indeed a set of the form .�1; a/ or .b;1/ is also open. 151

In general if U is an open set (in the topology � for the topological space X ), 152

then the complement UX D XnU of U in X is called closed. 153

Thus in R, the set Œa; b� D fx 2 R W a � x � bg is closed since it is the 154

complement of the open set .�1; a/[.b;1/. Note that the sets .�1; a� and Œb;1/ 155

are also closed since they are complements of the open sets .a;1/ and .�1; b/ 156

respectively. 157

If A is any set in a topological space, .X; �/, then define the open set, Int.A/, 158

called the interior of A, by x 2 Int.A/ iff x is in A and there exists an open set G 159

containing x such that G � A. 160

Conversely, define the closed set, Clos.A/, or closure of A, by x 2 Clos.A/ iff x 161

is in X and for any open set G containing x, G \A is non empty. 162

Clearly Int.A/ � A � Clos.A/. (See Exercise 3.1 at the end of the book.) The 163

boundary of A, written ıA, is Clos.A/\ Clos. NAX/, where AX D XnA. 164

For example, if A is an open set, the complement . NAX/ of A in X is a closed 165

set containing ıA (i.e., Clos. NAX/ D NAX ). The closure, Clos.A/, on the other hand 166

is the closed set which intersects . NAX/ precisely in SA. Clearly if x belongs to the 167

boundary of A, then any neighbourhood of x intersects both A and its complement. 168

A point x is an accumulation or limit point of a setA if any open setU containing 169

x also contains points of A different from x. If A is closed then it contains its limit 170

points. If A is a subset of X and Clos.A/ D X then call A dense in X . Note that 171

this means that any point x 2 X either belongs to A or, if it belongs to XnA, has the 172

property that for any neighborhood U of x, U \ A ¤ ˆ. Thus if x 2 XnA it is an 173

accumulation point ofA. IfA is dense inX a point outsideAmay be ‘approximated 174

arbitrarily closely’ by points inside A. 175

For example the set of non-integer real numbers Z is dense (as well as open) in 176

R. The set of rational numbersQ D fp
q
W p; q 2 Zg is also dense in R, but not open, 177

since any neighbourhood of a rational number must contain irrational numbers. For 178

each rational q 2 Q, note that Rnfqg is open, and dense. Thus 179
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Fig. 3.4

RnQ D \q2QnfRfqgg W 180

the set of irrationals is the “countable” intersection of open dense sets. Moreover 181

RnQ is itself dense. Such a set is called a residual set, and is in a certain sense 182

“more dense” than a dense set. 183

We now consider different topologies on a set X . 184

Definition 3.4. 1. If .X; �/ is a topological space, and Y is a subset of X , the 185

relative topology�Y on Y is the topology whose open sets are fU \Y W U 2 �g. 186

2. If .X; �/ and .Y;S/ are topological spaces the product topology � �S on the set 187

X � Y is the topology whose base consists of all sets of the form fU � V W U 2 188

�; V 2 Sg. 189

We already introduced the relative topology in � 1.1.2, and showed that this 190

formed a topology. To show that � � S is a topology for X � Y we need to show 191

that the union and intersection properties are satisfied. Suppose that 192

Wi D Ui � Vi 193

for i D 1; 2, where Ui 2 � , Vi 2 S. Now W1 \ W2 D .U1 � V1/ \ .U2 � V2/ D 194

.U1\U2/� .V1\V2/. But U1\U2 2 �; V1\V2 2 S, since S and � are topologies. 195

ThusW1 \W2 2 � � S. Suppose now that x 2 W1 [W2. Then x belongs either to 196

U1 � V1 or U2 � V2 (or both). In either case x belongs to a member of the base for 197

� � S. 198

Another way of expressing the product topology is that W is open in the product 199

topology iff for any x 2 W there exist open sets, U 2 � and V 2 S, such that 200

x 2 U � V and U � V � W . 201

For example consider the metric topology � induced by the norm kk on R. This 202

gives the product topology �n, on Rn, where U is open in �n iff for each x D 203

.x1; : : : ; xn/ 2 U there exists an open interval B.xi ; ri / of radius ri about the i th 204

coordinate xi such that 205

B.x1; r1/ � : : : �B.xn; rn/ � U: 206
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Fig. 3.5

Fig. 3.6 The product
Topology in R2.

Consider now the Cartesian norm on Rn, where 207

kxkC D maxfjx1j; : : : ; jxnjg: 208

This induces a Cartesian metric 209

dC .x; y/ D maxfjx1 � y1j; : : : ; jxn � ynjg: 210

A Cartesian open ball of radius r about x is then the set 211

BC .x; r/ D fy 2 Rn W jyi � xi j < r8i D 1; : : : ; ng: 212

A set U is open in the Cartesian topology �C for Rn iff for every x 2 U there 213

exists some r > 0 such that the ball BC .x; r/ � U . 214

Suppose now that U is an open set in the product topology �n for Rn. At any 215

point x 2 U , there exist r1 : : : rn all > 0 such that 216
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Fig. 3.7

B D B.x1; r1/�; : : : ; B.xn; rn/ � U: 217

Now let r D min.r1; : : : ; rn/. Then clearly the Cartesian ball BC .x; r/ belongs 218

to the product ball B , and hence to U . Thus U is open in the Cartesian topology. 219

On the other hand if U is open in the Cartesian topology, for each point 220

x in U , the Cartesian ball BC .x; r/ belongs to U . But this means the product 221

ball B.x1; r/�; : : : ; B.xn; r/ also belongs to U . Hence U is open in the product 222

topology. 223

We have therefore shown that a set U is open in the product topology on �n iff it 224

is open in the Cartesian topology �C on Rn. Thus the two topologies are identical. 225

We have also introduced the Euclidean and city block norms on Rn. These norms 226

induce metrics and thus the Euclidean topology �E and city block topology �a on 227

Rn. As before a set U is open in �E (resp. �B ) iff for any point x 2 U , there is an 228

open neighborhood 229

BE.x; r/ D fy 2 Rn W
nX
iD1
.yi � xi /2 < r2g; 230

resp. BB.x; r/ D fy 2 Rn WP jyi � xi j < rg of x which belongs to U . 231

(The reason we use the term “city block” should be obvious from the nature of a 232

ball under this metric, so displayed in Figure 3.8.) 233

In fact these three topologies re, �C ; �E and �B on Rns are all identical. We shall 234

show this in the case n D 2. 235

Lemma 3.3. The Cartesian, Euclidean and city block topologies on R2 are 236

identical. 237

Proof. Suppose that U is an open set in the Euclidean topology �E for R2. Thus at 238

x 2 U , there is an r > 0, such that the set 239
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BE.x; r/ D fy 2 R2 W
2X
iD1
.yi � xi /2 < r2g � U: 240

From Figure 3.9, it is obvious that the city block ball BB.x; r/ also belongs to 241

BE.x; r/ and thus U . Thus U is open in �B . 242

On the other hand the Cartesian ball BC


x; r

2

�
belongs to BB.x; r/ and thus to 243

U . Hence U is open in �C . 244

Finally the Euclidean ball BE


x; r

2

�
belongs to BC



x; r

2

�
. Hence if U is open in 245

�C it is open in �E . 246

Thus U open in �E ) U open in �B ) U open in �C ) U open in �E .
Consequently all three topologies are identical in R2. ut

Fig. 3.9

Suppose that �1 and �2 are two topologies on a space X . If any open set U in 247

�1 is also an open set in �2 then say that �2 is as fine as �1 and write �1 � �2. 248

If �1 � �2 and �2 � �1 then �1 and �2 are identical, and we write �1 D �2. If 249
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�1 � �2 but �2 contains an open set that is not open in �1 then say �2 is finer than 250

�1. We also say �1 is coarser than �2. 251

If d1 and d2 are two metrics on a space X , then under some conditions the 252

topologies �1 and �2 induced by d1 and d2 are identical. Say the metrics d1 and 253

d2 are equivalent iff for each " > 0 there exist 	1 > 0 and 	2 > 0 such that 254

d1.x; y/ < 	1 ) d2.x; y/ < ", and d2.x; y/ < 	2 ) 255

d1.x; y/ < ". 256

Another way of expressing this is that 257

B1.x; 	1/ � B2.x; "/; and B2.x; 	2/ � B2.x; "/; 258

where Bi .x; r/ D fy W di .x; y/ < rg for i D 1 or 2. 259

Just as in Lemma 3.3, the Cartesian, Euclidean and city block metrics on Rn are 260

equivalent. We can use this to show that the induced topologies are identical. 261

We now show that equivalent metrics induce identical topologies. 262

If f W X ! R is a function, and V is a set in X , define sup.f; V /, the supremum 263

(from the Latin, supremus) of f on V to be the smallest number M 2 R such that 264

f .x/ �M for all x 2 V . 265

Similarly define inf.f; V /, the infimum (again from the Latin, infimus) of f on 266

V to be the largest numberm 2 R such that f .x/ 	 m for all x 2 V . 267

Let d W X � X ! R be a metric on X . Consider a point, x, in X , and a subset 268

ofX . Then define the distance from x to V to be d.x; V / D inf.d.x;�/; V /, where 269

d.x;�/ W V ! R is the function d.x;�/.y/ D d.x; y/. 270

Suppose now that U is an open set in the topology �1 induced by the metric d1. 271

For any point x 2 U there exists r > 0 such that B1.x; r/ � U , where B1.x; r/ D 272

fy 2 X W d1.x; y/ < Rg. Since we assume the metrics d1 and d2 are equivalent, 273

there must exist s > 0, say, such that 274

B2.x; s/ � B1.x; r/ 275

where B2.x; s/ D fy 2 X W d2.x; y/ < sg. Indeed one may choose s D 276

d2.x; B1.x; r// where B1.x; r/ is the complement of B1.x; r/ in X (see Fig. 3.10). 277

Clearly the set U must be open in �2 and so �2 is as fine as �1. In the same way, 278

however, there exists t > 0 such that B1.x; t/ � B2.x; s/, where again one may 279

choose t D d1.x; B2.x; s//. Hence if U is open in �2 it is open in �1. Thus �1 is as 280

fine as �2. As a consequence �1 and �2 are identical. 281

Thus we obtain the following lemma. 282

Lemma 3.4. The product topology,�n, Euclidean topology�E , Cartesian topology 283

�C and city block topology �B are all identical on Rn. 284

As a consequence we may use, as convenient, any one of these three metrics, or 285

any other equivalent metric, on Rn knowing that topological results are unchanged. 286
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3.2 Continuity 287

Suppose that .X; �/ and .Y;S/ are two topological spaces, and f W X ! Y is a 288

function between X and Y . Say that f is continuous (with respect to the topologies 289

� and S) iff for any set U in S (i.e., U is S-open) the set f �1.U / D fx 2 X W 290

f .x/ 2 U g is �-open. 291

This definition can be given an alternative form in the case when X and Y are 292

metric spaces, with metrics d1, d2, say. 293

Consider a point x0 in the domain of f . For any " > 0, the ball 294

B2.f .x0/; "/ D fy 2 Y W d2.f .x0/; y/ < "g 295

is open. For continuity, we require that the inverse image of this ball is open. That 296

is to say there exists some ı, such that the ball 297

B1.x0; ı/ D fx 2 X W d1.x0; x/ < ıg 298

belongs to f �1.B2.f .x0/; "//. Thus x 2 B1.x0; ı/) f .x/ 2 B2.f .x0/; "/. 299

Therefore say f is continuous at x0 2 X iff for any " > 0; 9ı > 0 such that 300

f .B1.x0; ı// � B2.f .x0/; "/: 301

In the case that X and Y have norms kkX and kkY , then we may say that f is 302

continuous at x0 iff for any " > 0; 9ı > 0 such that 303

kx � x0kx < ı) kf .x/ � f .x0/ky < ": 304

Then f is continuous on X iff f is continuous at every point x in its domain. 305

If X , Y are vector spaces then we may check the continuity of a function f W 306

X ! Y by using the metric or norm form of the definition. 307
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For example suppose f W R ! R has the graph given in Figure 3.11. Clearly 308

f is not continuous. To see this formally let f .x0/ D y0 and choose " such that 309

jy1 � y0j > ". If x 2 .x0 � ı; x0/ then f .x/ 2 .y0 � "; y0/. 310

However for any ı > 0 it is the case that x 2 .x0; x0Cı/ implies f .x/ > y0C". 311

Thus there exists no ı > 0 such that 312

x 2 .x0 � ı; x0 C ı/) f .x/ 2 .y0 � "; y0 C "/: 313

Hence f is not continuous at x0. 314

Fig. 3.11

We can give an alternative definition of continuity. A sequence of points in a 315

space X is a collection of points fxk W k 2 Zg, indexed by the positive integers Z . 316

The sequence is written .xk/. The sequence .xk/ in the metric space, X , has a limit, 317

x, iff 8" > 09k0 2 Z such that k > k0 implies kxk � xkx < "1. 318

In this case write xk ! x as k !1, or Limk!1xk D x. 319

Note that x is then an accumulation point of the sequence fx1; : : :g. 320

More generally .xn/ ! x iff for any open set G containing x, all but a finite 321

number of points in the sequence .xk/ belong to G. 322

Thus say f is continuous at x0 iff 323

xk ! x0 implies f .xk/! f .x0/: 324

Example 3.1. Consider the function f W RCR given by 325

f W x !
(
x sin 1

x
if x ¤ 0

0 if x D 0: 326

Now x sin D 1
x
D sin y

y
where y D 1

x
. Consider a sequence .xk/ where 327

Limk!1xk D 0. We shall write this limit as x ! 0. Limx!0x sin 1
x

sin y

y
D 0 328
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since j sin yj is bounded above by 1, and Limy!1 1
y
D 0. Thus Limx!0f .x/ D 0. 329

But f .0/ D 0, and so xk ! 0 implies f .xk/! 0. Hence f is continuous at 0. On 330

the other hand suppose g.x/ D sin 1
x

. Clearly g.x/ has no limit as x ! 0. To see 331

this observe that for any sequence .xk/! 0 it is impossible to find a neighborhood 332

G of some point y 2 Œ�1; 1� such that g.xk/ 2 G whenever k > ko. 333

Any linear function between finite-dimensional vector spaces is continuous. Thus 334

the set of continuous functions contains the set of linear functions, when the domain 335

is finite-dimensional. To see this suppose that f W V ! W is a linear transformation 336

between normed vector spaces. (Note that V and W may be infinite-dimensional.) 337

Let kkv and kkw, be the norms on V;W respectively. Say that f is bounded iff 338

9B > 0 such that kf .x/kw � Bkxkv for all x 2 V . Suppose now that 339

kf .x/ � f .x0/kw < ": 340

Now 341

kf .x/ � f .x0/kw D kf .x � x0/kw � Bkx � x0kv; 342

since f is linear and bounded. Choose ı D "
B

. Then 343

kx � x0kv < ı) kf .x/ � f .x0/kw � Bkx � x0kv: 344

Thus if f is linear and bounded it is continuous. 345

Lemma 3.5. Any linear transformation f W V ! W is bounded and thus 346

continuous if V is finite-dimensional (of dimension n). 347

Proof. Use the Cartesian norm kkc , on V , and let kkw be the norm on W . Let 348

e1 : : : en be a basis for V , 349

kxkc D supfjxi j W i D 1; : : : ; ng; and

e D supnfkf .ei /kw W i D 1; : : : ; ng:

Now f .x/ D P
iD1 xif .ei /. Thus kf .x/kw � Pn

i kf .xi ei /kw, by the triangle 350

inequality, and n � Pn
iD1 jxi jkf .ei /kw, since kaykw D jajkykw � nekxkc . Thus 351

f is bounded, and hence continuous with respect to the norms kkc , kkw. But for any 352

other norm kkv it can be shown that there exists B 0 > 0 such that kxkc � B 0kxkv . 353

Thus f is bounded, and hence continuous, with respect to the norms kkv , kkw. 354

Q:E:D. 355

Consider now the set L.Rn;Rm/ of linear functions from Rn to Rm. Clearly if 356

f; g 2 L.Rn;Rm/ then the sum f C g defined by .f C g/.x/ D f .x/ C g.x/ is 357

also linear, and for any ˛ 2 R; f̨ , defined by . f̨ /.x/ D ˛.f .x// is linear. 358

Hence L.Rn;Rm/ is a vector space over R. Since Rn is finite dimensional, 359

by Lemma 3.5 any member of L.Rn;Rm/ is bounded. Therefore for any f 2 360

L.Rn;Rm/ we may define 361
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kf k D supx2Rn

� kf .x/k
kxk W kxk ¤ 0

	
: 362

Since f is bounded this is defined. Moreover kk D 0 only if f is the zero function. 363

By definition kf k is the real number such that kf k � B for all B such that 364

kf .x/k � Bkxk. In particular kf .x/k � kf kkxk. If f; g 2 L.Rn;Rm/, then 365

k.f C g/.x/k D kf .x/ C g.x/k� � kf .x/k C kg.x/k � kf kkxk C kgkkxk D 366

.kf k C kgk/kxk. Thus kf C gk � kf k C kgk. 367

Hence kk on L.Rn;Rm/ satisfies the triangle inequality, and so L.Rn;Rm/ is a 368

normed vector space. This in turn implies that L.Rn;Rm/ has a metric and thus a 369

topology. It is often useful to use the metrics 370

d1.f; g/ D supfkf .x/ � g.x/k W x 2 Rng; or

d2.f; g/ D supfjfi.x/ � g.x/j W i D 1; : : : ; m; x 2 Rng

where f D .f1; : : : ; fm/, g D .g1; : : : ; gm/. We write L1.Rn;Rm/ and 371

L2.Rn;Rm/ for the set L.Rn;Rm/ with the topologies induced by d1 and d2 372

respectively. Clearly these two topologies are identical. 373

Alternatively, choose bases for Rn and Rm and consider the matrix representa- 374

tion function 375

M W .L.Rn;Rm/;C/! .M.n;m/;C/: 376

On the right hand side we add matrices element by element under the rule .aij/C 377

.bij/ D .aij C bij/. With this operation M.n;m/ is also a vector space. Clearly we 378

may choose a basis forM.n;m/ to be fEij W i D 1; : : : ; nI j D 1; : : : ; mg whereEij 379

is the elementary matrix with 1 in the i th column and j th row. 380

Thus M.n;m/ is a vector space of dimension nm. Since M is a bijection, 381

L.Rn;Rm/ is also of dimension nm. 382

A norm on M.n;m/ is given by 383

kAk D supfjaijj W i D 1; : : : ; nI j D 1; : : : ; mg 384

where A D .aij/. 385

This in turn defines a metric and thus a topology onM.n;m/. Finally this defines 386

a topology on L.Rn;Rm/ as follows. For any open set U in M.n;m/, let V D 387

M�1.U / and call V open. The base for the topology on L.Rn;Rm/ then consists 388

of all sets of this form. One can show that the topology induced on L.Rn;Rm/ in 389

this way is independent of the choice of bases. We call this the induced topology on 390

L.Rn;Rm/ and writeL.Rn;Rm/ for this topological space. If we consider the norm 391

topology on M.n;m/ and the induced topology L.Rn;Rm/ then the representation 392

map is continuous. Moreover the two topologies induced by the metrics d1 and d2 393

on L.Rn;Rm/ are identical to the induced topology L.Rn;Rm/. Thus M is also 394

continuous when these metric topologies are used for its domain. (Exercise 3.3 at 395

the end of the book is devoted to this obsemation.) 396
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If V is an infinite dimensional vector space and f 2 L.V;W /, then f need not 397

be continuous or bounded. However the subset of L.V;W / consisting of bounded, 398

and thus continuous, maps in L.V;W / admits a norm and thus a topology. So we 399

may write this subset as L.V;W /. 400

Now let Cı.Rn;Rm/ be the set of continuous functions from Rn to Rm. We now 401

show that Cı.Rn;Rm/ is a vector space. 402

Lemma 3.6. Cı.Rn;Rm/ is a vector space over R. 403

Proof. Suppose that f; g are both continuous maps. At any x0 2 Rn, and any " > 0, 404

9ı1, ı2 > 0 such that 405

kx � x0k < ı1 ) kf .x/ � f .x0/k <

�
1

2
"

�

kx � x0k < ı ) kg.x/ � g.x0/k ) <

�
1

2

�
":

Let ı D min.ı; ı2/. Then kx�x0k < ı) k.f Cg/.x/�.f Cg/.x0/k D kf .x/� 406

f .x0/C g.x/�g.x0/k � kf .x/� f .x0/kC kg.x/�g.x0/k <


1
2

�
"C 
 1

2

�
" D ". 407

Thus f C g 2 Cı.Rn;Rm/. 408

Also for any ˛ 2 R, any " > 09ı > 0 such that 409

kx � x0k < ı) kf .x/ � f .x0/k < "

j˛j : 410

Therefore k. f̨ /.x/ � . f̨ /.x0/k D j˛jkf .x/ � f .x0/k < ". Thus f̨ 2 411

Cı.Rn;Rm/. Hence Cı.Rn;Rm/ is a vector space. Q:E:D. 412

Since ŒL.Rn;Rm/� is closed under addition and scalar multiplication, it is a 413

vector subspace of dimension nm of the vector space Cı.Rn;Rm/. Note however 414

that Cı.Rn;Rm/ is an infinite-dimensional vector space (a function space). 415

Lemma 3.7. If .X; �/, .Y;S/ and .Z;R/ are topological spaces and 416

Cı..X; �/; .Y;S//, Cı..Y;S/; .Z;R// and Cı..X; �/; .Z;R// are the sets 417

of functions which are continuous with respect to these topologies, then the 418

composition operator, ı, maps Cı..X; �/; .Y;S// � Cı..Y;S/; .Z;R// to 419

Cı..X; �/; .Z;R//. 420

Proof. Suppose f W .X; �/! .Y;S/ and g W .Y;S/! .Z;R/ are continuous. We
seek to show that g ı f W .X; �/! .Z;R/ is continuous. Choose any open set U
in Z. By continuity of g; g�1.U / is an S-open set in Y . But by the continuity of
f; f �1.g�1.U // is a �-open set in X . However f �1g�1.U / D .g ı f /ı.U /. Thus
g ı f is continuous. ut

Note therefore that if f 2 L.Rn;Rm/ and g 2 L.Rm;Rk/ then g ı f 2 421

L.Rn;Rk/ will also be continuous. 422
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3.3 Compactness 423

Let .X; �/ be a topological space. An open cover for X is a family fUj W j 2 J g of 424

�-open sets such that X D [j2JUj . 425

If U D fUj W j 2 J g is an open cover for X , a subcover of U is an open cover 426

U 0 of X where U 0 D fUj W j 2 J 0g and the index set J 0 is a subset of J . The 427

subcover is called finite if J 0 is a finite set (i.e., jJ 0j, the number of elements of J 0, 428

is finite). 429

Definition 3.5. A topological space .X; �/ is called compact iff any open cover of 430

X has a finite subcover. If Y is a subset of the topological space .X; �/ then Y 431

is compact iff the topological space .Y; �Y / is compact. Here �Y is the topology 432

induced on Y by � . (See � 1.1.3.) 433

Say that a family CJ D fCj W j � J g of closed sets in a topological space 434

.X; �/ has the finite intersection property (FIP) iff whenever J 0 is a finite subset of 435

J then \j2J 0Cj is non-empty. 436

Lemma 3.8. A topological space .X; �/ is compact iff whenever CJ is a family of 437

closed sets with the finite intersection property then \j2j is non-empty. 438

Proof. We establish first of all that UJ D fUj W j 2 J g is an open cover of X iff 439

the family CJ D fCj D XnUj W j 2 J g of closed sets has empty intersection. Now 440

[JUj D .XnCj / D [J .X \ Cj /
D X \ .[jCj / D X \ .\JCj /: Thus

[JUj D X iff \J Cj D ˆ:

To establish necessity, suppose that X is compact and that the family Cj has the
FIP. If CJ in fact has empty intersection then UJ D fXnCj W j 2 J g must be an
open cover. Since X is compact there exists a finite set J 0 � J such that UJ 0 is
a cover. But then CJ 0 has empty intersection contradicting FIP. Thus CJ has non-
empty intersection. To establish sufficiency, suppose that any family CJ , satisfying
FIP, has non-empty intersection. Let UJ D fUj W j 2 J g be an open cover for X .
If UJ has no finite subcover, then for any finite J 0, the family CJ 0 D fXnUj W j 2
J 0g must have non-empty intersection. By the FIP, the family Cj must have non-
empty intersection, contradicting the assumption that UJ is a cover. Thus .X; �/ is
compact. ut

This lemma allows us to establish conditions under which a preference relation 441

P onX has a non-empty choiceCP .X/. (See Lemma 1.8 for the case withX finite.) 442

Say the preference relation P on the topological space X is lower demi-continuous 443

(LDC) iff the inverse correspondence ��1
P W X ! X W x ! fy 2 X W xPyg is open 444

for all x in X . 445
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Lemma 3.9. If X is a compact topological space and P is an acyclic and lower 446

demi-continuous preference on X , then there exists a choice Z of P in X . 447

Proof. Suppose on the contrary that there is no choice. Thus for all x 2 X there
exists some y 2 X such that yPx. Thus x 2 ��1

P .y/. Hence U D f��1
P .y/ W y 2

Xg is a cover for X . Moreover for each y 2 X , ��1
P .y/ open. Since X is compact,

there exists a finite subcover of U . That is to say there exists a finite set A in X
such that U 0 D f��1

P .y/ W y 2 Ag is a cover for X . In particular this implies that
for each x 2 A, there is some y 2 A such that x 2 P�1

P .y/, or that yPx. But then
CP .A/ D fx 2 A W �P .x/ D �g D �. Now P is acyclic on X , and thus acyclic on
A. Hence, by the acyclicity of P and Lemma 1.8, CP .A/ ¤ ˆ. By the contradiction
U D f��1

P .y/ W y 2 Xg cannot be a cover. That is to say there is some f 2 X such
that f 2 ��1

P .y/ for no y 2 X . But then yP Nx for no y 2 X , and Nx 2 CP .X/, or Nx
is the choice on X . ut

This lemma can be used to show that a continuous function f W X ! R from 448

a compact topological space X into the reals attains its bounds. Remember that we 449

defined the supremum and infimum of f on a set Y to be 450

1. sup.f; Y / D M such that f .x/ � M for all x 2 Y and if f .x/ < M 0 for all 451

x 2 Y then M 0 	M 452

2. inf.f; Y / D m such that f .x/ 	 m for all x 2 Y and if f .x/ 	 m0 for all x 2 Y 453

then m 	 m0. 454

Say f attains its upper bound on Y iff there is some xs , in Y such that f .xs/ D 455

sup.f; Y /. Similarly say f attains its lower bound on Y iff there is some xi in Y 456

such that f .xi / D inf.f; Y /. 457

Given the function f W X ! R, define a preference P on X � X by xPy iff 458

f .x/ > f .y/. Clearly P is acyclic, since > on R is acyclic. Moreover for any 459

x 2 X , 460

��1
P .x/ D fy W f .y/ < f .x/g 461

is open, when f is continuous. 462

To see this let U D .�1; f .x//. Clearly U is an open set in R. Moreover f .y/ 463

belongs to the open interval .1; f .x// iff y 2 ��1
P .x/. But f is continuous, and so 464

f �1.U / is open in X . Since y 2 f �1.U / iff y 2 ��1
P .x/, ��1

P .x/ is open for any 465

x 2 X . 466

Weierstrass Theorem. Let .X; �/ be a topological space and f W X ! R a 467

continuous real-valued function. If Y is a compact subset of X , then f attains its 468

bounds on Y . 469

Proof. As above, for each x 2 Y , define Ux D .�1; f .x//. Then ��1
P .x/ D 470

fy 2 Y W f .y/ < f .x// D f �1.Ux/ \ Y is an open set in the induced topology 471

on Y . By lemma 3.9 there exists a choice Z in Y such that ��1
P . Nx/ D ˆ. But 472

then f .Y / > f . Nx/ for no y 2 Y . Hence f .y/ < f . Nx/ for all y 2 Y . Thus 473

f .Z/ D sup.f; Y /. 474
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In the same way letQ be the relation onX given by xQy iff f .x/ < f .y/. Then
there is a choice NNx 2 Y such that f .y/ < f . NNx/ for no y 2 Y . Hence f .y/ 	 f . NNx/
for all y 2 Y , and so f . NNx/ D inf.f; Y /. Thus f attains its bounds on Y . ut

We can develop this result further. 475

Lemma 3.10. If f W .X; �/C .Z;S/ is a continuous function between topological 476

spaces, and Y is a compact subset of X , then 477

f .Y / D ff .y/ 2 Z W y 2 Y g 478

is compact. 479

Proof. Let fW˛g be an open cover for f .Y /. Then each member W˛ of this cover
may be expressed in the form W˛ D U˛ \ f .Y / where U˛ is an open set in 2. For
each a, let V˛ D f �1.U˛/\ Y . Now each V , is open in the induced topology on Y .
Moreover, for each y 2 Y , there exists someW˛ such that f .y/ 2 W˛ . Thus fV˛g is
an open cover for Y . Since Y is compact, fV˛g has a finite subcover fV˛ W ˛ 2 J g,
and so ff .V˛/ W ˛ 2 J g is a finite subcover of fW˛g. Thus f .Y / is compact. ut

Now a real-valued continuous function f is bounded on a compact set, Y (by 480

the Weierstrass Theorem). So f .Y / will be contained in Œf . NNx/; f . Nx/� say, for some 481

NNx 2 Y . Since f .Y /must also be compact, this suggests that a closed set of the form 482

Œa; b� must be compact. 483

For a set Y � R define sup .Y / D sup.id; Y /, the supremum of Y , and inf.Y / D 484

inf.id; Y /, the infimum of Y . Here id W R CR is the identity on R. The set Y � 485

R is bounded above (or below) iff its supremum (or infimum) is finite. The set is 486

bounded iff it is both bounded above and below. Thus a set of the form Œa; b�, say 487

with �1 < a < b < C1 is bounded. 488

Heine Borel Theorem. A closed bounded interval, Œa; b�, of the real line is 489

compact. 490

Sketch of Proof. Consider a family C D fŒa; q�; Œdj ; b� W i 2 I; j 2 J g of subsets 491

of Œa; b� with the finite intersection property. Suppose that neither I nor J is empty. 492

Let d D sup.fdj W j 2 J g/ and suppose that for some k 2 I; ck < d . Then there 493

exists i 2 I and j 2 J such that Œa;G� \ Œdj ; b� D ˆ, contradicting the finite 494

intersection property. Thus ci 	 d , and so Œa; ci �\ Œd; b� ¤ ˆ, for all i 2 I . Hence 495

the family C has non empty intersection. By Lemma 3.8, Œa; b� is compact. 496

Definition 3.6. A topological space .X; �/ is called Hausdorff iff any two distinct 497

points x; y 2 X have �-open neighbourhoodsUx; Uy such that Ux \ Uy D ˆ. 498

Lemma 3.11. If .X; d/ is a metric space then .X; �d/is Hausdorff, where rd is the 499

topology on X induced by the metric d . 500

Proof. For two points x ¤ y, let " D d.x; y/ ¤ 0. Define Ux D B


x; "

3

�
and 501

Ux D B


y; "

3

�
. 502
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Clearly, by the triangle inequality, B


x; "

3

� \ B 
y; "
3

� D ˆ. Otherwise there
would exist a point z such that d.x; z/ < "

3
; d.z; y/ < 5, which would imply that

d.x; y/ < d.x; z/ C d.z; y/ D 2"
3

. By contradiction the open balls of radius "
3

do
not intersect. Thus .x; �d / is Hausdorff. ut

A Hausdorff topological space is therefore a natural generalisation of a metric 503

space. 504

Lemma 3.12. If .X; �/ is a Hausdorff topological space, then any compact subset 505

Y of X is closed. 506

Proof. We seek to show that XnY is open, by showing that for any x 2 XnY , 507

there exists a neighbourhood G of x and an open set H containing Y such that 508

G \H D ˆ. Let x 2 XnY , and consider any y 2 Y . Since X is Hausdorff, there 509

exists a neighbourhood V.y/ of y and a neighbourhood U.y/, say, of x such that 510

V.y/ \ U.y/ D ˆ. Since the family fV.y/ W y 2 Y g is an open cover of Y , and Y 511

is compact, there exists a finite subcover fV.y/ W y 2 Ag, where A is a finite subset 512

of Y . 513

Let H D [y2V .y/ and G D \y2AU.y/. 514

Suppose that G \ H ¤ ˆ. Then this implies there exists y 2 A such that
V.y/\U.y/ is non-empty. ThusG\H D ˆ. SinceA is finite,G is open. Moreover
Y is contained in H . Thus XnY is open and Y is closed. ut
Lemma 3.13. If .X; �/ is a compact topological space and Y is a closed subset so 515

X , then Y is compact. 516

Proof. Let fU˛g be an open cover for Y , where each U˛ � X . Then fV˛ D U˛\Y g 517

is also an open cover for Y . 518

Since XnY is open, fXnY g [ fV˛g is an open cover for X . 519

Since X is compact there is a finite subcover, and since each V˛ � Y;XnY must
be a member of this subcover. Hence the subcover is of the form fXnY g [ fVj W
j 2 J g. But then fVj W j 2 J g is a finite subcover of fV˛g for Y . Hence Y is
compact. ut

Tychonoff’s Theorem. If .X; �/ and .Y;S/ are two compact topological spaces 520

then .X � Y; � � S/, with the product topology, is compact. 521

Proof. To see this we need only consider a cover for X � Y of the form fU˛ � Vˇg
for fU˛g an open cover for X and fVˇg an open cover for Y . Since both X and Y
are compact, both fU˛g and fV˛g have finite subcovers fUj gj2J and fVkgk2K , and
so fUj � Vk W .j; k/ 2 J �Kg is a finite subcover for X � Y . ut

As a corollary of this theorem, let Ik D Œak; bk� for k D 1; : : : ; n be a 522

family of closed bounded intervals in R. Each interval is compact by the Heine 523

Borel Theorem. Thus the closed cube I n D I1 � I2; : : : ; In in Rn is compact, by 524

Tychonoff’s Theorem. Say that a set Y � Rn is bounded iff for each y 2 Y there 525

exists some finite numberK.y/ such that kx�yk < K.y/ for all x 2 Y . Here kk is 526

any convenient norm on Rn. If Y is bounded then clearly there exists some closed 527

cube I n � Rn such that Y � I n. Thus we obtain: 528
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Lemma 3.14. If Y is a closed bounded subset of Rn then Y is compact. 529

Proof. By the above, there is a closed cube I n such that Y � I n. But I n is
compact by Tychonoff’s Theorem. Since Y is a closed subset of I n; Y is compact,
by Lemma 3.13. ut

In Rn a compact set Y is one that is both closed and bounded. To see this note 530

that Rn is certainly a metric space, and therefore Hausdorff. By Lemma 3.12, if 531

Y is compact, then it must be closed. To see that it must be bounded, consider 532

the unbounded closed interval A D Œ0;1/ in R, and an open cover fUk D 533

.k�2; k/I k D 1; : : : ;1g. Clearly ..�1; l/; .0; 2/; .1; 3/; : : :/ cover Œ0;1/. A finite 534

subcover must be bounded above by K , say, and so the point K does not belong to 535

the subcover. Hence Œ0;1/ is non-compact. 536

Lemma 3.15. A compact subset Y of R contains its bounds. 537

Proof. Let s D sup.id; Y / and i D inf.id; Y / be the supremum and infimum of
Y . Here id W R ! R is the identity function. By the discussion above, Y must
be bounded, and so i and s must be finite. We seek to show that Y contains
these bounds, i.e, that i 2 Y and s 2 Y . Suppose for example that s … Y .
By Lemma 3.12, Y must be closed and hence RnY must be open. But then there
exists a neighbourhood .s � "; s C "/ of s in RnY , and so s � "

2
… Y . But this

implies that y � s � "
2

for all y 2 Y , which contradicts the assumption that
s D sup.id; Y /. Hence s 2 Y . A similar argument shows that i 2 Y . Thus
Y D Œi; y1�U; : : : ; U Œyr ; s� say, and so Y contains its bounds. ut
Lemma 3.16. Let .X; �/ be a topological space and f W X ! R a continuous 538

real-valued function. If Y � X is compact then there exist points x0 and x1 in Y 539

such that f .x0/ � f .y/ � f .x1/ for all y 2 Y . 540

Proof. By Lemma 3.10, f .Y / is compact. By Lemma 3.15, f .Y / contains its 541

infimum and supremum. Thus there exists x0, x1 2 Y such that 542

f .x0/ � f .y/ � f .x1/ for all y 2 Y: 543

Note that f .Y / must be bounded, and so f .x0/ and f .x1/ must be finite. ut
We have here obtained a second proof of the Weierstrass Theorem that a 544

continuous real-valued function on a compact set attains its bounds, and shown 545

moreover that these bounds are finite. A useful application of this theorem is that if 546

Y is a compact set in Rn and x … Y then there is some point y in Y which is nearest 547

to x. Remember that we defined the distance from a point x in a metric space .X; d/ 548

to a subset Y of X to be d.x; Y / D inf.fx; Y / where fx W Y ! R is defined by 549

fx.y/ D d.x;�/.y/ D d.x; y/. 550

Lemma 3.17. Suppose Y is a subset of a metric space .X; d/ and x 2 X . Then the 551

function fx W Y ! R given by fx.y/ D d.x; y/ is continuous. 552

Proof. Consider y1; y2 2 Y and suppose that d.x; y1/ 	 d.x; y2/. Then jd.x; y1/� 553

d.x; y2/j D d.x; y1/� d.x; y2/. 554
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By the triangle inequality d.x; y1/ � d.x; y2/ C d.y2; y1/. Hence jd.x; y1/ � 555

d.x; y2/j � d.y1; y2/ and so d.y1; y2/ < ") jd.x; y1/� d.x; y2/j < ", for any 556

" > 0. 557

Thus for any " > 0, d.y1; y2/ < " ) jfx.y1/ � fx.y2/j < ", and so fx is
continuous. ut

Fig. 3.12

Lemma 3.18. If Y is a compact subset of a compact metric space X and x 2 X , 558

then there exists a point yC0 2 Y such that d.x; Y / D d.x; y0/ <1. 559

Proof. By Lemma 3.17, the function d.x;�/ W Y ! R is continuous. By
Lemma 3.16, this function attains its lower and upper bounds on Y . Thus there
exists y0 2 Y such that d.x; y0/ D inf.d.x;�/; Y / D d.x; Y /, where d.x; y0/
is finite. ut

The point y0 in Y such that d.x; y0/ D d.x; Y / is the nearest point in Y to x. 560

Note of course that if x 2 Y then d.x; Y / D 0. 561

More importantly, when Y is compact d.x; Y / D 0 if and only if x 2 Y . To see 562

this necessity, suppose that d.x; Y / D 0. Then by Lemma 3.18, there exists y0 2 Y 563

such that d.x; y0/ D 0. By the definition of a metric d.x; y0/ D 0 iff x D y0 and 564

so x 2 Y . The point y 2 Y that is nearest to x is dependent on the metric of course, 565

and may also not be unique. 566

3.4 Convexity 567

3.4.1 A Convex Set 568

If x; y are two points in a vector space, X , then the arc, Œx; y�, is the set fz 2 X W 569

9� 2 ŒO; 1� s.t. z D �x C .1 � �/yg. A point in the arc Œx; y� is called a convex 570
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combination of x and y. If Y is a subset of X , then the convex hull, con.Y /, of Y is 571

the smallest set in X that contains, for every pair of points x; y in Y , the arcŒx; y�. 572

The set Y is called convex iff con.Y / D Y . The set Y is strictly convex iff for any 573

x; y 2 Y the combination �x C .1 �X/y, for � 2 .0; 1/, belongs to the interior of 574

Y s. 575

Note that if Y is a vector subspace of the real vector space X then Y must be 576

convex. For then if x; y 2 Y both �; .1 � �/ 2 R and so �x C .1 � X/y 2 Y . 577

Definition 3.7. Let Y be a real vector space, or a convex subset of a real vector 578

space, and let f W Y ! R be a function. Then f is said to be 579

1. convex iff f .�x C .1 � �/Y / � �f .x/C .1 � X/f .Y / 580

2. concave iff f .�x C .1 � �/Y / 	 �f .x/C .1� X/f .Y / 581

3. quasi-concave iff f .�x C .1 � �/y/ 	 minŒf .x/; f .y/� for any x; y 2 Y and 582

any � 2 ŒO; l� 583

Suppose now that f W Y ! R and consider the preference P � Y � Y induced 584

by f . For notational convenience from now on we regard P as a correspondence 585

P W Y ! Y . That is define P by 586

P.x/ D fy 2 Y W f .y/ > f .x/g: 587

If f is quasi-concave then when y1, y2, 2 P.x/, 588

f .�y1 C .1 � �/y2/ 	 minŒf .y1/; f .y2/� > f .x/: 589

Hence �y1 C .1 � �/y2 2 P.x/. Thus for all x 2 Y , P.x/ is convex. 590

We shall call a preference correspondenceP W Y ! Y convex when Y is convex 591

and P is such that P.x/ is convex for all x 2 Y . 592

When a function f W Y ! R is quasi-concave then the strict preference 593

correspondence P defined by f is convex. Note also that the weak preference 594

R W Y ! Y given by 595

R.x/ D fy 2 Y W f .y/ 	 f .x/g 596

will also be convex. 597

If f W Y ! R is a concave function then it is quasi-concave. To see this consider 598

x; y 2 Y , and suppose that f .x/ � f .y/. By concavity, 599

f .�x C .1 � �/y/ 	 �f .x/C .1 � �/f .y/
	 �f .x/C .1 � �/f .x/
	 minŒf .x/; f .y/�:

Thus f is quasi-concave. Note however that a quasi-concave function need be 600

neither convex nor concave. However if f is a linear function then it is convex, 601
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concave and quasi-concave. There is a partial order > on Rn given by x > y iff 602

xi > yi where x D .x1; : : : ; xn/; y D .y1; : : : ; yn/. A function f W Rn ! R 603

is weakly monotonically increasing iff f .x/ > f .y/ for any x; y 2 Rn such that 604

x > y. A function f W Rn ! R has decreasing returns to scale iff f is weakly 605

monotonically increasing and concave. A very standard assumption in economic 606

theory is that feasible production of an output has decreasing returns to scale of 607

inputs, and that consumers’ utility or preference has decreasing returns to scale in 608

consumption. We shall return to this point below. 609

Fig. 3.13 (i)

Fig. 3.13 (ii)
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Fig. 3.13 (iii)

Fig. 3.13 (iv)

3.4.2 Examples 610

Example 3.2. (i) Consider the set X1 D f.x1; x2/ 2 R2 W x2 	 x1g. Clearly if 611

x2 	 x1 and x0
2 	 x0

1 then �x2 C .1 � A/x0
2 	 �x1.1 � �/x0

1, for � 2 Œ0; 1�. 612

Thus �.x1; x2/C .1�A/.x0
1; x

0
2/ D �x1 C .1� �/x0

1, �x2 C .1� �/x0
2 2 X1. 613

Hence X1 is convex. 614

On the other hand consider the set X2 D f.x1; x2/ 2 R2 W x2 	 x21g. 615

As Figure 3.13(i) indicates, this is a strictly convex set. However the set 616

X3 D f.x1; x2/ 2 R2 W jx2j 	 x21g is not convex. To see this suppose x2 < 0. 617
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Fig. 3.13 (v)

Then .x1; x2/ 2 X3 implies that x2 � �x21 . But then �x2 	 x21 . Clearly .x1; 0/ 618

belongs to the convex combination of .x1; x2/ and .x1;�x2/ yet .x1;O/ … X3 619

(ii) Consider now the set X4 D f.x1; x2/ W x2 > x31g. AS Figure 3.13(ii) shows 620

it is possible to choose .x1; x2/ and .x0
1; x

0
2/ with x1 < 0, so that the convex 621

combination of .x1; x2/ and .x1; x2/ does not belong to X4. However X5 D 622

f.x1; x2/ 2 R2 W x2 	 x31 and x1 	 0g and X6 D f.x1; x2/ 2 R2 W x2 � x31 and 623

x1 � 0g are both convex sets. 624

(iii) Now consider the set X7 D f.x1; x2/ 2 R2 W x1x2 	 1g. From Fig- 625

ure = 3.13(iii) it is clear that the restriction of the setX7 to the positive quadrant 626

R2C D f.x1; x2/ 2 R2 W x1 � 0 and x C 2 � 0g is strictly convex, as is the 627

restriction of x7 to the negative quadrant R D f.x1; x2/ 2 R2 W x1 � and 628

x2 � 0g. However if .x1; x2/ 2 X7\R2C then .�x1;�x2/ 2 X7\R2�. Clearly 629

the origin (0,0) belongs to the convex hull of .x1; x2/ and .�x1;�x2/, yet does 630

not belong to X7. Thus X7 is not convex. 631

Finally a set of the form 632

X8f.x1; x2/ 2 R2C W x2 � x˛1 for ˛ 2 .0; 1/g: 633

is also convex. See Figure 3.13(iv). 634

Example 3.3. (i) Consider the setB D f.x1; x2/ 2 R2 W .xl�a1/2C.x2�a2:/2 � 635

r2g. See Figure 3.13(v). This is the closed ball centered on .a1; a2/ D a, of 636

radius r . Suppose that x; y 2 B and a D �x C .1 � �/y for � 2 Œ0; 1�. 637

Let kk stand for the Euclidean norm. Then x; y both satisfy kx � ak � r , 638

ky�ak � r . But ka�a0k � �kx�akC.1��/ky�ak. Thus kz�ak � r and 639

so z 2 B . Hence B is convex. Moreover B is a closed and bounded subset of 640

R2 and is thus compact. For a general norm on Rn, the closed ball B D fx 2 641

Rn W kx � ak � rg will be compact and convex. In particular, if the Euclidean 642

norm is used, then B is strictly convex. 643

(ii) In the next section we define the hyperplane H.�; ˛/ normal to a vector � in 644

Rn to be fx 2 Rn W hp; xi D ˛g where ˛ is some real number. Suppose that 645
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x; y 2 H.�; x/. 646

Now h�; �x C .1 � �/yi D h�.�; x/C .1 � �/.�; y/i
D ˛;whenever � 2 Œ0; 1�

Thus H.�; ˛/ is a convex set. We also define the closed half-space HC.�; ˛/ by 647

HC.�; ˛/ D fx 2 Rn W hp; xi 	 ˛g. Clearly if x; y 2 HC.p; ˛/ then h�; �xC .1� 648

X/yi D .Xh�; xi C .1 � �/h�; yi 	 ˛ and so HC.�; ˛/ is also convex. 649

Notice that if B is the compact convex ball in Rn then there exists some � 2 Rn
650

and some a 2 R such that B � HC.�; ˛/. 651

If A andB are two convex sets in Rn thenA\B must also be a convex set, while 652

A [ B need not be. For example the union of two disjoint convex sets will not be 653

convex. 654

We have called a function f W Y ! R convex on Y iff f .�x C .1 � �/y/ � 655

�f .x/C .1 � �/f .y/ for x; y 2 Y . 656

Clearly this is equivalent to the requirement that the set F D f.z; x/ 2 R � Y W 657

z 	 f .x/g is convex. (See Figure 3.14.) 658

Fig. 3.14

To see this suppose .z1; x1/ and .z2; z2/ 2 F . 659

Then �.z1; x1/C.1��/.z2; x2/ 2 F iff �z2C.1��/z2 	 f .�x1C.1��/x2/. But 660

.f .x1/; x1/ and .f .x2/; x2/ 2 F , and so �z1C.1��/z2 	 �f .x1/C.1��/f .x2/ 	 661

f .�x1 C .1 � �/x2/ for � 2 Œ0; 1�. 662

In the same way f is concave on Y iff G D f.z; x/ 2 R � Y W z � f .x/g is 663

convex. If f W Y ! R is concave then the function .�f / W Y ! R, given by 664

.�f /.x/ D �f .x/, is convex and vice versa. 665

To see this note that if z 	 f .x/ then �z 	 �f .x/, and so 666

G D f.z; x/ 2 R � Y W z � f .x/g is convex implies that 667

F D f.z; x/ 2 R � Y W z 	 .�f /.x/g is convex. 668



UNCORRECTED
PROOF

3.4 Convexity

Finally f is quasi-concave on Y iff, for all z 2 R, the set G.z/ D fx 2 Y W z � 669

f .x/g is convex. 670

Notice that G.x/ is the image of G under the projection mapping pz W R � Y ! 671

Y W .z; x/! x. Since the image of a convex set under a projection is convex, clearly 672

G.z/ is convex for any z wheneverG is convex. As we know already this means that 673

a concave function is quasi-concave. We now apply these observations. 674

Example 3.4. (i) Let f W R! R by x ! x2. 675

As example 3.2(i) showed, the set F D f.x; z/ 2 R�R W z 	 f .x/ D x2g 676

is convex. Hence f is convex. 677

(ii) Now let f W R ! R by x ! x3. Example 3.2(ii) showed that the set F D 678

f.x; z/ 2 RC � R W z 	 f .x/ D x3g is convex and so f is convex on the 679

convex set RC D fx 2 R W x 	 0g. 680

On the other hand F D f.x; z/ 2 R� � R W z � f .x/ D x3g is convex 681

and so f is concave on the convex set R� D fx 2 R W x � 0g. 682

(iii) Let f W R ! R by x ! 1
x

. By example 3.2(iii) the set F D f.x; z/ 2 683

RC �R W z 	 f .x/ D 1
x
g is convex, and so f is convex on RC and concave 684

on R�. 685

(iv) Let f .x/ D x˛ where 0 < ˛ < 1. Then F D f.x; z/ 2 RC � R W z � 686

f .x/ D x˛g is convex, and so f is concave. 687

(v) Consider the exponential function exp W R ! R W x ! ex . Figure 3.15(i) 688

demonstrates that the exponential function is convex. Another’way of show- 689

ing this is to note that ex > f .x/ for any geometric function f W x ! xr for 690

r > 1, for any x 2 RC. 691

Since the geometric functions are convex, so is ex . On the other hand 692

as Figure 3.15(ii) shows the function loge W RC ! R, inverse to exp, is 693

concave. 694

(vi) Consider now f W R! R W .x; y/ ! xy. Just as in example 3.2(iii) the set 695

f.x; y/ 2 R2C W xy 	 tg D R2C \ f �1Œt;1/g is convex and so f is a quasi- 696

concave function on R2C. Similarly f is quasi-concave on R2. However f is 697

not quasi-concave on R2. 698

(vii) Let f W R2 ! R W .x1; x2/ ! r2 � .x1 � a1/2 � .x2 � a2/2 Since the 699

function g.x/ D x2 is convex, .�g/.x/ D �x2 is concave, and so clearly f 700

is a concave function. Moreover it is obvious that f has a supremum in R2
701

at the point .x1; x2/ D .a1; a2/. On the other hand the functions in examples 702

3.4 (iv) to (vi) are monotonically increasing 703

3.4.3 Separation Properties of Convex Sets 704

LetX be a vector space of dimension n with a scalar product h; i. DefineH.�; ˛/ D 705

fx 2 X W h�; xi D ˛g to be the hyperplane in X normal to the vector � 2 Rn. 706

It should be clear that H.�; ˛/ is an .n � 1/ dimensional plane displaced some 707
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Fig. 3.15

distance from the origin. To see this suppose that x D �� belongs to H.�; ˛/. Then 708

h�; h��i D �k�k2 D ˛. Thus � D ˛
k�k2 . Hence the length of x is kxk D jAjk�k D 709

j˛j
k�k and so x D ˙ j˛j

k�k2 �. 710

Clearly if y D �� C y0 belongs to H.�; ˛/ then h�; yi D h�; �� C y0i D 711

˛ C h�; y0i and so h�; y0i D 0. 712

Thus any vector y inH.�; ˛/ can be written in the form y D ��Cy0 where y0 is 713

orthogonal to �. Since there exist .n� 1/ linearly independent vectors y1; : : : ; yn�1, 714

all orthogonal to �, any vector y 2 H.�; ˛/ can be written in the form 715

y D ��C
n�1X
iD1

aiyi ; 716

where �� is a vector of length j˛j
k�k . Now let f�?g D fx 2 Rn W hp; xi D 0g. Clearly 717

f�?g is a vector subspace of Rn, of dimension .n � 1/ through the origin. 718

ThusH.�; ˛/ D ��Cf�g has the form of an .n�1/-dimensional vector subspace 719

displaced a distance j˛j
k�k along the vector �. Clearly if �1 and �2 are colinear vectors 720

(i.e., �2 D a�1 for some a 2 R) then f�?g D f.�2/?g. 721
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Suppose that ˛1�1
k�k2 D ˛2�2

k�k2 , then both H.�1; ˛1/ and H.�2; ˛2/ contain the same 722

point and are thus identical. ThusH
�

�1
k�2k ;

˛1k�1k
�

. 723

The hyperplaneH.�; ˛/ separates X into two closed half-spaces: 724

HC.�; ˛/ D fx 2 X W h�; xi 	 ˛g; and H�.�; ˛/ D fh�; xi � ˛g: 725

We shall also write 726

H0C.�; ˛/ D fx 2 X W h�; xi > ˛g; andH0�.�; ˛/ D fx 2 X W h�; xi < ˛g 727

for the open half-spaces formed by taking the interiors of HC.�; ˛/ and H�.�; ˛/, 728

in the case � ¤ 0. 729

Lemma 3.19. Let Y be a non-empty compact convex subset of a finite dimensional 730

real vector space X , and let x be a point in XnY . Then there is a hyperplane 731

H.�; ˛/ through a point y0 2 Y such that 732

h�; xi < ˛ D h�; y0i � h�; yi for all y 2 Y: 733

Proof. As in Lemma 3.17 let fx W Y ! R be the function fx D .y/ D kx � yk, 734

where kk is the norm induced from the scalar product h; i in X . 735

By Lemma 3.18 there exists a point y0 2 Y such that kx � y0k D inf.fx; Y / D 736

d.x; Y /. Thus kx � y0k � kx � yk for all y 2 Y . Now define � D y0 � x and 737

˛ D h�; y0i. Then 738

h�; xi D h�; y0i � h�; .y0 � x/i D h�; y0i � k�k2 < h�; y0i: 739

Suppose now that there is a point y 2 Y such that h�; y0i > h�; yi. By convexity, 740

w D �y C .1 � �/y0 2 Y , where X belongs to the interval (0,1). But 741

kx � y0k2 � kx � wk2 D kx � y0k2 � kx � �y � y0 C �y0k2
D 2�h�; .y0 � y/i � �2ky � y0k2:

Now h�; y0i > h�; yi and so, for sufficiently small �, the right hand side is
positive. Thus there exists a point w in Y , close to yo, such that kx�y0k > kx�wk
. But this contradicts the assumption that y0 is the nearest point in Y to x. Thus
h�; yi � h�; y0i for all y 2 Y . Hence h�; xi < ˛ D h�; y0i � h�; yi for all
y 2 Y . ut

Note that the point yo belongs to the hyperplane H.�; ˛/, the set Y belongs to 742

the closed half-spaceHCh�; ˛i, while the point x belongs to the open halfspace 743

H0�.�; ˛/ D fz 2 X W h�; zi < ˛g: 744
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Fig. 3.16

Thus the hyperplane separates the point x from the compact convex set Y (see 745

Figure 3.16). 746

While convexity is necessary for the proof of this theorem, the compactness 747

requirement may be weakened to Y being closed. Suppose however that Y is an 748

open set. Then it is possible to choose a point x outside Y , which is, nonetheless, an 749

accumulation point of Y such that d.x; Y / D 0. 750

On the other hand if Y is compact but not convex, then a situation such as 751

Figure 3.17 is possible. Clearly no hyperplane separates x from Y . 752

Fig. 3.17

If A and B are two sets, and H.�; ˛/ D H is a hyperplane such that A � 753

H�.�; ˛/ and B � HC.�; ˛/ then say that H weakly separates A and B . If H is 754

such that A � H�.�; ˛/ and B � HC.�; ˛/ then say H strongly separates A and 755

B . Note in the latter case that it is necessary that A \ B D ˆ. 756

In Lemma 3.19 we found a hyperplane H.�; ˛/ such that h�; xi < ˛. Clearly it 757

is possible to find ˛� < ˛ such that h�; xi < ˛�. 758

Thus the hyperplaneH.�; ˛ / strongly separates x from the compact convex set 759

Y . 760
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If Y is convex but not compact, then it is possible to find a hyperplane H that 761

weakly separates X from Y . 762

We now extend this result to the separation of convex sets. 763

Separating Hyperplane Theorem. Suppose that A and B are two disjoint non- 764

empty convex sets of a finite dimensional vector space X . Then there exists a 765

hyperplane H that weakly separates A from B . If both A and B are compact then 766

H strongly separates A from B . 767

Proof. Since A and B are convex the set A � B D fw 2 X W w D a � b where 768

a 2 A; b 2 Bg is also convex. 769

To see this suppose a1 � b1 and a2 � b2 2 A� B . Then 770

�.a1 � b1/C .1� �/.a2 � b2/ D Œ�a1 C .1� �/a2�C Œ�b1 C .1� �/b2� 2 A�B: 771

Now A\B D ˆ. Thus there exists no point in both A and B , and so 0 … A�B . By 772

Lemma 3.19, there exists a hyperplaneH.��; 0/ weakly separating 0 from A � B , 773

i.e., h�; 0i � h�;wi for all w 2 B�A. But then h�; ai � h�; bi for all a 2 A; b 2 B . 774

Choose ˛ 2 Œsupa2Ah�; ai, infb2Bh�; bi�. In the case that A;B are noncompact, 775

it is possible that 776

supa2Ah�; ai D infb2Bh�; bi: 777

Thus h�; ai � ˛ � h�; bi and so H.�; a/ weakly separates A and B . 778

Consider now the case when A and B are compact. 779

The function �� W X ! R given by ��.x/ D h�; xi is clearly continuous. By 780

Lemma 3.16, since both A and B are compact, there exist points Na 2 A and Nb 2 B 781

such that 782

h�; Nai D supa2Ah�; ai and h�; Nbi D infb2B h�; bi: 783

If supa2Ah�; ai D infb2Bh�; bi, then h�; Nai D h�; Nbi, and so Na D Nb, contradicting 784

A\ B D jˆ. 785

Thus h�; Nai < h�; Nbi and we can choose a such that h�; ai < h�; Nai < ˛ < 786

h�; bi � h�; bi for all a; b in A;B . Thus H.�; ˛/ strongly separates A and B . (See 787

Figure 3.18(ii).)Q:E:D. 788

Example 3.5. Hildenbrand and Kirman (1976) have applied this theorem to find 789

a price vector which supports a final allocation of economic resources. Consider 790

a society M D f1; : : : ; mg in which each individual i has an initial endowment 791

ei D .ei1; : : : ; ein/ 2 R of n commodities. At price vector p D .p1; : : : ; pn/, the 792

budget set of individual i is 793

Bi .p/ D fx 2 Rn W hp; xi � hp; xi � hp; eiig: 794

Each individual has a preference relation Pi on Rn �Rn, and at the price vector 795

p the demandDi.p/ by i is the set 796

fx 2 Bi .p/ W yPix for no y 2 Bi.p/g: 797
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Fig. 3.18 (i). Weak
separation

Fig. 3.18 (ii). Strong
separation

Let fi D .fi1; : : : ; fin/ 2 Rn be the final allocation to individual i , for i D 798

1; : : : ; m. Suppose there exists a price vector p D .p1; : : : ; pn/ with the property 799

.�/xPifiC ) hp; xi > hp; eii. Then this would imply that fi 2 Bi.p/ )2 800

Di.p/. If property .�/ holds at some price vector p, for each f , then fi 2 Di.p/ 801

for each i . 802

To show existence of such a price vector, let 803

�iPi .fi / � ei 2 Rn: 804
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Here as before Pi.fi / D fx 2 Rn W xPifi g. Suppose that there exists a 805

hyperplane H.p; 0/ strongly separating 0 from �i . In this case 0 < hp; x � eii 806

for all x 2 Pi.fi /. But this is equivalent to hp; xi > hp; eii for all x 2 Pi .fi /. 807

Let � D ConŒ[i2N�i � be convex hull of the sets �i ; i 2 M . Clearly if 0 … � and 808

there is a hyperplaneH.p; 0/ strongly separating 0 from � , then p is a price vector 809

which supports the final allocation f1; : : : ; fn. 810

3.5 Optimisation on Convex Sets 811

A key notion underlying economic theory is that of the maximisation of an objective 812

function subject to one or a number of constraints. The most elementary case of 813

such a problem is the one addressed by the Weierstrass Theorem: if f W X ! R 814

is a continuous function, and Y is a compact constraint set then there exists some 815

point Ny such that f . Ny/ D sup.f; Y /. Here Ny is a maximum point of f on Y . 816

Using the Separating Hyperplane Theorem we can extend this analysis to the 817

optimisation of a convex preference correspondence on a compact convex constraint 818

set. 819

3.5.1 Optimisation of a Convex Preference Correspondence 820

Suppose that Y is a compact, convex constraint set in Rn and P W R ! Rn is a 821

preference correspondence which is convex (i.e., P.x/ is convex for all x 2 Rn). A 822

choice for P on Y is a point Ny 2 Y such that P. Ny/ \ Y D ˆ. 823

We shall say that P is non-satiated in Rn iff for no y 2 Rn is it the case 824

that P.y/ D ˆ. A sufficient condition to ensure non-satiation for example is the 825

assumption of monotonicity, i.e., x > y (where as before this means xi > yi , for 826

each of the coordinates xi ; yi ; i D 1; : : : ; n) implies.that x 2 P.y/. 827

Say that P is locally non-satiated in Rn iff for each y 2 Rn and any 828

neighbourhoodUy of y in Rn, then P.y/ \ Uy ¤ ˆ. 829

Clearly monotonicity implies local non-satiation implies non-satiation. 830

Suppose that y belongs to the interior of the compact constraint set Y . Then 831

there is a neighbourhoodUy of y within Y . Consequently P.y/\Uy ¤ ˆ and so y 832

cannot be a choice from Y . On the other hand, since Y is compact it is closed, and so 833

if y belongs to the boundary ıY of Y , it belongs to Y itself. By definition if y 2 ıY 834

then any neighbourhood Uy of y intersects RnnY . Thus when P.y/ � RnnY; y 835

will be a choice from Y . Alternatively if y is a choice of P from Y , then y must 836

belong to the boundary of P . 837

Lemma 3.20. Let Y be a compact, convex constraint set in Rn and let P W Rn ! 838

Rn be a preference correspondence which is locally non-satiated, and is such that, 839

for all x 2 Rn; P.x/ is open and convex. Then Ny is a choice of P from Y iff there 840
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is a hyperplaneH.p; ˛/ through Ny in Y which separates Y from P. Ny/ in the sense 841

that 842

hp; yi � ˛ D hp; Nyi < hp; xi for all y 2 Y and all x 2 P. Ny/: 843

Proof. Suppose that the hyperplaneH.p; ˛/ contains Ny and separates Y from P. Ny/ 844

in the above sense. Clearly Ny must belong to the boundary of Y . Moreover hp; yi < 845

hp; xi for all y 2 Y; x 2 P. Ny/. Thus Y \ P. Ny/ D ˆ and so Ny is the choice of P 846

from Y . 847

On the other hand suppose that Ny is a choice. Then P. Ny/ \ Y D ˆ. 848

Moreover the local non-satiation property, P. Ny/ \ U Ny ¤ ˆ for U Ny a neighbor- 849

hood of Ny in Rn, guarantees that Ny must belong to the boundary of Y . Since Y and 850

P.V / are both convex, there exists a hyperplaneH.p; ˛/ through Ny such that 851

hp; yi � ˛ D hp; Nyi � hp; xi 852

for all y 2 Y , all x 2 P. Ny/. But P. Ny/ is open, and so the last inequality can be 853

written hp; Nyi < hp; xi. Q:E:D. 854

Note that if either the constraint set, Y , or the correspondence P is such that 855

P.y/ is strictly convex, for all y 2 Rn, then the choice Ny is unique. 856

If f W Rn ! R is a concave or quasi-concave function then application of 857

this lemma to the preference correspondence P W Rn ! R, where P.x/ D fy 2 858

Rn W f .y/ > f .x/g, characterises the maximum point Ny of f on Y . Here Ny is a 859

maximum point of f on Y if f .R/ D sup.f; Y /. Note that local non-satiation of 860

P requires that for any point x in Rn, and any neighbourhoodUx of x in Xn, there 861

exists y 2 Ux such that f .y/ > f .x/. 862

The vector p D .p1; : : : ; pn/ which characterises the hyperplane H.p; ˛/ is 863

called in economic applications the vector of shadow prices. The reason for this will 864

become clear in the following example. 865

Example 3.6. As an example suppose that optimal use of .n � 1/ different inputs 866

.x1; : : : ; xn�1/ gives rise to an output y, say, where y D y.x1; : : : ; xn�1/. Any 867

n vector .x1; : : : ; xn�1; xn/ is feasible as long as xn � y.x1; : : : ; xn�1/. Here xn 868

is the output. Write g.x1; : : : ; xn�1; xn/ D y.x1; : : : ; xn�1/ � xn. Then a vector 869

x D .x1; : : : ; xn�1; xn/ is feasible iff g.x/ 	 0. 870

Suppose now that y D y.x1; : : : ; xn�1/ is a concave function in x1; : : : ; xn�1. 871

Then clearly the set G D fx 2 Rn W g.x/ 	 0g is a convex set. Now let 872

�.x1; : : : ; xn�1; xn/ D �Ppixi C pnxn be the profit function of the producer, 873

when prices for inputs and outputs are given exogenously by .�p1; : : : ;�pn�1; pn/. 874

Again let P W RnCRn be the preference correspondenceP.x/ D fz 2 Rn W �.z/ > 875

�.x/g. Since for each x; P.x/ is convex, and locally non-satiated, there is a choice 876

Nx and a hyperplaneH.�; ˛/ separating P. Nx/ from G. 877

Indeed it is clear from the construction that P. Nx/ � H0C.�; ˛/ and G � 878

H�.�; ˛/. 879

Moreover the hyperplaneH.�; ˛/ must coincide with the set of points fx 2 Rn W 880

�.x/ D �. Nx/g. Thus the hyperplaneH.�; ˛/ has the form 881
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Fig. 3.19

fx 2 Rn W hp; xi D �. Nx/g 882

and so may be written H.p; �.x//. Note that the intercept on the xn axis is �. Nx/
pn

883

while the distance of the hyperplane from the origin is �. Nx/
kpk D �. Nx/pP

p2i

. Thus the 884

intercept gives the profit measured in units of output, while the distance from the 885

origin of the profit hyperplane gives the profit in terms of a normalized price vector 886

.kpk/. 887

Figure 3.19 illustrates the situation with one input .x C 1/ and one output .x2/. 888

Precisely the same analysis can be performed when optimal production is 889

characterised by a general production function F W Rn CR. 890

Here x1; : : : ; xm are inputs, with prices �p1; : : : ;�pm and xmC1; : : : ; xn are 891

outputs with prices pmC1; : : : ; pn. Let p D .�p1; : : : ;�pm;�pmC1; : : : ; pn/ 2 Rn. 892

Define F so that a vector x 2 Rn is feasible iff F.x/ 	 0. Note that we also 893

need to restrict all inputs and outputs to be non-negative. Therefore define 894

RnC D fx W xi 	 0 for i D 1; : : : ; ng: 895

Assume that the feasible set (or production set) 896

G D fx 2 RnC W F.x/ 	 0g is convex. 897

As before let P W Rn ! Rn where P.x/ D fz 2 Rn W �.z/ > �.x/g. Then the 898

point Nx is a choice of P from G iff P maximises the profit function 899
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�.x/ D
n�mX
jD1

pmCj xmCj �
mX
jD1

pj xj : 900

By the previous example Nx is a choice iff the hyperplane H.p; �. Nx// separates 901

P. Nx/ and G: i.e., P. Nx/ � H0C.p; �. Nx// and G � H�.p; �. Nx//. 902

In the next chapter we shall use this optimality condition to characterise the 903

choice Nm more fully in the case when F is “smooth”. 904

Example 3.7. Consider now the case of a consumer maximising a preference 905

correspondence P W Rn ! Rn subject to a budget constraint B.p/ which is 906

dependent on a set of exogeneous prices p1; : : : ; pn. 907

For example the consumer may hold an initial set of endowments .e1; : : : ; en/, 908

so let 909

I D
nX
iD1

pi ei D hp; ei: 910

The budget set is then 911

B.p/ D fx 2 RnC W hp; xi � I g: 912

where for convenience we assume the consumer only buys a non-negative amount 913

of each commodity. Suppose that P is monotonic, and P.x/ is open, convex for 914

all x 2 Rn. As before Nx is a choice from B.p/ iff there is a hyperplane H.�; ˛/ 915

separating P. Nx/ from B.p/. 916

Fig. 3.20

Under these conditions the choice must belong to the upper boundary of B.p/ 917

and so satisfy .p; Nx/ D .p; e/ D I . Thus the hyperplane has the form H.p; I /, 918
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and so the optimality condition is P. Nx/ � H0C.p; I / and B.p/ � H�.p; I /; i.e., 919

.p; x/ � I D .p; Nx/ < .p; y/ for all x 2 B.p/ and all y 2 P. Nx/. 920

Figure 3.20 illustrates the situation with two commodities x1 and x2. 921

In the next chapter we use this optimality condition to characterise a choice when 922

preference is given by a smooth utility function f W Rn ! R. 923

In the previous two examples we considered 924

1. opimisation of a profit function, which is determined by exogenously given 925

prices, subject to a fixed production constraint, and 926

2. optimisation of a fixed preference correspondence, subject to a budget constraint, 927

which is again determined by exogenous prices. 928

Clearly at a given price vector each producer will “demand” a certain input vector 929

and supply a particular output vector, so that the combination is his choice in the 930

environment determined by p. In the same way a consumer will respond to a price 931

vectorp by demanding optimal amounts of each commodity, and possibly supplying 932

other commodities such as labor, or various endowments. In contrast to Example 3.7, 933

regard all prices as positive, and consider a commodity xj demanded by an agent 934

i as an input to be negative, and positive when supplied as an output. Let Nxij.p/ 935

be the optimal demand or supply of commodity j by agent i at the price vector p, 936

with m agents and n commodities, then market equilibrium of supply and demand 937

in the economy occurs when
Pm

iD1
Pn

jD1 Nxij.p/ D 0. A price vector which leads to 938

market equilibrium in demand and supply is called an equilibrium price vector. 939

Example 3.8. To give a simple example, consider two agents. The first agent 940

controls a machine which makes use of labor, x, to produce a single output y. 941

Regard x 2 .�1; 0� and consider a price vector p 2 R2C, where p D .w; r/ 942

and w is the price of labor, and r the price of the output. An output is feasible from 943

Agent One iff F.x; y/ 	 0. 944

Agent Two is the only supplier of labor, but is averse to working. His preference 945

is described by a quasi-concave utility function f W R2 ! R and we restrict 946

attention to a domain 947

D D f.x; y/ 2 R2 W x � 0; y 	 0g: 948

Assume that f is monotonic, i.e., if x1 < x2 and y1 < y2 then f .x1; y1/ < 949

f .x2; y2/. The budget constraint of Agent Two at .w; r/ is therefore 950

B.w; r/ D f.x1; y2/ 2 D W ry2 � wjxjg; 951

where jxj is the quantity of labor supplied, and y2 is the amount of commodity y 952

consumed. Profit for Agent One is �.x; y/ D ry � wx, and we shall assume that 953

this agent then Consumes an amount y1 D �.x;y/

r
of commodity y. 954

For equilibrium of supply and demand at prices .w; p/ 955

1. Ny D Ny1 C Ny2; 956
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2. . Nx; Ny/ maximises �.x; y/ D Nry � Nwx subject to F.x; y/ 	 0; 957

3. . Nx; Ny2/ maximises f .x; y2/ subject to Nry2 D Nwx. 958

At any point .x; y/ 2 D, and vector .w; r/ define 959

P.x; y/ D f.x0; y0/ 2 D W f .x0; y0 � y1/ > f .x; y � y1/g 960

where as above y1 D ry�wx
r

is the amount of commodity y consumed by the 961

producer. Thus P.x; y/ is the preference correspondence of Agent One displaced 962

by the distance y1 up the y-axis. 963

Figure 3.21 illustrates that it is possible to find a vector .w; r/ such that H D 964

H.w; r/; �. Nx; Ny// separates P. Nx; Ny/ and the production set 965

G D f.x; y/ 2 D W F.x; y/ 	 0g: 966

As in example 3.6, the intersect of H with the y-axis is Ny1 D �. Nx; Ny/
r

, the 967

consumption of y by Agent One. 968

The hyperplaneH is the set 969

f.x; y/ W ry C wx D r Ny1g: 970

Hence for all .x; y/ 2 H , .x; y � Ny1/ satisfies r.y � Ny1/C wx D 0. 971

ThusH is the boundary of the second agent’s budget set f.x; y2/ W ryCwx D 0g 972

displaced up the y-axis by Ny1. 973

Consequently Ny D Ny1 C Ny2 and so . Nx; Ny/ is a market equilibrium. 974

Fig. 3.21
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Note that the hyperplane separation satisfies: 975

py � rx � �. Nx; Ny/ < ry0 � wx0
976

for all .x; y/ 2 G, and all .x0; y0/ 2 P. Nx; Ny/. 977

As above .x0; y0/ 2 P. Nx; Ny/ iff f .x0; y0� Ny1/ > f . Nx; Ny2/. So the right hand side 978

implies that if .x0; y0/ 2 P. Nx; Ny/, then ry0 � wx0 > �. Nx; Ny/. 979

Since y0
2 D y0 � Ny1; ry0

2 � wx0 > 0 or .x0; y0 � Ny1/ 2 H0C.. Nw; Nr/; 0/ and so 980

.x0 � y0
1/ is infeasible for Agent Two. 981

Finally . Nx; Ny/ maximises �.x; y/, subject to .x; y/ 2 G, and so . Nx; Ny/ 2 G and 982

so . Nx; Ny/ results from optimising behaviour by both agents at the price vector .w; r/. 983

As this example illustrates it is possible to show existence of a market equilib- 984

rium in economies characterised by compact convex constraint sets, and convex 985

preference correspondences. To do this in a general context however requires more 986

powerful mathematical tools, which we shall introduce in � 3.8 below. Before this 987

however we consider one further application of the hyperplane separation theorem 988

to a situation where we wish to optimise a concave objective function subject to a 989

number of concave constraints. 990

3.6 Kuhn-Tucker Theorem 991

Here we consider a family of constraints in Rn. Let g D .g1; : : : ; gm/ W Rn ! Rm. 992

As before let RmC D f.y1; : : : ; ym/ W yi 	 0 for i D 1; : : : ; ng. A point x is 993

feasible iff x 2 RnC and g.x/ 2 RmC (i.e., gi .x/ 	 0 for i D 1; : : : Im). Let 994

f W Rn ! R be the objective function. Say that x� 2 Rn is an optimum of the 995

constrained optimisation problem .f; g/ iff x� solves the problem: 996

maximise f .x/ subject to the feasibility constraint g.x/ 2 RmC; x 2 RnC. 997

Call the problem .f; g/ solvable iff there is some x 2 RnC such that gi .x/ > 0 998

for i D 1; : : : ; m. The Lagrangian to the problem .f; g/ is: 999

L.x; �/ D f .x/C
mX
iD1

�igi .x/ D f .x/C .�; g.x// 1000

where x 2 RnC and � D .�1; : : : ; �m/ 2 RmC. The pair .x�; ��/ 2 RnCm
C is called a 1001

global saddle point for the problem .f; g/ iff 1002

L.x; ��/ � L.x�; ��/ � L.x�; �/ 1003

for all x 2 RnC, � 2 RmC. 1004

Kuhn-Tucker Theorem 1. Suppose f; g1; : : : ; gm W Rn ! Rm are concave 1005

functions for all x 2 RnC. Then if x� is an optimum to the solvable problem .f; g/ W 1006

Rn ! RmC1 there exists a �� 2 RmC such that .x�; ��/ is a saddle point for .f; g/. 1007
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Proof. Let A D fy 2 RmC1 W 9x 2 RnC W y � .f; g/.x/g. Here 1008

.f .x/; g.x/; : : : ; gm.x//. Thus y D .y1; : : : ; ymC1/ 2 A iff x 2 RnC such that 1009

y1 � f .x/
yjC1 � gj .x/ for j D 1; : : : ; m:

Let x� be an optimum and 1010

B D fz D .z1; : : : ; zmC1/ 2 R� W z1 > f .x�/ and .z2; : : : ; zmC1/ > 0g: 1011

Since f; g are concave, A is convex. To see this suppose y1; y2 2 A. But since 1012

both f and g are concave af .x1/C.1�a/f .x2/ < f .ax1C.1�a/x2/ and similarly 1013

for g, for any a 2 ŒO; 1�. Thus 1014

ay1 C .1 � a/y2 � a.f; g/.x1/C .1 � a/.f; g/.x2/ � .f; g/.axC.1 � a/x2/ 1015

Since x1; x2 2 RnC; ax1 C .1� a/x2 2 RnC, and so ay1 C .1 � a/y2 2 RnC. 1016

Clearly B is convex, since az11C .1� a/z12 > f .x�/ if a 2 Œ0; 1� and z11; z12 > 1017

f .x�/. 1018

To see A\B D ˆ, consider x 2 Rn such that g.x/ < 0. Then .y2; : : : ; ymC1/ � 1019

g.x/ < O � .z2; : : : ; zmC1/. 1020

If g.x/ 2 RmC then x is feasible. In this case y1 � f .x/ � f .x�/ < z1. 1021

By the separating hyperplane theorem, there exists .p1; : : : ; pmC1/ 2 RmC1 and 1022

˛ 2 R such that H.p; ˛/ D fw 2 RmC1 W PmC1
jD1 wj pj D ˛g separates A and B , 1023

i.e.,
PmC1

jD1 pj yj � ˛ �
PmC1

jD1 pj zj for any y 2 A and z 2 B . 1024

Moreover p 2 RmC1
C . By the definition of A, for any y 2 A; 9x 2 R; such that 1025

y � .f; g/.x/. 1026

Thus for any x 2 RnC, 1027

p1f .x/C
mX
jD2

pj gj .x/ �
mC1X
jD1

pj zj : 1028

Since .f .x�/; 0; : : : ; 0/ belongs to the boundary of B , 1029

p1f .x/C
mX
jD2

pj gj .x/ � p1f .x�/: 1030

Suppose p1 D 0. Since p 2 RmC1
C , there exists pj > 0. 1031

Since the problem is solvable, 9x 2 RnC such that gj .x/ > 0. But this gives 1032

mP
jD2

pj gj .x/ > 0, contradicting p1 D 0. Hence p1 > 0. 1033
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Let ��
j D pjC1

p1
for j D 1; : : : ; m. 1034

Then L.x; ��/ D f .x/ C �Pm
jD1 ��

j gj .x/ � f .x�/ for all x 2 RnC, where 1035

�� D .��
1 ; : : : ; �

�
m/ 2 RmC. Since x� is feasible, g.x�/ 2 RmC, and h��; g.x�/i 	 0. 1036

But f .x�/C h��g; .x�/i � f .x�/ implying h��; g.x�/i � 0. Thus h��; g.x�/i D 1037

0. Clearly h�; g.x�/i 	 0 if � 2 RmC. Thus L.x; ��/ � L.x�; ��/ � L.x�; �/ for 1038

any x 2 RnC; � 2 RmC. 1039

Kuhn-Tucker Theorem 2. If the pair .x�; ��/ is a global saddle point for the 1040

problem .f; g/, then x� is an optimum. 1041

Proof. By the assumption 1042

L.x; ��/ � L.x�; ��/ � L.x�; �/ 1043

for all x 2 RnC, � 2 RmC. 1044

Choose � D .��
1 ; : : : ; 2�

�
i ; : : : ; �

�
m/. 1045

Then L.x�; �/ 	 L.x�; ��/ implies gi .x�/��
i 	 0. If ��

i ¤ 0 then gi .x�/ 	 0, 1046

and so h��; g.x�/i 	 0. 1047

On the other hand, L.x�; ��/ � L.x�; O/ implies h��; g.x�/i � 0. Thus 1048

h��; g.x�/i D 0. Hence f .x/ C h�; g.x// � f .x�/ � f .x�/ C h�; g.x�/i. If 1049

x is feasible, g.x/ 	 0 and so h��; g.x/i 	 0. 1050

Thus f .x/ � f .x/ C h��; g.x/i � f .x�/ for all x 2 RnC, whenever 1051

g.x/� 2 RmC. Hence x� is an optimum for the problem .f; g/. Note that for z 1052

concave optimisation problem .f; g/; x� is an optimum for .f; g/ iff .x�; A�/ is 1053

a global saddle point for the Lagrangian L.x; �/; � 2 RmC. Moreover .x�; ��/ are 1054

such that ���; g.x�/i minimises h�; g.x/i for all � 2 RmC, x 2 RnC; g.x/ 2 RmC. 1055

Since h��; g.x�/i D 0 this implies that if gi .x�/ > 0 then ��
i D 0 and if 1056

��
i > 0 then gi .x�/ D 0. 1057

The coefficients .��
1 ; : : : ; �

�
m/ are called shadow prices. If the optimum is such 1058

that gi .x�/ > 0 then the shadow price ��
1 D 0. In other words if the optimum does 1059

not lie in the boundary of the i th constraint set @Bi D fx W gi .x/ D 0g, then this 1060

constraint is slack, with zero shadow price. If the shadow price is non zero then the 1061

constraint cannot be slack, and the optimum lies on the boundary of the constraint 1062

set. 1063

In the case of a single constraint, the assumption of non-satiation was sufficient 1064

to guarantee that the constraint was not slack. 1065

In this case 1066

f .x/C p2

p1
g.x/ � f .x�/ � f .x�/C �g.x�/ 1067

for any x 2 RC, and � 2 RC, where p2
p1
> 0. 1068

The Kuhn-Tucker theorem is of particular use when objective and constraint 1069

functions are smooth. In this case the Lagrangean permits computation of the 1070

optimal points of the problem. We deal with these procedures in Chapter 4. 1071
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3.7 Choice on Compact Sets 1072

In Lemma 3.9 we showed that when a preference relation is acyclic and lower demi- 1073

continuous (LDC) on a compact space, X , then P admits a choice. Lemma 3.20 1074

gives a different kind of result making use of compactness and convexity of the 1075

constraint set, and convexity and openness of the image P.x/ at each point x. 1076

We now present a class of related results using compactness, convexity and lower 1077

demi-continuity. These results are essentially all based on the Brouwer Fixed Point 1078

Theorem (Brouwer, 1912) and povide the technology for proving existence of a 1079

market equilibrium. We first introduce the notion of retraction and contractibility, 1080

and then show that any continuous function on the closed ball in Rn admits a fixed 1081

point. 1082

Definition 3.7. Let X be a toplogical space. 1083

(i) Suppose Y is a subset of X . Say Y has the fixed point property iff whenever 1084

f W Y ! X is a continuous function (with respect to the induced topology 1085

on Y ) such that f .Y / D ff .y/ 2 X W y 2 Y g � Y , then there exists a point 1086

Nx 2 Y such that f . Nx/ D Nx. 1087

(ii) If Y is a topological space, and there exists a bijective continous function 1088

h W X ! Y such that h�1 is also continuous then h is called a homeomorphism 1089

and X; Y are said to be homeomorphic (see �1.2.3 for the definition of 1090

bijective). 1091

(iii) If Y is a topological space and there exist continuous functions g W Y ! X 1092

and h W X ! Y such that h ı g W Y ! X ! Y is the identity on Y , then h is 1093

called an r-map (for g). 1094

(iv) If Y � Z � X and g D id W Y ! Y is the (continuous) identity map and 1095

h W Z ! Y is an r-map for g then h is called a retraction (of Z on Y ) and Y 1096

is called a retract of Z. 1097

(v) If Y � X and there exists a continuous function f W Y � Œ0; 1�! Y such that 1098

f .y; 0/ D y (so f .; 0/ is the identity on Y ) and f .y; 1/ D y0 2 Y , for all 1099

y 2 Y , then Y is said to be contractible. 1100

(vi) Suppose that Y � Z � X and there exists a continuous function f W Z � 1101

Œ0; 1�! Z such that f .z; 0/ D z8z 2 Z, f .y; t/ D y8y 2 Y and f .z; 1/ D 1102

h.z/ where h W Z ! Y is a retraction, then f is called a strong retraction of 1103

Z on Y , and Y is called a deformation retract of Z. 1104

To illustrate the idea of contractibility, observe that the closed Euclidean ball in 1105

Rn of radius , centered at x, namely 1106

Bn D clos.Bd .x;„// D fy 2 Rn W d.x; y/ � „g; 1107

is obviously strictly convex and compact. Moreover the center, fxg,is clearly a 1108

deformation retract of Bn.To see this let f .y; t/ D .1 � t/y C tx for y 2 Bn. 1109

Clearly f .y; 1/ D h.y/ D fxg so h W Bn ! fxg and h.x/ D x.Since f is 1110

continuous, this also implies that Bn is contractible. A continuous function such as 1111



UNCORRECTED
PROOF

3.7 Choice on Compact Sets

f W Bn � Œ0; 1� ! Bn, or more generally f W Z � Œ0; 1� ! Z, is often called 1112

a homotopy and written ft W Z ! Z where ft .z/ D f .z; t/. The homotopy ft 1113

between the identity and the retraction f1 of Z on Y means that Z and Y are 1114

“topologically” equivalent (in some sense). Thus the ball Bn and the point fxg are 1115

topologically equivalent. More generally, if Y is contractible and there is a strong 1116

retraction of Z on Y , then Z is also contractible. 1117

Lemma 3.21. Let X be a topological space. If Y is contractible and Y � Z � X 1118

such that Y is a deformation retract of Z, then Z is contractible. 1119

Proof. Let g W Z � Œ0; 1� ! Z be the strong retraction of Z on Y , and let f W 1120

Y � Œ0; 1�! Y be the contraction of Y to y 2 Y . Define 1121

r W Z � Œ0; 1
2
�! Z by r.x; t/ D g.z; 2t/

r 0 W Z � Œ1
2
; 1�! Z by r 0.z; t/ D f .g.z; 1/; 2t � 1/:

To see this define a contraction s of Z onto y0. Note that r.z; 1
2
/ D r 0.z; 1

2
/,

since g.z; 1/ D f .g.z; 1/; 0/. This follows because g is a strong retraction and so
g.z; l/ 2 Y; g.y; 1/ D f .y;O/ D y if y 2 Y . Clearly s W Z � ŒO; l�! Z (defined
by s.z; t/ D r.z; t/ if t < 1

2
; s.z; t/ D r 0.z; t/ if t 	 1

2
) is continuous and is the

identity at t D 0. Finally if t D 1, then s.z; 1/ D f .g.z; 1/; 1/ D y0. ut
Lemma 3.22. If Z is a (non-empty) compact, convex set in Rn, then it is con- 1122

tractible. 1123

Proof. For any x in the interior of Z there exists some „ > 0 such that Bn D
clos.Bd .x;„// is contained in Z. (Indeed„ can be chosen so that Bn is contained
in the interior of Z.) As observed in Example 3.3, the closed ball, Bn, is both
compact and strictly convex. By Lemma 3.17, the distance function d.z;�/ W Bn !
R is continuous for each z 2 Z, and so there exists a point Ny.z/ in Bn, say, such that
d.z; Ny.z// < d.z; y//8y 2 Bn. Then d.z; Ny.z// D d.z; Bn/, the distance between
z and Bn. Indeed d.z; Ny.z// D 0 iff z 2 Bn. Moreover for each z 2 Z, Ny.z/ is
unique. Define the function f W Z � ŒO; 1� ! Z by f .z; t/ D tz C .1 � t/ Ny.z/.
Since Ny.z/ 2 Bn � Z for each z, and Z is convex, f .z; t/ 2 Z for all t 2 .O; l�.
Clearly if ,z 2 Bn then f .z; t/ D z for all t 2 ŒO; 1� and f .�; 1/ D h W Z ! Bn is
a retraction. Thus f is a strong retraction, and Bn is a deformation retract of Z. By
Lemma 3.21, Z is contractible. ut

Note that compactness of Z is not strictly necessary for the validity of this 1124

lemma. 1125

Lemma 3.23. IfZ is contractible to z0, and Y � Z is a retract ofZ by h W Z ! Y 1126

then Y is contractible to h.z0/. 1127

Proof. Let f W Z � ŒO; 1� ! Z be the contraction of Z on z0, and let h W Z ! Y

be the retraction. Clearly hıf W Z� ŒO; l�! Z ! Y . If y 2 Y , then f .y; 0/ D y
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and h.y/ D y (because h is a retraction). Thus hıf .y; 0/ D y. Moreover f .z; 1/ D
z08 2 Z, so h ı f .z; 1/ D h.z0/. ut

Clearly being a deformation retract ofZ is a much stronger property than being a 1128

retract ofZ. Both of these properties are useful in proving that any compact convex 1129

set has the fixed point property, and that the sphere is neither contractible nor has 1130

the fixed point property. 1131

Remember that the sphere of radius„ in Rn, with center x, is 1132

Sn�1 D Boundary.clos.Bd .x;„/// D fy 2 Rn W d.x; y/ D „g: 1133

Now let x0 2 Sn�1 be the north pole of the sphere. We shall give an intuitive 1134

argument whyD D Sn�1nfx0g is contractible, but Sn�1 is not contractible. 1135

Example 3.9. Let D D Sn�1nfx0g and let Z be a copy of D which is flattened at 1136

the south pole. Let D0 be the flattened disc round the South Pole, xs . Clearly D0 1137

is homeomorphic to an .n � 1/ dimensional ball Bn�1 centered on xs . Then Z is 1138

homeomorphic to the object D0 � Œ0; 1/. There is obviously a strong retraction of 1139

D onto D0. This retraction may be thought of as the function that moves any point 1140

z 2 Sn�1nfX0g down the lines of longitude toD0. SinceD0 is compact, convex it is 1141

contractible to xs and thus, by Lemma 3.20, there is a contraction f W D� ŒO; 1�! 1142

D to xs . 1143

To indicate why Sn�1 cannot be contractible, let us suppose without loss of 1144

generality, that g W Sn�1 � ŒO; 1�! Sn�1 is a contraction of Sn�1 to xs , and that g 1145

extends the contraction f W D � ŒO; 1� ! D (i.e., g.z; t/ D f .z; t/ whenever 1146

z 2 D). Now f .y; t/ maps each point y 2 D to a point further south on the 1147

longitudinal line through y. If we require g.y; t/ D f .y; t/ for each y 2 D, and 1148

we require g to be continuous at .x0; 0/ then it is necessary for g.x0; t/ to be an 1149

equatorial circle in Sn�1. In other words if g is a function it must fail continuity at 1150

.x0; 0/. While this is not a formal argument, the underlying idea is clear: The sphere 1151

Sn�1 contains a hole, and it is topologically different from the ball Bn. 1152

Brouwer’s Theorem. Any compact, convex set in Rn has the fixed point 1153

property. 1154

Proof. We prove first that the ball Bn � B has the fixed point property. Suppose 1155

otherwise: that is there exists a continuous function f W B ! B with x ¤ f .x/ for 1156

all x 2 B . 1157

Since f .x/ ¤ x, construct the arc from f .x/ to x and extend this to the boundary 1158

of B . Now label the point where the arc and the boundary of B intersect as h.x/. 1159

Since the boundary of B is Sn�1, we have constructed a function h W B ! Sn�1. It 1160

is easy to see that h is continuous (because f is continuous). Moreover if x0 2 Sn�1
1161

then h.x0/ 2 Sn�1. Since Sn�1 � B , it is clear that h W B ! Sn�1 is a retraction. 1162

(See Figure 3.22.) By Lemma 3.23, the contractibility of B to its center, x0 say, 1163

implies that Sn�1 is contractible to h.x0/. But Example 3.9 indicates that Sn�1 is not 1164

contractible. The contradiction implies that any continuous function f W B ! B 1165

has a fixed point. 1166
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Fig. 3.22 The retraction of
Bn on Sn�1.

Now let Y be any compact convex set in Rn. Then there exists for some „
and y0 2 Y , a closed „-ball, centered at y0, such that Y is contained in B D
clos.Bd .y0;„//. As in the proof of Lemma 3.22, there exists a strong retraction
g W B � ŒO; 1� ! B; so Y is a deformation retract of B . (See Figure 3.23.) In
particular g.�; 1/ D h W B ! Y is a retraction. If f W Y ! Y is continuous, then
f ı h W B ! Y ! Y � B is continuous and has a fixed point. Since the image
of f ı h is in Y , this fixed point, y1 , belongs to Y . Hence f ı h.y1/ D y1 for
some y1 2 Y . But h D id (the identity) on Y , so h.y1/ D y1 and thus y1 D f .y1/.
Consequently y1 2 Y is a fixed point of f . Thus Y has the fixed point property. ut

Fig. 3.23 The strong
retraction of B on Y .
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Example 3.10. The standard compact, convex set in Rn is the .n�1/- simplex�n�1
1167

defined by 1168

� D �n�1 D fx D .x1; : : : ; xn/ 2 Rn W
nX
iD1

xi D 1; and08ig: 1169

� has n vertices fx0i g, where x0i D .0; : : : ; 1; : : : ; 0/ with a 1 in the i th entry. An 1170

edge between x0i and x0j is the arc hhx0i ; x0j ii or convex set of the form 1171

fx 2 Rn W x D �x0i C .1 � �/x0j for � 2 Œ0; 1�g: 1172

An s-dimensional face of� is simply the convex hull of .sC1/ different vertices. 1173

Note in particular that there are n different .n� 2/ dimensional faces. Such a face is 1174

opposite the vertex x0i , so we may label this face�n�2
i . These n different faces have 1175

empty intersection. However any subfamily, F , of this family of n faces (where F 1176

has cardinality at most .n� 1/), does have a nonempty intersection. In fact if F has 1177

cardinality .n � 1/ then the intersection is a vertex. 1178

Brouwer’s Theorem allows one to derive further results on the existence of 1179

choice. 1180

Lemma 3.24. Let Q W � ! Rn be an LDC correspondence from the .n � 1/ 1181

dimensional simplex to Rn, such that Q.x/ is both non-empty and convex, for each 1182

x 2 �. Then there exists a continuous selection, f , for Q, namely a continuous 1183

function f W �! Rn such that f .x/ 2 Q.x/ for all x 2 �. 1184

Proof. Since Q.x/ ¤ ˆ, 8x 2 �, then for each x 2 �; x 2 Q�1.y/ for some
y 2 Rn. Hence fQ�1.y/ W y 2 Rng is a cover for �. Since Q is LDC, Q�1.y/ is
open, 8y 2 Rn, and thus the cover is an open cover. � is compact. As in the proof
of Lemma 3.9, there is a finite index set, A D fy1; : : : ; ykg of points in Rn such that
fQ�1.yi / W yi 2 Ag covers �. Define ˛i W � ! R by ˛i .x/ D d.x;�Q�1.yi //
for i D 1; : : : ; k, and let gi W A ! R be given by gi .x/ D ˛i .x/=

Pk
jD1 ˛j .x/.

As before, d is the distance operator, so ˛i .x/ is the distance from x to �Q�1.yi /.
fgi g is known as a partition of unity forQ. Clearly

P
gi .x/ D 1 for all x 2 �, and

gi .x/ D 0 iff x 2 �Q�1.Yi / (since �Q�1.yi / is closed and thus compact). Finally
define f W � ! Rn by f .x/ D Pk

iD1 gi .x/yi . By the construction, gi .x/ D 0

iff yi 2 Q.x/, thus f .x/ is a convex combination of points all in Q.x/. Since
Q.x/ is convex, f .x/ 2 Q.x/. By Lemma 3.17, each ˛i is continuous. Thus f is
continuous. ut
Lemma 3.25. Let P W � ! � be an LDC correspondence such that for all x 2 1185

�;P.x/ is convex and x 2 ConP.x/, the convex hull of P.x/. Then the choice 1186

Cp.�/ is non empty. 1187

Proof. Suppose Cp.�/ D ˆ. Then P.x/ ¤ ˆ8x 2 �. By Lemma 3.24, there
exists a continuous function f W � ! � such that f .x/ 2 P.x/8x 2 �. By
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Brouwer’s Theorem, there exists a fixed point x0 2 � such that x0 D f .x0/. This
contradicts x … ConP.x/;8x 2 �. Thus Cp.�/ ¤ ˆ. ut

These two lemmas are stated for correspondences with domain the finite 1188

dimensional simplex, �. Clearly they are valid for correspondences with domain a 1189

(finite dimensional) compact convex space. However both results can be extended to 1190

(infinite dimensional) topological vector spaces. The general version of Lemma 3.24 1191

is known as Michael’s Selection Theorem (Michael 1956). However it is necessary 1192

to impose conditions on the domain and codomain spaces. In particular it is 1193

necessary to be able to construct a partition of unity. For this purpose we can use 1194

a condition call “paracompactness” rather than compactness. Paracompactness of a 1195

space X requires that there exist, at any point x 2 X , an open set Ux containing 1196

x, such that for any open cover fUig of X , only finitely many of the open sets of 1197

the cover intersect Ux. To construct continuous selection it is also necessary that 1198

the codomain Y of the correspondence has a norm, and is complete (essentially 1199

this means that a limit of a convergent sequences of points is contained in Y ). A 1200

complete normed topological vector space Y is called a Banach space. We also need 1201

Y to be “separable” (ie Y contains a countable dense subset.) If Y is a separable 1202

Banach space we say it is admissible. 1203

Michael’s Selection Theorem employs a property, called lower hemi-continuity. 1204

Definition 3.8. A correspondenceQ W X ! Y between the topological spaces, X 1205

and Y , is lower hemi-continuous (LHC) if whenever U is open in Y , then the set 1206

fx 2 X W Q.x/\ U ¤ ˆg is open in X . 1207

Michael’s Selection Theorem. Suppose Q W X ! Y is a lower hemi- 1208

continuous correspondence from a paracompact, Hausdorff topological space X 1209

into the admissible space Y , such thatQ.x/ is non-empty closed and convex, for all 1210

x 2 X . Then there exists a continuous selection f W X ! Y forQ. 1211

Lemma 3.24 also provides the proof for a useful intersection theorem known as 1212

the Knaster-Kuratowski-Mazurkiewicz (KKM) Theorem. 1213

Before stating this theorem, consider an arbitrary collection fx1; : : : ; xkg of 1214

distinct points in Rn. Then clearly the convex hull, �, of these points can be 1215

identified with a .k � 1/-dimensional simplex. Let S � f1; : : : ; kg be any index 1216

set, and let �s be the simplex generated by this collection of s � 1 points (where 1217

s D jsj). 1218

KKM Theorem. Let R W X ! Y be a correspondence between a convex set 1219

X contained in a Hausdorff topological vector space Y such that R.x/ ¤ ˆ for 1220

all x 2 X . Suppose that for at least one point x0 2 X;R.x0/ is compact. Suppose 1221

further that R.x/ is closed for all x 2 X . Finally for any set fx1; : : : ; xkg of points 1222

in X , suppose that 1223

Confx1; : : : ; xkg � U k
iD1R.xi /: 1224

Then \x2XR.x/ is non empty. 1225

Proof. By Lemma 3.8, since R.x0/ is compact, \x2XR.x/ is non-empty iff 1226

\kiD1R.xi / ¤ ˆ for any finite index set. So let K D f1; : : : ; kg and let � be 1227
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the .k � 1/-dimensional simplex spanned by fx1; : : : ; xkg. Define P W � ! � by 1228

P.x/ D fy 2 � W x 2 �nR.y/g and define Q W �C� by Q.x/ D ConP.x/, the 1229

convex hull of P.x/. 1230

But P�1.y/ D fx 2 � W y 2 P.x/g D �nR.y/ is an open set, in �, and so P 1231

is LDC. ThusQ is LDC. Now suppose that \i2KR.xi / D ˆ. 1232

Thus for each x 2 � there exists xi .i 2 K/ such that x 2 R.xi /. But then 1233

x 2 � � R.xi / and so x 2 p�1.xi /. In particular, for each x 2 �;P.x/, and thus 1234

Q.x/, is non-empty. Moreover fQ�1.xi / W i 2 Kg is an open cover for�. As in the 1235

proof of Lemma 3.24, there is a partition of unity forQ. (We need Y to be Hausdorff 1236

for this construction.) In particular there exists a continuous selection f W � C � 1237

for Q. By Brouwer’s Theorem, f has a fixed point x0 2 �. Thus x0 2 ConP.x0/, 1238

and so x0 2 Confy1; : : : ; ykg where yi 2 P.x0/ for i 2 K . But then x0 2 �nR.yi / 1239

for i 2 K , and so x0 2 R.yi / for i 2 K . 1240

Hence 1241

Confy1; : : : ; ykg � [kiD1R.yi /: 1242

This contradicts the hypothesis of the Theorem. Consequently \i2KR.xi / ¤ ˆ

for any finite vertex set K . By compactness \x2XR.x/ ¤ ˆ. ut
We can immediately use the KKM theorem to prove a fixed point theorem for a 1243

correspondence P from a compact convex set X to a Hausdorff topological vector 1244

space, Y . In particular X need not be finite dimensional. 1245

Browder Fixed Point Theorem. LetQ W X ! X be a correspondence whereX 1246

is a compact convex subset of the Hausdorff topological vector space, Y . Suppose 1247

further that Q is LDC, and that Q.x/ is convex and non-empty for all x 2 X . Then 1248

there exists x0 2 X such that x0 2 Q.x0/. 1249

Proof. Suppose that x … Q.x/8x 2 X . Define R W X ! X by R.x/ D 1250

XnQ�1.x/. Since Q is LDC, R.x/ is closed and thus compact 8x 2 X . To use 1251

KKM, we seek to show that Confx1; : : : ; xkg � [kiD1R.xi / for any finite index set, 1252

K D f1; : : : ; kg. 1253

We proceed by contradiction. That is, suppose that there exists x0 in X with 1254

x0 2 Confx1; : : : ; xkg but x0 2 R.xi / for i 2 K . Then x0 2 Q�1.xi /,so xi 2 1255

Q.x0/;8i 2 K . But then x0 2 ConQ.x0/. Since Q.x/ is convex 8x 2 X , this 1256

implies that x0 2 Q.x0/, a contradiction. Consequently x 2 R.xi / for some i 2 K . 1257

By the KKM Theorem, \x2XR.x/ ¤ ˆ. 1258

Thus 9x0 2 X with x0 2 R.x/, and so x0 2 xnQ�1.x/8x 2 X . Thus x0 …
Q�1.x/ and x 2 Q.x0/8x 2 X . This contradicts the assumption that Q.x/ …
ˆ8x 2 X . Hence 9x0 2 X with x0 2 Q.x0/. ut

Ky Fan Theorem. Let P W X ! X be an LDC correspondence where 1259

X is a compact convex subset of the Hausdorff topological vector space, Y . If 1260

x … ConP.x/;8x 2 X , then the choice Cp.X0/ ¤ ˆ for any compact convex 1261

subset, X0 of X . 1262

Proof. DefineQ W X ! X byQ.x/ D ConP.x/. IfQ.x/ ¤ ˆ for all x 2 X , then
by the Browder fixed point theorem, 9x0 2 X with x0 2 Q.x0/. This contradicts
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x … ConP.x/8x 2 X . Hence Q.x0/ D ˆ for some x0 2 X . Thus Cp.X/ D fx 2
X W P.x/ D ˆg is non-empty. The same inference is valid for any compact, convex
subset X0 of X . ut

3.8 Political and Economic Choice 1263

The results outlined in the previous section are based on the intersection property 1264

of a family of closed sets. With compactness, this result can be extended to the case 1265

of a correspondence R W X ! X to show that \x2XR.x/ ¤ ˆ. If we regard R as 1266

derived from an LDC correspondence P W X ! X by R.x/ D XnP�1.x/ then 1267

R.x/ can be interpreted as the set of points “no worse than” or “at last as good as” 1268

x. 1269

But then the choice Cp.X/ D \x2XR.x/, since such a choice must be at least 1270

as good as any other point. The finite-dimensional version (Lemma 3.25) of the 1271

proof that the choice is non-empty is based simply on a fixed point argument using 1272

Brouwer’s Theorem. To extend the result to an infinite dimensional topological 1273

vector space we reduced the problem to one on a finite dimensional simplex, �, 1274

spanned by fx1; : : : ; xk W xi 2 Xg and then showed essentially that \x2�R.x/ 1275

is non empty. By compactness the \x2XR.x/ is non-empty. There is, in fact, a 1276

related infinite dimensional version of Brouwer’s Fixed Point Theorem, known as 1277

Schauder’s fixed point theorem for a continuous function f W X ! Y , where Y is a 1278

compact subset of the convex Banach space X . 1279

One technique for proving existence of an equilibrium price vector in an 1280

exchange economy (as discussed in � 3.5) is to construct a continuous function 1281

f W 4 ! 4, where 4 is the price simplex of feasible price vectors, and show that 1282

f has a fixed point (using either the Brouwer or Schauder fixed point theorems). 1283

An alternative technique is to use the Ky Fan Theorem to prove existence of an 1284

equilibrium price vector. This technique permits a proof even when preferences are 1285

not representable by utility functions. More importantly, perhaps,it can be used in 1286

the infinite dimensional case. 1287

Example 3.11. . To illustrate the Ky Fan Theorem with a simple example, consider 1288

Figure 3.24, which reproduces Figure ?? from Chapter 1. 1289

It is evident that the inverse preference, P�1, is not LDC: for example, 1290

P�1 
 3
4

� D 

1
4
; 1
2

� [ 
 3
3
; 1
�

which is not open. As we saw earlier the choice of 1291

P on the unit interval is empty. In fact, to ensure existence of a choice we can 1292

require simply that P be lower hemi-continuous. This we can do by deleting the 1293

segment


1
2
; 1
�

above the point 1
2
. If the choice were indeed empty, then by Michael’s 1294

Selection Theorem we could find a continuous selection f W ŒO; l�! Œ0; 1� for P . 1295

By Brouwer’s fixed point theorem f has a fixed point, x0, say, with x0 2 P.x0/. 1296

By inspection the fixed point must be x0 D 1
2
. If we require P to be irreflexive 1297

(since it is a strict preference relation) then this means that 1
2
… P 
 1

2

�
and so the 1298
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Fig. 3.24

choice must be Cp.Œ0; 1�/ D
˚
1
2


. Notice that the preference displayed in Figure 1299

3.24 cannot be represented by a utility function. This follows because the implicit 1300

indifference relation is intransitive. 1301

Fig. 3.25 The graph of
indifference.

The Ky Fan Theorem gives a proof of the existence of a choice for a “spatial 1302

voting game”. Remember a social choice procedure, � is simple iff it is defined by a 1303

family D of decisive coalitions, each a subset of the society M . In this case if � D 1304

.P1; : : : ; Pm; / is a profile on the topological space X , then the social preference is 1305

given by 1306

x�.�/yiffx 2 [A2D \i2A Pi .y/ D PD.y/: 1307
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Here we use Pi W X ! X to denote the preference correspondence of individual 1308

i . For coalitionA, then x 2 PA.y/ D \i2APi .y/means every member of A prefers 1309

x to y. 1310

Thus x 2 [A2DPA.y/ means that for some coalition A 2 D all members of 1311

A prefer x to y. Finally we write x 2 PD.y/ for the condition that x is socially 1312

preferred to y. The choice for �.�/ on X is then 1313

C�.�/.X/ D x W PD.x/ D ˆ: 1314

Nakamura Theorem. Suppose X is a compact convex topological vector space 1315

of dimension n. Suppose that � D .P1; : : : ; Pm; / is a profile on X such that each 1316

preference Pi W X ! X is (i) LDC; and (ii) semi-convex, in the sense that x … 1317

ConPi.x/ for all x 2 X . If � is simple and has Nakamura number k.�/, and if 1318

n � k.�/ � 2 then the choice C�.�/.X/ is non-empty. 1319

Proof. For any point x; y;2 P�1
D .x/ means x 2 PD.y/ and so x 2 Pi.y/8i 2 A, 1320

someA 2 D. Thus y 2 P�1
i .x/8i 2 A or y 2 \i2AP�1

i .x/ or y 2 [D\AP�1
i .x/. 1321

But each Pi is LDC and so P�1
i .x/ is open, for all x 2 X . Finite intersection of 1322

open sets is open, and so PD is LDC. 1323

Now suppose that PD is not semi-convex (that is x 2 ConPD.x/ for some x 2
X ). Since X is n-dimensional and convex, this means it is possible to find a set of
points x1; : : : ; xnC1 such that x 2 Conx1; : : : ; xnC1 and such that xj 2 PD.x/ for
each j D 1; : : : ; nC1. Without loss of generality this means there exists a subfamily
D0 D A1; : : : ; AnC1 of D such that xj 2 PA

j .x/. Now n C 1 � k.�/ � 1, and
by the definition of the Nakamura number, the collegium K.D0/ is non-empty. In
particular there is some individual i 2 Aj , for j D 1; : : : ; nC 1. Hence xj 2 Pi.x/
for j D 1; : : : ; nCl . But then x 2 ConPi.x/.This contradicts the semi-convexity of
individual preference. Consequently PD is semi-convex. The conditions of the Ky

Fan Theorem are satisfied, and so PD. Nx/ D ˆ for some Nx 2 X . ThusC�.�/.x/ ¤ ˆ
ut

It is worth observing that in finite dimensional spaces the Ky Fan Theorem 1324

is valid with the continuity property weakened to lower hemi-continuity 1325

(LHC). Note first that if P is LDC then it is LHC; this follows because 1326

x 2 X W P.x/ \ V ¤ ˆ D [y2V .P�1.y/ \ X/ is the union of open sets and 1327

thus open. 1328

Moreover (as suggested in Example 3.11) if P is LHC and the choice is non 1329

empty, then the correspondence x ! ConP.x/ has a continuous selection f (by 1330

Michael’s Selection Theorem). By the Brouwer Fixed Point Theorem, there is a 1331

fixed point xı such that xı 2 ConP.x0/. This violates semi-convexity of P . Thus 1332

the Nakamura Theorem is valid when preferences are LHC. The finite dimensional 1333

version of the Ky Fan Theorem can be used to show existence of a Nash equilibrium 1334

(Nash 1950). 1335

Definition 3.9. (i) A Game G D .Pi ; X/ W i 2M for society M consists of a 1336

strategy space, Xi , and a strict preference correspondence Pi W X ! X for 1337
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each i 2 M , where X D …iXi D X1 � : : : � Xm, is the joint strategy space. 1338

item[(ii)]In a gameG, the Nash improvement correspondence for individual i 1339

is defined by 1340

OPi W X ! X where y 2 OPi.x/iffy 2 Pi.x/ and 1341

Y D .x1; : : : ; xi�1; x�
i ; : : : xm/;

x D .x1; : : : ; xi�1; xi ; : : : xm/;

(iii) The overall Nash improvement correspondence is 1342

OP D [i2MPi W X ! X: 1343

(iv) A point Nx 2 X is a Nash Equilibrium for the game G iff OP . Nx/ D ˆ. 1344

Bergstrom(1975, 1992) showed the following. 1345

Bergstrom’s Theorem. LetG D .Pi ; X/ be a game, and suppose eachXi � Rn
1346

is a non-empty compact, convex subset of Rn. Suppose further that for all i 2M; OPi 1347

is both semi-convex and LHC. Then there exists a Nash equilibrium for G. 1348

Proof. Since each OPi is LHC, it follows easily that OP W X ! tX is LBC. To see that 1349

OP is semi-convex, suppose that y 2 Con OP .x/, then y D P
�iy

i ;
P
i 2 N�i 	 1350

0;8i 2 N and yi 2 OPi .x/. By the definition of OPj ; y � x D P
i2M �i zi where 1351

zi D yi � x. 1352

This follows because yi and x only differ on the i th coordinate, and so zi D 1353

.0; : : : ; zi0; : : :/ where zi0 2 Xi . Moreover, �i ¤ 0 iff zi ¤ 0 because OPi is semi- 1354

convex. 1355

Clearly zi W i 2M;�i ¤ 0 is a linearly independent set, so y D x iff �i D 08i 2 1356

M . But then yi D x8i 2 M , which again violates semiconvexity of Pi . Thus 1357

y ¤ x and so OP is semi-convex. By the Ky Fan Theorem, for X finite dimensional, 1358

the choice of OP on X is non-empty. Thus the Nash Equilibrium is non-empty. Q. E. 1359

D. 1360

Although the Nakamura Theorem guarantees existence of a social choice for a 1361

social choice rule, � , for any semi-convex and LDC profile in dimension at most 1362

k.�/ � 2, it is easy to construct situations in higher dimensions with empty choice. 1363

The example we now present also describes a game with no Nash equilibrium. 1364

Example 3.12. Consider a simply voting procedure with M D 1; 2; 3 and let D 1365

consist of any coalition with at least two voters. Let X be a compact convex set in 1366

R2, and construct preferences for each i inM as follows. Each i has a “bliss point” 1367

xi 2 X and a preference Pi on X such that for y; x 2 Pi.y/ iff k x � xi k<k 1368

y � yi k. The preference is clearly LDC and semi-convex (since Pi.x/ is a convex 1369

set and x … P.x/ for all x 2 X ). Now let 4 D Conx1; x2; x3 the 2-dimensional 1370

simplex in X (for convenience suppose all xi are distinct and in the interior of X ). 1371

For each A �M let PA.x/ D \i 2 APi.x/ as before. 1372
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In particular the choice for the strict Pareto rule is CPM .X/ D CM.X/ D 4. 1373

This can be seen by noting that if x 2 CM.X/ iff there is no point y 2M such that 1374

k y � xi k<k x � xi k 8i 2 M . Clearly this condition holds exactly at those points 1375

in4. For this reason preferences of this kind are called “Euclidean preferences”. 1376

Now consider a point in the interior of X . At x the preferred sets for the three 1377

coalitions .D0 D 1; 2; 1; 3; 2; 3/ do not satisfy the semi-convexity property. Figure 1378

3.26 shows that 1379

x 2 ConP12.x/; P13.x/; P23.x/ 1380

While PD0 is LDC, it violates semi-convexity. Thus the Ky Fan Theorem cannot 1381

be used to guarantee existence of a choice. To illustrate the connection with Walker’s 1382

Theorem, note also that there is a voting cycle. That is 1 prefers a to b to c, 2 prefers 1383

b to c to a, and 3 prefers c to a to b. The reason the cycle can be constructed is that 1384

the Nakamura number is 3, and dimension .X/ D 2,thus n D k.�/ � 1. In fact 1385

there is no social choice in X . This voting cycle also defines a game with no Nash 1386

equilibrium. 1387

Fig. 3.26 Failure of
semi-convexity.

Thus .y1; y2/ 2 Con OP1.y1; y2/. Because of the failure of semi-convexity of both 1388

OP1 and OP2, Nash equilibrium cannot be guaranteed. In fact the Nash equilibrium is 1389

empty. 1390

We now briefly indicate how the Ky Fan Theorem can be used to show existence 1391

of an equilibrium price vector in an exchange economy. First of all each individual i 1392

initially holds a vector of endowments ei 2 Rn. A price vector p 2 4n� 1 belongs 1393

to the .n�1/-dimensional simplex: that is p D .p1; : : : ; pn/ such that†niD1pi D 1. 1394

An allocation x 2 X D …i2NXi � .Rn/ where Xi is i ’s consumption set in 1395

RnC (here xi 2 RnC iff xij 	 0; j D 1; : : : ; n/ At the price vector p, the i th budget 1396

set is 1397

Bi.p/ D fxi 2 RnC W hp; xi � hp; eiig 1398
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Fig. 3.27 Empty Nash
equilibrium.

At price p, the demand vector Nx D . Nx1; : : : ; Nxm/ satifies the optimality condition 1399

OPi. Nx/ \ fx 2 X W xi 2 Bi.p/g D ˆ for each i . 1400

As before OPi W X D! X is the Nash improvement correspondence (as in 1401

Definition 3.9). 1402

As we discussed earlier in � 3.5.1, an equilibrium price vector Np is a price vector 1403

Np D .p1; : : : ; pn/ such that the demand vector Nx satisfies the optimality condition at 1404

Np and such that total demand does not exceed supply. This latter condition requires 1405

that
P

i2M Nxi �
P

i2M ei (the two terms are both vectors in Rn). That is, if we 1406

use the suffix of xj to denote commodity j , then
P

i2M. Nxij � eij/ � 0 for each 1407

j D 1; : : : ; n. 1408

Note also that a transformationp > �p , for a real number� > 0, does not change 1409

the budget set. 1410

This follows because Bi.p/ D fxi 2 RnC W hp; xi � hp; eiig D Bi.�p/. 1411

Consequently if Np is an equilibrium price vector, then so is � Np. Without loss of 1412

generality, then, we can normalize the price vector, p, so that kpk D 1 for some 1413

norm on Rn. We may do this for example by assuming that
Pn

jD1 pj D 1 and that 1414

pj 	 08j . 1415

For this reason we let �n�1 represent the set of all price vectors. 1416

A further point is worth making. Since we assume that pj 	 08j it is possible 1417

for commodity j to have zero price. But then the good must be in excess supply. 1418

To ensure this, we require the equilibrium price vector Np and i ’s demand Nxi at Np to 1419

satisfy the condition h Np; Nxi i D h Np; Nei i As we noted in � 3.5.1, this can be ensured by 1420

assuming that preference is locally non-satiated in X . That is if we let NPi.x/ � Xi 1421

be the projection of NPi onto Xi at x, then for any neighborhoodU of xi in Xi there 1422

exists x0
i 2 U such that x0

i 2 NPi.x/. 1423

To show existence of a price equilibrium we need to define a price adjustment 1424

mechanism. 1425

To this end define: 1426

OP0 W � �X ! � by
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OP0.p; x/ D fp0 2 � W hp0 � p
X
i2M

.xi � ei /i > 0g .��/

Now let X� D � � X and define P �
0 W X� ! X� by .p0; x/ 2 P �

0 .p; y/ iff 1427

x D y and p0 2 OP0.p; x/. 1428

In the same way for each i 2 M extend OPi W X ! X to P �
i W X� � X� by 1429

letting .p0; x/ 2 P �
i .p; y/ iff p0 D p and x 2 OPi .y/. This defines an exchange 1430

game Ge D f.P �
i X

�/ W i D 0; : : : ; mg. 1431

Bergstrom (1992) has shown (under the appropriate conditions of semiconvexity, 1432

LHC and local monotonicity for each OPi ) that there is a Nash equilibrium to Ge . 1433

Note that e 2 .Rn/m is the initial vector of endowments. We can show that the Nash 1434

equilibria comprise a non-empty set f. Np; Nx/ 2 ��Xg where Nx D . Nx1; : : : ; Nxm/ is a 1435

vector of final demands for the members ofM , and Np is an equilibrium price vector. 1436

A Nash equilibrium . Np; Nx/ 2 � �X satisfies the following properties: 1437

(i) Since P �
i . Np; Nx/ D ˆ for each i 2 N , it follows that h is i ’s demand. 1438

Moreover by local monotonicity we have h Np; Nxi i D h Np; ei i, 8i 2 M . 1439

Thus
P

i2M h Np; Nx � eii D 0. (�) 1440

(ii) Now P �
0 . Np; Nx/ D ˆ so hp � Np,

P
i2M. Nxi � ei /i � 08p 2 � (See ��). 1441

Suppose that
P

i2M. Nxi � ei / > 0. Then it is clearly possible to find p 2 � such 1442

that pj > 0, for some j , with hp;Pi2M.xi � ei /i > 0. But this violates .�/ and 1443

.��/. Consequently
P

i2M. Nxij � eij/ � 0 for j D 1; : : : ; n. 1444

Thus Nx 2 .Rn/m satifies the feasibility constraint
P

i2M Nxi �
P

i2M ei . 1445

Hence . Np; Nx/ is a free-disposal equilibrium, in the sense that total demand may be 1446

less than total supply. Bergstrom (1992) demonstrates how additional assumptions 1447

on individual preference are sufficient to guarantee equality of demand and supply. 1448

Section 4.4, below, discusses this more fully. 1449
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Chapter 4 1

Differential Calculus and Smooth Optimisation 2

Under certain conditions a continuous function f W Rn ! Rm can be approximated 3

at each point x in Rn by a linear function df .x/ W Rn ! Rm, known as the 4

differential of f at x. In the same way the differential df may be approximated 5

by a bilinear map d2f .x/. When all differentials are continuous then f is called 6

smooth. For a smooth function f , Taylor’s Theorem gives a relationship between 7

the differentials at a point x and the value of f in a neighbourhood of a point. This in 8

turn allows us to characterise maximum points of the function by features of the first 9

and second differential. For a real-valued function whose preference correspondence 10

is convex we can virtually identify critical points (where df .x/ D 0) with maxima. 11

In the maximisation problem for a smooth function on a “smooth” constraint 12

set, we seek critical points of the Lagrangian, introduced in the previous chapter. 13

In particular in economic situations with exogenous prices we may characterise 14

optimum points for consumers and producers to be points where the differential 15

of the utility or production function is given by the price vector. Finally we use 16

these results to show that for a society the set of Pareto optimal points belongs to a 17

set of generalised critical points of a function which describes the preferences of the 18

society. 19

4.1 Differential of a Function 20

A function f W R! R is differentiable at a W2 R if limh!0
f .xCh/�f .x/

2
exists (and 21

is neither C1 nor �1). When this limit exists we shall write it as df

dx
jx . Another 22

way of writing this is that as .xn/! x then 23

f .xn/� f .x/
xn � x ! df

dx
jx; 24

the derivative of f at x. 25
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Fig. 4.1

This means that there is a real number �.x/ D df

dx
jx 2 R such that f .x/ D 26

�.x/hC �jhj, where � ! 0 as h! 0. 27

Let df .x/ be the linear function R! R given by df .x/.h/ D �.x/h. Then the 28

map R! R given by 29

h! f .x/C df .x/.h/ D g.x C h/ 30

is a “first order approximation” to the map 31

f ! f .x C h/: 32

In other words the maps h! g.x C h/ and h! f .x C h/ are “tangent” to one 33

another where “tangent” means that 34

jf .x C h/ � g.x C h/j
jhj 35

approaches 0 as h! 0. Note that the map h! f .x/Cdf .x/.h/ D g.xCh/ has a 36

straight line graph, and so df .x/ is a “linear approximation” to the function f at a. 37

Example 4.1. 1. Suppose f W R ! R W x ! x2. Then Limh!0
f .xCh/�f .x/

h
D 38

Limh!0
.xCh/2�x2

h
D Limh!0

2hxCh2
h
D 2x C Limh!0h D 2x. Similarly if f W 39

R! R W x ! xr then df .x/ D rxr�1. 40
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2. Suppose f W R ! R W x ! sin x. Then Limh!0

�
sin.xCh/�sinx

h

�
D 41

Limh!0

�
sinx.cosh�1/Ccosxsinh

h

�
42

D Limh!0

sinx

h

��h2
2

�
C Limh!0

cosx

h
.h/

D cosx:

3. f W R ! R W x ! ex . Limh!0
exCh�ex

h
D Limh!0

ex

h

h
1C hC h2

2
: : : � 1

i
D 43

ex . 44

4. f W R! R W x ! x4 if x 	 0; x2 if x < 0. 45

Consider the limit as h approaches 0 from above (i.e., h! 0C/. Then 46

Limh!0C

f .0C h/ � f .0/
h

D h4 � 0
h
D h3 D 0: 47

The limit as h approaches 0 from below is 48

Limh!0�

f .0C h/ � f .0/
h

D h3 � 0
h
D h2 D 0: 49

Thus df .0/ is defined and equal to 0. 50

5. f W R! R, by 51

x ! �x2 x � 0
x ! .x � 1/2 � 1 0 < x � 1
x ! �x x > 1:

52

Limx!0f .x/ D 0
Limx!0C

f .x/ D 0:

Thus f is continuous at x D 0. 53

Limx!1�
f .x/ D �1:

Limx!1C
f .x/ D �1:

Thus f is continuous at x D 1. 54

Limx!0�
df .x/ D Limx!0�

.�2x/ D 0:
Limx!0C

df .x/ D Limx!0C
2.x � 1/ D �2:
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Fig. 4.2

Limx!1�
df .x/ D Limx!1�

2.x � 1/ D �0:
Limx!1C

df .x/ D Limx!1C
.1/ D �1:

Hence df .x/ is not continuous at x D 0 and x D 1. 55

To extend the definition to the higher dimension case, we proceed as follows: 56

Definition 4.1. Let X; Y be two normed vector spaces, with norms jjjjX; jjjjY , and 57

suppose f; g W X ! Y . Then say f and g are tangent at x 2 X iff 58

LimjjhjjX!0

k f .x C h/ � g.x C h/ kY
k h kX D 0: 59

If there exists a linear map df .x/ W X ! Y such that the function g W X ! Y 60

given by 61

g.x C h/ D f .x/C df .x/.h/ 62

is tangent to f at x, then f is said to be differentiable at x, and df .x/ is called the 63

differential of f at x. 64

In other words df .x/ is the differential of f at x iff there is a linear approxima- 65

tion df .x/ to f at x, in the sense that 66

f .x C h/� f .x/ D df .x/.h/C k h kX 
.h/ 67

where 
 W X ! Y and k 
.h/ ky! 0 as k h kX! 0. 68

Note that since df .x/ is a linear map from X to Y , then its image is a vector 69

subspace of Y , and df .x/.0/ is the origin, 0, in Y . 70

Suppose now that f is defined on an open ball U in X . 71
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For some x 2 U , consider an open neighborhood V of x in U . The image of the 72

map 73

h! g.x C h/ for each h 2 U 74

will be of the form f .x/ C df .x/.h/, which is to say a linear subspace of Y , but 75

translated by the vector f .x/ from the origin. 76

If f is differentiable at x, then we can regard df .x/ as a linear map from X to 77

Y , so df .x/ 2 L.X; Y /, the set of linear maps from X to Y . As we have shown in 78

�3.2 of Chapter 3, L.X; Y / is a normed vector space, when X is finite dimensional. 79

For example, for k 2 L.X; Y / we can define k k k by 80

k k kD supfk k.x/ kY W x 2 X s:t: k x kXD 1g: 81

Let L.X; Y / be L.X; Y / with the topology induced from this norm. 82

When f W U � X ! Y is continuous we shall call f a C0-map. If f is C0, and 83

df .x/ is defined at x, then df .x/ will be linear and thus continuous, in the sense 84

that df .x/ 2 L.X; Y /. 85

Hence we can regard df as a map 86

df W U ! L.X; Y /: 87

It is important to note here that though the map df .x/ may be continuous, the 88

map df W U ! L.X; Y / need not be continuous at x. However when f is C0, and 89

the map 90

df W U ! L.X; Y / 91

is continuous for all x 2 U , then we shall say that f is a C1- differentiable map 92

on U . Let C0.U; Y / be the set of maps from U to Y which are continuous on U , 93

and let C1.U; Y / be the set of maps which are C1-differentiable on U . Clearly 94

C1.U; Y / � C0.U; Y /. If f is a differentiable map, then df .x/, since it is linear, 95

can be represented by a matrix. Suppose therefore that f W Rn ! R, and let 96

fe1; : : : ; eng be the standard basis for Rn. Then for any h 2 Rn; h D Pn
iD1 hi ei 97

and so df .x/.h/ DPn
iD1 hidf .x/.ei / D

nP
iD1

hi ei say. 98

Consider the vector .0; : : : ; hi ; : : : ; 0/ 2 Rn. 99

Then by the definitions ˛i D df .x/.0; : : : ; ei ; : : : ; 0/ D 100

Limhi!o

�
f .x1; : : : ; xi C hi ; : : : ; / � f .x1; : : : ; xi ; : : : ; xn/

hi

	
@f

@xi
jx; 101

where @f

@xi
jx is called the partial derivative of f at x with respect to the i th 102

coordinate, xi . 103

Thus the linear function df .x/ W R ! R can be represented by a “row vector” 104

or matrix 105

Df.x/ D
�
@fj

@x1
jx;:::; @f

@xn
jx
�
: 106
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Note that this representation is dependent on the particular choice of the basis for 107

Rn. This matrix Df.x/ can also be regarded as a vector in Rn, and is then called 108

the direction gradient of f at x. The i th coordinate ofDf.x/ is the partial deriative 109

of f with respect to xi at x. 110

If h is a vector in Rn with coordinates .h1; : : : ; hn/ with respect to the standard 111

basis, then 112

df .x/.h/ D
nX
iD1

hi
@f

@xi
jx D hDf.x/; hi i 113

where hDf.x/; hi is the scalar product of h and the direction gradientDf.x/. 114

In the same way if f W Rn CRm and f is differentiable at x, then df .x/ can be 115

represented by the n �m matrix 116

Df.x/ D
�
@fj

@xi

�
x

; i D 1; : : : ; nI j D 1; : : : ; m 117

where f .x/ D f .x1; : : : ; xn/ D .f1.x/; : : : ; fj .x/; : : : ; fm.x//. This matrix is 118

called the Jacobian of f at x. We may define the norm of Df.x/ to be 119

k Df.x/ kD supfj@fj
@xi
jx W i D 1; : : : ; nI j D 1; : : : ; mg: 120

When f has domain U � Rn, then continuity of Df W U ! M.n;m/, where 121

M.n;m/ is the set of n�mmatrices, implies the continuity of each partial derivative 122

U ! R W x ! @fj

@xi
jx: 123

Note that when f W R ! R then @f

@x
jx , is written simply as df

dx
jx and is a real 124

number. 125

Then the linear function df .x/ W R! R is given by df .x/.h/ D
�
df

dx
jx
�
h. 126

To simplify notation we shall not distinguish between the linear function df .x/ 127

and the real number df
dx
jx , when f W R! R. 128

Suppose now that f W U � X ! Y and g W V � Y ! Z such that g ı f W U � 129

X ! Z exists. If f is differentiable at x, and g is differentiable at f .x/ then g ı f 130

is differentiable at x and is given by 131

d.g ı f /.x/ D dg.f .x// ı df .x/: 132

In terms of Jacobian matrices this is 133

D.g ı f /.x/ D Dg.f .x// ıDf.x/; or
@gk

@xi
D
Xm

jD1
@gk

@xj

@fj

@xi
; i:e:; 134

135
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Fig. 4.3

kthrow

�
@gk

@f1
: : :

@gk

@fm

�
0
BBBB@

@f1
@xi
:::
@fm
@xi

i th column

1
CCCCA 136

This is also known as the chain-rule. 137

If Id W Rn ! Rn is the identity map then clearly the Jacobian matrix of Id must 138

be the identity matrix. 139

Suppose now that f W U � Rn ! V � Rn is differentiable at x, and has an 140

inverse g D f �1 which is differentiable. Then g ı f D Id and so Id D D.g ı 141

f /.x/ D Dg.f .x// ıDf.x/. ThusD.f �1/.f .x// D ŒDf .x/��1 142

In particular, for this to be the case Df.x/ must be an n � n matrix of rank n. 143

When this is so, f is called a diffeomorphism. 144

On the other hand suppose f W X ! R and g W Y ! R, where f is 145

differentiable at x 2 X and g is differentiable at y 2 Y . 146

Let fg W X � Y ! R W .x; y/ ! f .x/g.y/. From the chain rule, 147

d.fg/.x; y/.h; k/ D f .x/dg.y/.k/ C g.y/df .x/.h/, and so d.fg/.x; y/ D 148

f .x/dg.y/C g.y/df .x/. 149

Hence fg is differentiable at the point .x; y/ 2 X � Y . 150

When X D Y D R, and .fg/.x/ D f .x/g.x/ then d.fg/.x/ D fdg.x/ C 151

gdf .x/, where this is called the product rule. 152

Example 4.2. Consider the function f W R! R given by x ! x2 sin 1
x

if x ¤ 0I 0 153

if x D 0. 154

We first of all verify that f is continuous. Let g.x/ D x2, h.x/ D sin 1
x
D 155

�Œm.x/� where m.x/ D 1
x

and �.y/ D sin.y/. Since m m is continuous at any non 156
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zero point, both h and g are continuous. Thus f is continuous at x ¤ 0. (Compare 157

with Example 3.1.) 158

Now Limx!0x
2 sin 1

x
D Limy!C1 siny

y2
. But �1 < siny < 1, and so 159

Limy!C1 siny

y2
D 0. 160

Hence xn ! 0 implies f .xn/! 0 D f .0/. Thus f is also continuous at x D 0. 161

Consider now the differential of f . By the product rule, since f D gh, 162

d.gh/.x/ D x2dh.x/C
�
sin

1

x

�
dg.x/: 163

Since h.x/ D �Œm.x/�, by the chain rule, 164

dh.x/ D d�.m.x// � dm.x/

D cosŒ.m.x//.� 1
x
/�

D � 1
x2

cos
1

x
:

Thus df .x/ D d.gh/.x/ 165

D x2Œ� 1
x2

cos
1

x
C 2x sin

1

x
�

D � cos
1

x
C 2x sin

1

x
;

for any x ¤ 0. 166

Clearly df .x/ is defined and continuous at any x ¤ 0. To determine if df .0/ is 167

defined, let k D 1
h

. Then 168

Limh!0C

f .0C h/ � f .0/
h

D Limh!0C

h2sin 1
h

h

D Limh!0C
hsin

1

h

D Limk!1
sink

h
:

But again �1 � sin k � 1 for all k, and so Limk!C1 sink
k
D 0. In the same 169

way Limh!0�

h2sin 1h
h
D 0. Thus Limh!0

f .0Ch/�f .0/
h

D 0, and so df .0/ D 0. Hence 170

df .0/ is defined and equal to zero. 171

On the other hand consider .xn/ ! 0C. We show that Limxn!0C
df .xn/ does 172

not exist. By the above Limx!0C
df .x/ D Limx!0C

Œ2x sin 1
x
� cos 1

x
�. 173
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While Limx!0C
2x sin 1

x
D 0, there is no limit for cos 1

x
as x ! 0C (see 174

Example 3.1). Thus the function df W R ! L.R;R/ is not continuous at the point 175

x D 0. 176

The reason for the discontinuity of the function df at x D 0 is that in any 177

neighbourhoodU of the origin, there exist an ”infinite” number of non-zero points, 178

x0, such that df .x0/ D 0. We return to this below. 179

4.2 C r-Differentiable Functions 180

4.2.1 The Hessian 181

Suppose that f W X ! Y is a C1-differentiable map, with domain U � X . Then as 182

we have seen df W U ! L.X; Y / where L.X; Y / is the topological vector space of 183

linear maps from X to Y with the norm 184

k k kD supfk k.x/ kY W x 2 X s:t: k x kXD 1g: 185

Since both U and L.X; Y / are normed vector spaces, and df is continuous, 186

df may itself be differentiable at a point x 2 U . If df is differentiable, then its 187

derivative at x is written d2f .x/, and will itself be a linear approximation of the 188

map df from X to L.X; Y /. If df is C1, then df will be continuous, and d2f .x/ 189

will also be a continuous map. Thus d2f .x/ 2 L.X;L.X; Y //. 190

When d2f W U ! L.X;L.X; Y // is continuous, and f is C1-differentiable, 191

then say f is C2-differentiable. Let C2.U; Y / be the set of C2-differentiable maps 192

on U . In precisely the same way say that f is C r -differentiable iff f is C r�1- 193

differentiable, and the rth derivative df W U ! L.X;L.X;L.X; : : :// is continuous. 194

The map is called smooth or C1 if drf is continuous for all r . 195

Now the second derivative d2f .x/ satisfies d2f .x/.h/.k/ 2 Y for vectors h; k 2 196

X . Moreover d2f .x/.h/ is a linear map from X to Y and d2f .x/ is a linear map 197

from X to L.X; Y /. 198

Thus d2f .x/ is linear in both factors h and k. Hence d2f .x/ may be regarded 199

as a map 200

H.x/ W X �X ! Y 201

whereH.x/.h; k/ D d2f .x/.h/.k/ 2 Y . 202

Moreover d2f .x/ is linear in both h and k, and so H.x/ is linear in both h and 203

k. As in Section 2.3.2, we say H.x/ is bilinear. 204

Let L2.xIY / be the set of bilinear maps X �X ! Y . ThusH 2 L2.xIY / iff 205

H.˛1h1 C ˛2h2; k/ D ˛1H.h1; k/C ˛2H.h2; k/
H.h; ˇ1k1 C ˇ2k2/ D ˇ1H.k1; h/C ˇ2H.h; k2/



UNCORRECTED
PROOF

4 Differential Calculus and Smooth Optimisation

for any ˛1; ˛2; ˇ1; ˇ2 2 R; h; h1; h2; k; k1; k2 2 X . 206

Since X is a finite-dimensional normed vector space, so is X � X , and thus the 207

set of bilinear maps L2.xIY / has a norm topology. Write L2.x; Y / when the set 208

of bilinear maps has this topology. The continuity of the second differential d2f W 209

U ! L.X;L.X; Y // is equivalent to the continuity of the mapH W U ! L2.xIY /, 210

and we may therefore regard d2f as a map d2f W U ! L2.X IY /. In the same way 211

we may regard d2f as a map drf W U ! Lr .X IY / where Lr .X IY / is the set of 212

maps Xr C Y which are linear in each component, and is endowed with the norm 213

topology. 214

Suppose now that f W Rn ! R is a C2-map, and consider a point x D 215

.x � 1; : : : ; xn/ where the coordinates are chosen with respect to the standard basis. 216

As we have seen the differential df W U ! L.Rn;R/ can be represented by a 217

continuous function 218

Df W x !
�
@f

@x1
jx;:::; @f

@xn
jx
�
: 219

Now let @fj W U ! R be the continuous function x ! @f

@xj
jx . Clearly the 220

differential of @fj will be 221

x !
�
@

@x1
.@fj /jx;:::; @

@xn
.@fj /jx

�
I 222

write @
@xi
.@fj /jx D @fj i D @

@xi

�
@f

@xj

�
jx . 223

Then the differential d2f .x/ can be represented by the matrix array 224

.@fj i /x D

0
BBB@

@
@x1

�
@f

@x1

�
: : : @

@x1

�
@f

@xn

�
:::

:::
@
@xn

�
@f

@x1

�
: : : @

@xn

�
@f

@xn

�

1
CCCA
x

: 225

This n�n matrix we shall also write asHf.x/ and call the Hessian matrix of f 226

at x. Note thatHf.x/ is dependent on the particular basis, or coordinate system for 227

X . 228

From elementary calculus it is known that 229

@

@xi

�
@f

@xj

�
jx D @

@xj

�
@f

@xi

�
jx 230

and so the matrix Hf.x/ is symmetric. 231

Consequently, as in �2.3.3,Hf.x/may be regarded as a quadratic form given by 232

D2f .x/.h; k/ D hh;Hf .x/.k/i
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D .h1; : : : ; hn/
�
@

@xi

�
@f

@xj

��
k1
kn

��

D
Xn

iD1
Xn

jD1 hi
@

@xi

�
@f

@xj

�
kj :

As an illustration if f W R2 ! R is C2 then D2f .x/ W R2 �R2 ! R is given 233

by 234

D2f .x/.h; h/ D .h1h2/
0
@

@2f

@x21

@2f

@x21@x2
@2f

@x21@x1

@2f

@x22

1
A�h1

h2

�

D
�
h21
@2f

@x21
C 2h1h2 @2f

@x1@x2
C h22

@2f

@x22

�
jx:

In the case that f W R! R is C2, then @2f

@x2
jx, is simply written as d2f

dx2
jx, a real 235

number. Consequently the second differentialD2f .x/ is given by 236

D2f .x/.h; h/ D h
�
d2f

dx2
jx
�
h

D h2 d
2f

dx2
jx:

We shall not distinguish in this case between the linear map D2f .x/ W R2 ! R 237

and the real number d
2f

dx2
jx . 238

4.2.2 Taylor’s Theorem 239

From the definition of the derivative of a function f W X ! Y; df .x/ is the linear 240

approximation to f in the sense that f .x C h/ � f .x/ D df .x/.h/C k h kx 
.h/ 241

where the “error” k h kx; 
.h/ approaches zero as h approaches zero. Taylor’s 242

Theorem is concerned with the “accuracy” of this approximation for a small vector 243

h, by using the higher order derivatives. Our principal tool in this is the following. If 244

f W U � X ! R and the convex hull Œx; x C h� of the points x and x C h belongs 245

to U , then there is some point z 2 Œx; xCh� such that f .xCh/ D f .x/Cdf .z/.h/. 246

To prove this result we proceed as follows. 247

Lemma 4.1 (Rolle’s Theorem). Let f W U ! R where U is an open set in 248

R containing the compact interval I D Œa; b�, and a < b. Suppose that f is 249

continuous and differentiable on U , and that f .a/ D f .b/. Then there exists a 250

point c 2 .a; b/ such that df .c/ D 0. 251
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Fig. 4.4

Proof. From the Weierstrass Theorem (and Lemma 3.16) f attains its upper and 252

lower bounds on the compact interval, I . Thus there exists finite m;M 2 R such 253

that m � f .x/ �M for all x 2 I . 254

If f is constant on I , so m D f .x/ D M;8x 2 I , then clearly df .x/ D 0 for 255

all x 2 I . 256

Then there exists a point c in the interior .a; b/ of I such that df .c/ D 0. 257

Suppose that f is not constant. Since f is continuous and I is compact, there exist 258

points c; e 2 I such that f .c/ D M and f .e/ D m. Suppose that neither c nor e 259

belong to .a; b/. In this case we obtain a D e and b D c, say. But then M D m 260

and so f is the constant function. When f is not the constant function either c or e 261

belongs to the interior .a; b/ of I . 262

1. Suppose c 2 .a; b/. Clearly f .c/ � f .x/ 	 0 for all x 2 I . Since c 2 .a; b/ 263

there exists x 2 I s.t. x > c, in which case f .x/�f .x/
x�c � 0. On the other hand 264

there exists x 2 I s.t. x < c and f .x/�f .x/
x�c 	 0. By the continuity of df at 265

x; df .c/ D Limx!cC
f .x/�f .c/

x�c D Limx!c�
f .x/�f .c/

x�c D 0. Since c 2 .a; b/ and 266

df .x/ D 0 we obtain the result. 267

2. If e 2 .a; b/ then we proceed in precisely the same way to show df .e/ D 0.
Thus there exists some point c 2 .a; b/, say, such that df .c/ D 0. ut
Note that when both c and e belong to the interior of I , then these maximum and 268

minimum points for the function f are critical points in the sense that the derivative 269

is zero. 270

Lemma 4.2. Let f W R! R where f is continuous on the interval I D Œa; b� and 271

df is continuous on .a; b/. Then there exists a point c 2 .a; b/ such that df .c/ D 272
f .b/�f .a/

b�c . 273

Proof. Let g.x/ D f .b/ � f .x/ � k.b � x/ and k D f .b/�f .a/
b�a . Clearly g.a/ D

g.b/ D 0. By Rolle’s Theorem, there exists some point c 2 .a; b/ such that dg.c/ D
0. But dg.c/ D k � df .c/. Thus df .c/ D f .b/�f .a/

b�a . ut
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Lemma 4.3. Let f W R ! R be continuous and differentiable on an open set 274

containing the interval Œa; aC h�. Then there exists a number t 2 .0; 1/ such that 275

f .aC h/ D f .a/C df .aC th/.h/: 276

Proof. Put b D aC h. By the previous lemma there exists c 2 .a; aC h/ such that 277

df .c/ D f .b/ � f .a/
b � a : 278

Let t D c�a
b�a . Clearly t 2 .0; 1/ and c D aC th. But then df .a C th/ W R! R

is the linear map given by df .a C th/.h/ D f .b/ � f .a/, and so f .a C h/ D
f .a/C df .aC th/.h/. ut
Mean Value Theorem. Let f W U � X ! R be a differentiable function on U , 279

whereU is an open set in the normed vector spaceX . Suppose that the line segment 280

Œx; x C h� D fz W z D x C th where t 2 Œ0; 1�g 281

belongs to U . Then there is some number t 2 .0; 1/ such that 282

f .x C h/ D f .x/C df .x C th/.h/: 283

Proof. Define g W Œ0; 1� ! R by g.t/ D f .x C th/. Now g is the composition of 284

the function 285

� W Œ0; 1�! U W t ! x C th 286

with f W Œx; x C h�! R. 287

Since both � and f are differentiable, so is g. By the chain rule, 288
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dg.t/ D df .�.t// ı dp.t/
D df .x C th/.h/:

By Lemma 4.3, there exists t 2 .0; 1/ such that dg.t/ D g.1/�g.0/
1�0 . But g.1/ D

f .x C h/ and g.0/ D f .x/. Hence df .x C th/.h/ D f .x C h/� f .x/. ut
Lemma 4.4. Suppose g W U ! R is a C2-map on an open set U in R containing 289

the interval [0,1]. Then there exists � 2 .0; 1/ such that 290

g.1/ D g.0/C dg.0/C 1

2
d2g.�/: 291

Proof. (Note here that we regard dg.t/ and d2g.t/ as real numbers.) Now define 292

k.t/ D g.t/ � g.0/� tdg.0/� t2Œg.1/ � g.0/� dg.0/�. 293

Clearly k.0/ D k.1/ D 0, and so by Rolle’s Theorem, there exists � 2 .0; 1/ 294

such that dk.�/ D 0. But dk.t/ D dg.t/�dg.0/�2tŒg.1/�g.0/�dg.0/�. Hence 295

dk.0/ D 0. 296

Again by Rolle’s Theorem, there exists � 0 2 .0; �/ such that d2k.� 0/ D 0. But 297

d2k.� 0/ D d2g.� 0/ � 2Œg.1/ � g.0/� dg.0/�. 298

Hence g.1/ � g.0/ � dg.0/ D 1
2
d 2g.� 0/ for some � 0 2 .0; 1/. ut

Lemma 4.5. Let f W U � X ! R be a C2-function on an open set U in the 299

normed vector space X . If the line segment Œx; x C h� belongs to U , then there 300

exists z 2 .x; x C h/ such that 301

f .x C h/ D f .x/C df .x/.h/C 1

2
d2f .z/.h; h/: 302

Proof. Let g W Œ0; 1� ! R by g.t/ D f .x C th/. As in the mean value theorem, 303

dg.t/ D df .x C th/.h/. Moreover d2g.t/ D d2f .x C th/.h; h/. 304

By Lemma 4.4, g.1/ D g.0/C dg.0/C 1
2
d 2g.� 0/ for some � 0 2 .0; 1/. 305

Let z D x C � 0h. Then f .x C h/ D f .x/C df .x/.h/C 1
2
d 2f .h; h/. ut

Taylor’s Theorem. Let f W U � X ! R be a smooth (or C1�/ function on an 306

open set U in the normed vector space X . If the line segment Œx; x C h� belongs to 307

U , then f .x C h/ D f .x/ CPn
rD1 1

rŠ
d rf .x/.h; : : : ; h/ C Rn.h/ where the error 308

term Rn.h/ D 1
.nC1/Šd

nC1f .z/.h; : : : ; h/ and z 2 .x; x C h/. 309

Proof. By induction on Lemma 4.5, using the mean value theorem. ut
The Taylor series off at x to order k is 310

Œf .x/�k D f .x/C
kX
rD1

1

rŠ
d rf .x/.h; : : : ; h/: 311



UNCORRECTED
PROOF

4.2 Cr -Differentiable Functions

Fig. 4.6

When f is C1, then Œf .x/�k exists for all k. In the case when X D Rn and the 312

error term Rk.h/ approaches zero as k ! 1, then the Taylor series Œf .x/�k will 313

converge to f .x C h/. 314

In general however Œf .x/�k need not converge, or if it does converge then it need 315

not converge to f .x C h/. 316

Example 4.3. To illustrate this, consider the flat function f W R! R given by 317

f .x/ D exp

�
� 1
x2

�
; x ¤ 0;

D 0 x D 0:

Now Df.x/ D � 2
x3

exp.� 1
x2
/ for x ¤ 0. Since y

3
2 e�y ! 0 as y ! 1, we 318

obtainDf.x/! 0 as x ! 0. However 319

Df.0/ D Limh!0

f .0C h/� f .0/
h

D Limh!0

1

h
exp

�
� 1
h2

�
D 0: 320

Thus f is both continuous and C1 at x D 0. In the same way f is C r and 321

Drf .0/ D 0 for all r > 1. Thus the Taylor series is Œf .0/�k D 0. However for small 322

h > 0 it is evident that f .0 C h/ ¤ 0. Hence the Taylor series cannot converge to 323

f . 324

These remarks lead directly to classification theory in differential topology, 325

and are beyond the scope of this work. The interested reader may refer to 326

Chillingsworth (1976) for further discussion. 327
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4.2.3 Critical Points of a Function 328

Suppose now that f W U � Rn ! R is aC2-map. Once a coordinate basis is chosen 329

for Rn, then D2f .x/ may be regarded as a quadratic form. In matrix notation this 330

means that 331

D2f .x/.h; h/ D htHf .x/h: 332

As we have seen in Chapter 2 if the Hessian matrix Hf.x/ D .@fj i /x has all its 333

eigenvalues positive, then D2f .x/.h; h/ > 0 for all h 2 Rn, and so Hf.x/ will be 334

positive definite. 335

ConverselyHf.x/ is negative definite iff all its eigenvalues are strictly negative. 336

Lemma 4.6. If f W U � Rn ! R is a C2 map on U , and the Hessian matrix 337

Hf.x/ is positive (negative) definite at x, then there is a neighbourhood V of x in 338

U s. t. Hf.y/ is positive (negative) definite for all y 2 V . 339

Proof. If Hf.x/ is positive definite, then as we have seen there are n different 340

algebraic relationships between the partial derivates @fj i .x/ for j D 1; : : : ; n and 341

i D 1; : : : ; n, which characterise the roots �1.x/; : : : ; �n.x/ of the characteristic 342

equation 343

jHf.x/ � �.x/I j D 0: 344

But since f is C2, the map D2f W U ! L2.RnIR/ is continuous. In particular 345

this implies that for each i; j the map x ! @
@xi

�
@f

@xj

�
jx D @fj i .x/ is continuous. 346

Thus if @fj i .x/ > 0 then there is a neighbourhoodV of x inU such that @fj i .y/ > 0 347

for all y 2 V . Moreover if 348

C.x/ D C.@fj i .x/ W i D 1; : : : ; nI j D 1; : : : ; n/ 349

is an algebraic sentence in @fj i .x/ such that C.x/ > 0 then again there is a 350

neighbourhood V of x in U such that C.y/ > 0 for all y 2 V . 351

Thus there is a neighborhood V of x in U such that �i .x/ > 0 for i D 1; : : : ; n

implies �i .y/ > 0 for i D 1; : : : ; n, and all y 2 V . HenceHf.x/ is positive definite
at x 2 U implies that Hf.y/ is positive definite for all y in some neighborhood of
x in U . The same argument holds if Hf.x/ is negative definite at x. ut
Definition 4.2. Let f W U � Rn ! R where U is an open set in Rn. A point x in 352

U is called 353

1. a local strict maximum of f in U iff there exists a neighbourhood V of x in U 354

such that f .y/ < f .x/ for all y 2 V with y ¤ x; 355

2. a local strict minimum of f in U iff there exists a neighbourhood V of x in U 356

such that f .y/ > f .x/ for all y 2 V with y ¤ x; 357

3. a local maximum of f in U iff there exists a neighbourhood V of x in U such 358

that f .y/ � f .x/ for y 2 V ; 359

4. a local minimum of f in U iff there exists a neighbourhood V of x in U such 360

that f .y/ > f .x/ for all y 2 V . 361
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5. Similarly a global (strict) maximum (or minimum) on U is defined by requiring 362

f .y/ < .�; >;	/f .x/ respectively on U . 363

6. If f is C1- differentiable then x is called a critical point iff df .x/ D 0, the zero 364

map from Rn to R. 365

Lemma 4.7. Suppose that f W U � Rn ! R is a C2-function on an open set U in 366

Rn. Then f has a local strict maximum (minimum) at x if 367

1. x is a critical point of f and 368

2. the Hessian Hf.x/ is negative (positive) definite. 369

Proof. Suppose that x is a critical point and Hf.x/ is negative definite. By 370

Lemma 4.5 371

f .y/ D f .x/C df .x/.h/C 1

2
d2f .z/.h; h/ 372

whenever the line segment Œx; y� 2 U; h D y � x and z D x C �h for some 373

� 2 .0; 1/. 374

Now by the assumption there is a coordinate base for Rn such that Hf.x/ is 375

negative definite. By Lemma 4.6, there is a neighbourhood V of x in U such that 376

Hf.y/ is negative definite for all y in V . Let N�.x/ D fx C h Wk h k< �g be an 377

�-neighborhood in V of x. Let S�
2
.0/ D fh 2 Rn Wk h kD 1

2
�g. 378

Clearly any vector xCh, where h 2 S �
2
I .0/ belongs toN�.x/, and thus V . Hence 379

Hf.z/ is negative definite for any z D x C �h, where h 2 S�
2
.0/, and � 2 .0; 1/. 380

ThusHf.z/.h; h/ < 0, and any z 2 Œx; x C h�. 381

But also by assumption df .x/ D 0 and so df .x/.h/ D 0 for all h 2 Rn. Hence
f .x C h/ D f .x/ C 1

2
d 2f .z/.h; h/ and so f .x C h/ < f .x/ for h 2 S�

2
.0/. But

the same argument is true for any h satisfying k h k< �
2
. Thus f .y/ < f .x/ for

all y in the open ball of radius �
2

about x. Hence x is a local strict maximum. The
same argument when Hf.x/ is positive definite shows that x must be a local strict
minimum. ut

In �2.3 we defined a quadratic form A� W Rn�Rn ! R to be non-degenerate iff 382

the nullity of A�, namely fx W A�.x; x/ D 0g, is f0g. If x is a critical point of a C2- 383

function f W U � Rn ! R such that d2f .x/ is non-degenerate (when regarded as 384

a quadratic form), then call x a non-degenerate critical point. 385

The dimension (s) of the subspace of Rn on which d2f .x/ is negative definite is 386

called the index of f at x, and x is called a critical point of index s. 387

If x is a non-degenerate critical point, then when any coordinate system for Rn
388

is chosen, the Hessian Hf.x/ will have s eigenvalues which are negative, and n� s 389

which are positive. 390

For example if f W R! R, then only three cases can occur at a critical point 391

1. d2f .x/ > 0 W x is a local minimum; 392

2. d2f .x/ < 0 W x is a local maximum; 393

3. d2f .x/ D 0 W x is a degenerate critical point. 394

If f W R2 ! R then a number of different cases can occur. There are three 395

non-degenerate cases: 396
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1. Hf.x/ D
�
1 0

0 1

�
, say, with respect to a suitable basis; x is a local minimum 397

since both eigenvalues are positive. IndexD 0. 398

2. Hf.x/ D
��1 0
0 �1

�
I x is a local maximum, both eigenvalues are negative. 399

IndexD 2. 400

3. Hf.x/ D
�
1 0

0 �1
�
I x is a saddle point or index 1 non-degenerate critical point. 401

In the degenerate cases, one eigenvalue is zero and so det .Hf .x// D 0. 402

Example 4.4. Let f W R2 ! R W .x; y/ ! xy. The differential at .x; y/ 403

is Df.x; y/ D .y; x/. Thus H D Hf.x; y/ D
�
0 1

1 0

�
. Clearly (0,0) is the 404

critical point. Moreover jH j D �1 and so .0; 0/ is non-degenerate. The eigenvalues 405

�1; �2 of the Hessian satisfy �1 C �2 D 0; �1 C �2 D �1. Thus respectively. 406

Let P D 1p
2

�
1 1

1 �1
�

be the normalized eigenvedor (basis change) matrix, so 407

P�1 D P . Then 408

^ D 1

2

�
1 1

�1 1
��

0 1

1 0

��
1 1

�1 0
�
D
�
1 0

0 �1
�
: 409

Consider a vector h D .h1; h2/ 2 R2. In matrix notation, htHh D htP ^P�1h. 410

Now P.h/ D 1p
2

�
1 1

1 �1
��

h1

h2

�
D 1p

2

�
h1 C h2
h2 � h2

�
. Thus htHh D 1

2
Œ.h1 C 411

h2/
2 � .h1 � h2/2� D 2h1h2. It is clear that D3f .0; 0/ D 0. Hence from Taylor’s 412

Theorem, 413

f .0C h1; 0C h2/ D f .0/CDf.0/.h/C 1

2
D2f .0/.h; h/ 414

and so f .h1; h2/ D 1
2
htHh D h � 1h2. 415

Suppose we make the basis change represented by P . Then with respect to the 416

basis fv � 1; v2g the point .x; y/ has mordinatm
�

1p
2
.h1 C h2/; 1p

2
.h1 � h2/

�
. 417

Thus f can be represented in a neighbourhood of the origin as 418

.h1 C h2/! 1p
2
.h1 C h2/ 1p

2
.h1 � h2/ D 1

2
.h21 � h22/: 419

Notice that with respect to this new coordinate system 420

Df.h1; h2/ D .h1;�h2/; and
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Hf.h1; h2/ D
�
1 0

0 �1
�
:

In the eigenspaceE1 D f.x; y/ 2 R2 W x D yg the Hessian has eigenvalue 1 and so 421

f has a local minimum at 0, when restricted to E1. 422

Conversely in the eigenspaceE�1 DD f.x; y/ 2 R2 W xCy D 0g, f has a local 423

maximum at 0. 424

More generally when f W R2 ! R is a quadratic function in x; y, then at a 425

critical point f can be represented, after a suitable coordinate change, either as 426

1. .x; y/! x2 C y2 an index 0, minimum 427

2. .x; y/! �x2 � y2 an index 2, maximum 428

3. .x; y/! x2 � y2 an index 1 saddle point. 429

Example 4.5. Let f W R3 ! R W .x; y; z/! x2C 2y2C 3z2CxyCxz. Therefore 430

Df.x; y; z/ D .2x C y C z; 4y C x; 62C x/. 431

Clearly (0,0,0) is the only critical point. 432

H D Hf.x; y; z/ D
0
@ 2 1 11 4 0

1 0 6

1
A 433

jH j D 38 and so (0,0,0) is non-degenerate. It can be shown that the eigenvalues of 434

the matrix are strictly positive, and soH is positive definite and (0,0,0) is a minimum 435

of the function. Thus f can be written in the form .u; v;w/ ! au2 C bv2 C cw2, 436

where a; b; c > 0 and .u; v;w/ are the new coordinates after a (linear) basis change. 437

Notice that Lemma 4.7 does not assert that a local strict maximum (or minimum) 438

of a C1-function must be a critical point where the Hessian is negative (respectively 439

positive) definite. 440

For example consider the “flat” function f W R ! R given by f .x/ D 441

� exp.� 1
x2
/, and f .0/ D 0. As we showed in Example 4.3, df .0/ D d2f .0/ D 0. 442

Yet clearly 0 > � exp. 1
a2
/ for any a ¤ 0. Thus 0 is a global strict maximum of 443

f on R, although d2f is not negative definite. 444

A local maximum or minimum must however be a critical point. If the point is 445

a local maximum for example then the Hessian can have no positive eigenvalues. 446

Consequently D2f .x/.h; h/ < 0 for all h, and so the Hessian must be negative 447

semi-definite. As the flat function indicates, the Hessian may be identically zero at 448

the local maximum. 449

Lemma 4.8. Suppose that f W U � Rn ! R is a C2-function on an open set u in 450

Rn. Then f has a local maximum or minimum at x only if x is a critical point of f . 451

Proof. Suppose that df .x/ ¤ 0. Then we seek to show that x can be neither a local 452

maximum nor minimum at x. 453
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Fig. 4.7

Since df .x/ is a linear map from Rn to R it is possible to find some vector 454

h 2 Rn such that df .x/.h/ > 0. 455

Choose h sufficiently small so that the line segment Œx; x C h� belongs to U . 456

Now f is C1, and so df W U ! L.Rn;R/ is continuous. In particular since 457

df .x/ ¤ 0 then for some neighbourhood V of x in U; df .y/ ¤ 0 for all y 2 V . 458

Thus for all y 2 V; df .y/.h/ > 0 (see Lemma 18 for more discussion of this 459

phenomenon). 460

By the mean value theorem there exists t 2 .0; 1/ such that f .x C h/ D f .x/C 461

df .x C th/.h/. By choosing h sufficiently small, the vector x C th 2 V . Hence 462

f .x C h/ > f .x/. Consequently x cannot be a local maximum. 463

But in precisely the same way if df .x/ ¤ 0 then it is possible to find h such that
df .x/.h/ < 0. A similar argument can then be used to show that f .x C h/ < f .x/
and so x cannot be a local minimum. Hence if x is either a local maximum or
minimum of f then it must be a critical point of f . ut
Lemma 4.9. Suppose that f W U � Rn ! R is a C2-function on an open set U in 464

Rn. If f has a local maximum at x then the Hessian d2f at the critical point must 465

be negative semi-definite (i.e., d2f .x/.h; h/ < 0 for all h 2 Rn/. 466

Proof. We may suppose that x is a critical point. Suppose further that for some 467

coordinate basis at x, and vector h 2 Rn; d 2f .x/.h; h/ > 0. From Lemma 4.6, 468

by the continuity of d2f there is a neighbourhood V of x in U such that 469

d2f .x0/.h; h/ > 0 for all x0 2 V . 470

Choose an �-neighbourhood of x in V , and choose ˛ > 0 such that k ah kD 1
2
�. 471

Clearly x C ˛h 2 V . By Taylor’s Theorem, there exists z D x C �˛h; � 2 .0; 1/, 472

such that f .xC˛h/ D f .x/Cdf .x/.h/C 1
2
d 2f .z/.˛h; ˛h/. But d2f .z/ is bilinear, 473

so d2f .z/.˛h; ˛h/ D ˛2d2f .z/.h; h/ > 0 since z 2 V . Moreover df .x/.h/ D 0. 474

Thus f .x C ˛h/ > f .x/. 475

Moreover for any neighbourhood U of x it is possible to choose � sufficiently
small so that x C ˛h belongs to U . Thus x cannot be a local maximum. ut

Similarly if f has a local minimum at x then x must be a critical point with 476

positive semi-definite Hessian. 477
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Example 4.6. Let f W R2 ! R W .x; y/ ! x2y2 � 4yx2 C 4x2; Df.x; y/ D 478

.2xy2 � 8xy C 8x; 2x2y � 4x2/. Thus .x; y/ is a critical point when 479

1. x.2y2 � 8y C 8/ D 0 and 480

2. 2x2.y � 2/ D 0. 481

Now 2y2�8yC8 D 2.y�2/2. Thus .x; y/ is a critical point either when y D 2 482

or x D 0. 483

Let S.f / be the set of critical points. Then S.f / D V1 [ V2 where 484

V1 D f.x; y/ 2 R2 W x D 0g
V2 D f.x; y/ 2 R2 W y D 2g

Now 485

Hf.x; y/ D
�
2.y � 2/2 �4x.2� y/
�4x.2� y/ 2x2

�
486

and so when .x; y/ 2 V1 then Hf.x; y/ D
�

2 0

0 0

�
, and when .x; y/ 2 V2, then 487

Hf.x; y/ D
�
0 0

0 �2

�
. 488

For suitable 
 and � , any point in S.f / is degenerate. On V1nf.0; 0/g clearly 489

a critical point is not negative semi-definite, and so such a point cannot be a local 490

maximum. The same is true for a point on V2nf.0; 0/g. 491

Now .0; 0/ 2 V1\V2, andHf.0; 0/ D .0/. Lemma 4.9 does not rule out (0,0) as 492

a local maximum. However it should be obvious that the origin is a local minimum. 493

Unlike examples 4.4 and 4.5 no linear change of coordinate bases transforms the 494

function into a quadratic canonical form. 495

To find a local maximum point we therefore seek all critical points. Those which 496

have negative definite Hessian must be local maxima. Those points remaining which 497

do not have a negative semi-definite Hessian cannot be local maxima, and may be 498

rejected. The remaining critical points must then be examined. 499

A C2-function f W Rn ! R with a non-degenerate Hessian at every critical 500

point is called a Morse function. Below we shall show that any Morse function can 501

be represented in a canonical form such as we found in Example 4.4. For such a 502

function, local maxima are precisely those critical points of index n. Moreover, any 503

smooth function with a degenerate critical point can be “approximated’ by a Morse 504

function. 505

Suppose now that we wish to maximise a C2-function on a compact set K . As 506

we know from the Weierstrass theorem, there does exist a maximum. However, 507

Lemmas 4.8 and 4.9 are now no longer valid and it is possible that a point on the 508

boundary ofK will be a local or global maximum but not a critical point. However, 509

Lemma 4.7 will still be valid, and a negative definite critical point will certainly be 510

a local maximum. 511
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A further difficulty arises since a local maximum need not be a global maximum. 512

However, for concave functions, local and global maxima coincide. We discuss 513

maximisation by smooth optimisation on compact convex sets in the next section. 514

4.3 Constrained Optimisation 515

4.3.1 Concave and Quasi-concave Functions 516

In the previous section we obtained necessary and sufficient conditions for a critical 517

point to be a local maximum on an open set U . When the set is not open, then a local 518

maximum need not be a critical point. Previously we have defined the differential of 519

a function only on an open set. Suppose now that Y � Rn is compact and therefore 520

closed, and has a boundary @Y . If df is continuous at each point in the interior, Int 521

.Y / of Y , then we may extend df over Y by defining df .x/, at each point x in the 522

boundary, @Y of Y , to be the limit df .xk/ for any sequence, .xk/, of points in Int 523

.Y /, which converge to x. More generally we shall say a function f W Y � Rn ! R 524

is C1 on the admissible set Y if df W Y ! L.Rn;R/ is defined and continuous 525

in the above sense at each x 2 Y . We now give an alternative definition of the 526

differential of a C1-function f W Y ! R. Suppose that Y is convex and both x and 527

x C h belong to Y . Then the arc Œx; x C h� D fz 2 Rn W z D x C �h; � 2 Œ0; 1�g 528

belongs to Y . 529

Now df .x/.h/ D lim�!0C

f .xC�h/�f .x/
�

and thus df .x/.h/ is often called the 530

directional derivative of f at x in the direction h. 531

Finding maxima of a function becomes comparatively simple when f is a 532

concave or quasi-concave function (see �3.4 for definitions of these terms). Our 533

first result shows that if f is a concave function then we may relate df .x/.y � x/ 534

to f .y/ and f .x/. 535

Lemma 4.10. If f W Y � Rn ! R is a concave C1-function on a convex 536

admissible set Y then 537

df .x/.y � x/ 	 f .y/ � f .x/: 538

Proof. Since f is concave 539

f .�y C .1 � �/x/ 	 �f .y/C .1 � �/f .x/ 540

for any � 2 Œ0; 1� whenever x; y 2 Y . But then f .x C �.y � x/ � f .x// 	 541

�Œf .y/ � f .x/�, and so 542

df .x/.y � x/ D Lim�!0C
f .x D �.y � x// � f .x/

�
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	 f .y/ � f .x/:

ut
This enables us to show that for a concave function, f , a critical point of f must 543

be a global maximum when Y is open. 544

First of all call a function f W Y � Rn ! R strictly quasi-concave iff Y is 545

convex and for all x; y 2 Y 546

f .�y C .1 � �/x/ > min.f .x/; f .y// for all � 2 .0; 1/: 547

Remember that f is quasi-concave if 548

f .�y C .1 � �/x/ 	 min.f .x/; f .y// for all � 2 Œ0; 1�: 549

As above let P.xIY / D fy 2 Y W f .y/ > f .x/g be the preferred set of 550

a function f on the set Y . A point x 2 Y is a global maximum of f on Y iff 551

P.xIY / D ˆ. When there is no chance of misunderstanding we shall write P.x/ 552

for P.xIY /. As shown in �3.4, if f is (strictly) quasi-concave then, 8x 2 Y , the 553

preferred set, P.x/, is (strictly) convex. 554

Lemma 4.11. 1. If f W Y � Rn ! R is a concave or strictly quasi-concave 555

function on a convex admissible set, then any point which is a local maximum of 556

f is also a global maximum. 557

2. If f W U � Rn ! R is a concave C1-function where U is open and convex, 558

then any critical point of f is a global maximum on U . 559

Proof. 1. Suppose that f is concave or strictly quasi-concave, and that x is a local 560

maximum but not a global maximum on Y . Then there exists y 2 Y such that 561

f .y/ > f .x/. 562

Since Y is convex, the line segment Œx; y� belongs to Y . For any neighbour- 563

hood U of x in Y there exists some �� 2 .0; 1/ such that, for � 2 .0; ��/; z D 564

�y C .1� �/x 2 U . But by concavity 565

f .z/ 	 �f .y/C .1 � �/f .x/ > f .x/: 566

Hence in any neighbourhoodU of x in Y there exists a point z such that f .z/ > 567

f .x/. Hence x cannot be a local maximum. Similarly by strict quasi-concavity 568

f .z/ > min.f .x/; f .y// D f .x/; 569

and so, again, x cannot be a local maximum. By contradiction a local maximum 570

must be a global maximum. 571

2. If f is C1 and U is open then by Lemma 4.8, a local maximum must be a critical
point. By Lemma 4.10, df .x/.y � x/ 	 f .y/ � f .x/. Thus df .x/ D 0 implies
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that f .y/ � f .x/ � 0 for all y 2 Y . Hence x is a global maximum of f on
Y . ut
Clearly if x were a critical point of a concave function on an open set then 572

the Hessian d2f .x/ must be negative semi-definite. To see this, note that by 573

Lemma 4.11, the critical point must be a global maximum, and thus a local 574

maximum. By Lemma 4.9, d2f .x/ must be negative semi-definite. The same is true 575

if f is quasi-concave. 576

Lemma 4.12. If f W U � Rn ! R is a quasi-concave C2-function on an open 577

set, then at any critical point, x; d2f .x/ is negative semi-definite. 578

Proof. Suppose on the contrary that df .x/ D 0 and d2f .x/.h; h/ > 0 for some 579

h 2 Rn. As in Lemma 4.6, there is a neighbourhood V of x in U such that 580

d2f .z/.h; h/ > 0 for all z in V . 581

Thus there is some �� 2 .0; 1/ such that, for all � 2 .0; ��/, there is some z in V 582

such that 583

f .x C �h/ D f .x/C df .x/.�h/C �2d2f .z/.h; h/; and

f .x � �h/ D f .x/C df .x/.��h/C .��h/2d2f .z/.h; h/;

where Œx � �h; x C �h� belongs to U . Then f .x C �h/ > f .x/ and f .x � �h/ > 584

f .x/. Now x 2 Œx � �h; x C �h� and so by quasi-concavity, 585

f .x/ 	 min.f .x C �h/; f .x � �h//: 586

By contradiction d2f .x/.h; h/ � 0 for all h 2 Rn. ut
For a concave function, f , on a convex set Y; d2f .x/ is negative semi-definite 587

not just at critical points, but at every point in the interior of Y . 588

Lemma 4.13. 1. If f W U � Rn ! R is a concaveC2-function on an open convex 589

set U , then d2f .x/ is negative semi-definite for all x 2 U . 590

2. If f W Y � Rn ! R is a C2- function on an admissible convex set Y and 591

d2f .x/ is negative semi-definite for all x 2 Y , then f is concave. 592

Proof. 1. Suppose there exists x 2 U and h 2 Rn such that d2f .x/.h; h/ > 593

0. By the continuity of d2f , there is a neighbourhood V of x in U such that 594

d2f .z/.h; h/ > 0, for z 2 V . Choose � 2 .0; 1/ such that x C �h 2 V . Then by 595

Taylor’s theorem there exists z 2 .x; x C �h/ such that 596

f .x C �h/ D f .x/C df .x/.�h/C 1

2
d2f .z/.�h; �h/

> f .x/C df .x/.�h/:

But then df .x/.�h/ < f .x C �h/ � f .x/. This contradicts df .x/.y � x/ 	 597

f .y/ � f .x/;8x; y in U . Thus d2f .x/ is negative semi-definite. 598
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2. If x; y 2 Y and Y is convex, then the arc Œx; y� � Y . 599

Hence there is some z D �x C .1 � �/y, where � 2 .0; 1/ , such that 600

f .y/ D f .x/C df .x/.y � x/C d2f .z/.y � x; y � x/
� f .x/C df .x/.y � x/:

But in the same way f .x/�f .z/ � df .z/.x�z/ and f .y/�f .z/ � df .z/.y�z/. 601

Hence 602

f .z/ 	 �Œf .x/ � df .z/.x � z/�C .1 � �/Œf .y/ � df .z/.y � z/�: 603

Now �df .z/.x � z/ C .1 � �/df .z/.y � z/ D df .z/Œ�x C .1 � �/y � z� D 604

df .z/.0/ D 0, since df .z/ is linear. 605

Hence f .z/ 	 �f .x/C .1� �/f .y/ for any � 2 Œ0; 1� and so f is concave. ut
We now extend the analysis to a quasi-concave function and characterise the 606

preferred set P.xIY /. 607

Lemma 4.14. Suppose f W Y � Rn ! R is a quasi-concave C1-function on the 608

convex admissible set Y . 609

1. If f .y/ 	 f .x/ then df .x/.y � x/ 	 0. 610

2. If df .x/.y � x/ > 0, then there exists some �� 2 .0; 1/ such that f .z/ > f .x/ 611

for any 612

z D �y C .1 � �/x where � 2 .0; ��/: 613

Proof. 1. By the definition of quasi-concavity f .�y C .1 � �/x/ > f .x/ for all 614

� 2 Œ0; 1�. But then, as in the analysis of a concave function, 615

f .x C �.y � x// � f .x/ 	 0 616

and so df .x/.y � x/ D Lim�!0C

f .xC�.y�x//�f .x/
�

	 0. 617

2. Now suppose f .x/ > f .z/ for all z in the line segment Œx; y�. Then df .x/.y � 618

x/ D Lim�!0C

f .xC�/.y�x/�f .x/
�

� 0, contradicting df .x/.y � x/ > 0. 619

Thus there exists z� D ��y C .1 � ��/x such that f .z�/ > f .x/. But then for 620

all z 2 .x; ��y C .1 � ��/x/; f .z/ > f .x/. Q. E. D. 621

The property that f .y/ 	 f .x/ ) df .x/.y � x/ 	 0 is often called pseudo- 622

concavity. 623

We shall also say that f W Y � Rn C R is strictly pseudo-concave iff for any 624

x; y in Y , with y ¤ x then f .y/ 	 f .x/ implies that df .x/.y � x/ > 0. (Note we 625

do not require Y to be convex, but we do require it to be admissible.) 626

Lemma 4.15. Suppose f W Y � Rn ! R is a strictly pseudo-concave function on 627

an admissible set Y . 628

1. Then f is strictly quasi-concave when Y is convex. 629

2. If x is a critical point, then it is a global strict maximum. ut
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Proof. 1. Suppose that f is not strictly quasi-concave. Then for some x; y 2 630

Y; f .��y C .1 � ��/x/ � min.f .x/; f .y// for some �� 2 .0; 1/. Without 631

loss of generality suppose f .x/ � f .y/, and f .�y C .1 � �/x/ � f .x/ for all 632

� 2 .0; 1/. Then df .x/.y � x/ D Lim�!0C

f .�yC.l��/x/�f .x/
�

� 0. But by strict 633

pseudo-concavity, we require that df .x/.y � x/ > 0. Thus f must be strictly 634

quasi-concave. 635

2. If df .x/ D 0 then df .x/.y � x/ D 0 for all y 2 U . Hence f .y/ < f .x/ for all
y 2 U; y ¤ x. Thus x is a global strict maximum. ut
As we have observed, when f is a quasi-concave function on Y , the preferred set 636

P.xIY / is a convex set in Y . Clearly when f is continuous then P.xIY / is open 637

in Y . As we might expect from the Separating Hyperplane Theorem, P.xIY / will 638

then belong to an “open half space”. To see this note that Lemma 4.14 establishes 639

(for a quasi-concave C1 function f ) that the weakly preferred set 640

R.xIY / D fy 2 Y W f .y/ 	 f .x/g 641

belongs to the closed half-space 642

R.xIY / D fy 2 Y W df .x/.y � x/ 	 0g: 643

When Y is open and convex the boundary of H.xIY / is the hyperplane fy 2 644

Y W df .x/.y � x/ D 0g and H.xIY / has relative interior
0

H.xIY / D fy 2 Y W 645

df .x/.y � x/ > 0g. Write H.z/; R.x/; P.x/ for H.xIY /;R.xIY /; P.xIY /, etc., 646

when Y is understood. 647

Lemma 4.16. Suppose f W U � Rn ! R is C1, and U is open and convex. 648

1. If f is quasi-concave, with df .x/ ¤ 0 then P.x/ � 0

H.x/, 649

2. If f is concave or strictly pseudo-concave then P.x/ � 0

H.x/ for all x 2 U . In 650

particular if x is a critical point, then P.x/ D 0

H.x/ D ˆ. 651

Proof. 1. Suppose that df .x/ ¤ 0 but that P.x/ � 0

H.x/. However both P.x/ and 652

0

H.x/ open sets in U . By Lemma 4.14, R.x/ � H.x/, and thus the closure of 653

P.x/ belongs to the closure of
0

H.x/ in U . Consequently there must exist a point 654

y which belongs to P.x/ yet df .x/.y � x/ D 0, so y belongs to the boundary 655

of
0

H.x/. Since P.x/ is open there exists a neighbourhood V of y in P.x/, and 656

thus in R.x/. Since y is a boundary point of
0

H.x/ in any neighbourhood V of 657

y there exists z such that z … H.x/. But this contradicts R.x/ � H.x/. Hence 658

P.x/ � 0

H.x/ 659

2. Since a concave or strictly pseudo-concave function is a quasi-concave function,

(1) establishes that P.x/ � 0

H.x/ for all x 2 U such that df .x/ ¤ 0. By
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Fig. 4.8

Lemmas 4.11 and 4.15, if df .x/ D 0 then x is a global maximum. Hence

P.x/ D 0

H.x/ D ˆ. ut

Lemma 4.8 shows that if
0

H.x/ ¤ ˆ, then x cannot be a global maximum on the 660

open set U . 661

Moreover for a concave or strictly pseudo-concave function P.x/ is empty if 662

0

H.x/ is empty (i. e., when df .x/ D 0). 663

Figure 4.8 illustrates these observations. Let P.x/ be the preferred set of a quasi- 664

concave function f (at a non-critical point x). 665

Point y1 satisfies f .y1/ D f .x/ and thus belongs toR.x/ and henceH.x/. Point 666

y2 2 H.x/n.x/ but there exists an open interval .x; z/ belonging to Œx; y2� and to 667

P.x/. 668

We may identify the linear map df .x/ W Rn ! R with a vector Df.x/ 2 Rn
669

where df .x/.h/ D hDf.x/; hi the scalar product of Df.x/ with h. Df.x/ is the 670

direction gradient, and is normal to the indifference surface at x, and therefore to 671

the hyperplane @H.x/ D fy 2 Y W df .x/.y � x/ D 0g. 672

To see this intuitively, note that the indifference surface I.x/ D fy 2 Y W 673

f .y/ D f .x/g through x, and the hyperplane @H.x/ are tangent at x. Just as df .x/ 674

is an approximation to the function f , so is the hyperplane @.x/ an approximation 675

to I.x/, near to x. 676

As we shall see in Example 4.7, a quasi-concave function, f , may have a critical 677

point x (so
0

H.x/ D ˆ/ yet P.x/ ¤ ˆ. For example, if Y is the unit interval, then 678

f may have a degenerate critical point with P.x/ ¤ ˆ. Lemma 4.16 establishes 679
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that this cannot happen when f is concave and Y is an open set. The final Lemma 680

of this section extends Lemma 4.16 to the case when Y is admissible. 681

Lemma 4.17. Let f W Y � Rn ! R be C1, and let Y be a convex admissible 682

set. 683

1. If f is quasi-concave on Y , then 8x 2 Y; 0

H.xIY / ¤ ˆ implies P.xIy/ ¤ ˆ. 684

If x is a local maximum of f , then
0

H.xIY / D ˆ. 685

2. If f is a strictly pseudo-concave function on an admissible set Y , and x is a local 686

maximum, then it is a global strict maximum. 687

3. If f is concave C1 or strictly pseudo-concave on Y , then P.xIY / � 0

H.x W 688

Y /8x 2 Y . Hence
0

H.xIY / D ˆ) .xIY / D ˆ. 689

Proof. 1. If
0

H.xIY / ¤ then df .x/.y � x/ > 0 for some y 2 Y . Then by 690

Lemma 4.14(2), in any neighbourhood U of x in Y there exists z such that 691

f .z/ > f .x/. Hence x cannot be a local maximum, and indeed P.x/ ¤ ˆ. 692

2. By Lemma 4.15, f must be quasi-concave. By (1), if x is a local maximum then 693

df .x/.y �x/ � 0 for all y 2 Y . By definition this implies that f .y/ < f .x/ for 694

all y 2 Y such that y ¤ x. Thus x is a global strict maximum. 695

3. If f is concave and y 2 P.xIY /, then f .y/ > f .x/. By Lemma 4.10, 696

df .x/.y � x/ 	 f .y/ � f .x/ > 0. Thus y 2 0

H.x/. 697

4. If f is strictly pseudo-concave then f .y/ > f .x/ implies df .x/.y � x/ > 0,

and so P.xIY / � 0

H.xIY /. ut
Example 4.7. These results are illustrated in Figure 4.9. 698

1. For the general function f1; b is a critical point and local maximum, but not a 699

global maximum (e). On the compact interval Œa; d �; d is a local maximum but 700

not a global maximum. 701

2. For the quasi-concave function f2, a is a degenerate critical point but neither a 702

local nor global maximum, while b is a degenerate critical point which is also a 703

global maximum. 704

Point c is a critical point which is also a local maximum. However on Œb; c�; c 705

is not a global maximum. 706

3. For the concave function f3, clearly b is a degenerate (but negative semidefinite) 707

critical point, which is also a local and global maximum. Moreover on the interval 708

Œa; c�; c is the local and global maximum, even though it is not a critical point. 709

Note that df3.c/.a � c/ < 0. 710

Lemma 4.17 suggests that we call any point x in an admissible set Y a 711

generalized critical point in Y iff
0

H.xIY / D ˆ, Of course if df .x/ D 0, then 712

0

H.xIY / D ˆ, but the converse is not true when x is a boundary point. 713

Lemma 4.17 shows that .i/ for a quasi-concave C1-function, a global maximum 714

is a local maximum is a generalised critical point; .i i/ for a concave C1- or strictly 715
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pseudo-concave function a critical point is a generalised critical point is a local 716

maximum is a global maximum. 717

4.3.2 Economic Optimisation with Exogenous Prices 718

Suppose now that we wish to find the maximum of a quasi-concave C1-function 719

f W Y ! R subject to a constraint g.x/ 	 0 where g is also a quasi-concave 720

C1-function g W Y ! R. 721

As we know from the previous section, when Pf .x/ D fy 2 Y W f .y/ > f .x/g 722

and df .x/ ¤ 0, then 723

Pf .x/ � Hf .x/ D fy 2 Y W df .x/.x � y/ 	 0g: 724

Suppose now that Hg.x/ D fy 2 Y W dg.x/.x � y/ 	 0g has the property that 725

Hg.x/ \
0

H f .x/ D ˆ, and x satisfies g.x/ D 0. 726

In this case, there exists no point y such that g.y/ 	 0 and f .y/ > f .x/. 727

A condition that is sufficient for the disjointness of the two half-spaces
0

H f .x/ 728

andHg.x/ is clearly that �dg.x/C df .x/ D 0 for some � > 0. 729

In this case if df .x/.v/ > 0, then dg.x/.v/ < 0, for any v 2 Rn. 730

Now let L D L�.f; g/ be the Lagrangian f C �g W Y ! R. A sufficient 731

condition for x to be a solution to the optimisation problem is that dL.x/ D 0. 732
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Fig. 4.10

Note however that this is not a necessary condition. As we know from the 733

previous section it might well be the case for some point x on the boundary of 734

the admissible set Y that dL.x/ ¤ 0 yet there exists no y 2 Y such that 735

dg.x/.x � y/ 	 0 and df .x/.x � y/ > 0: 736

Figure 4.10 illustrates such a case when 737

Y D f.x; y/ 2 R2 W x 	 0; y 	 0g: 738

We shall refer to this possibility as the boundary problem. 739

As we know we may represent the linear maps df .x/; dg.x/ by the direction 740

gradients, or vectors normal to the indifference surfaces, labelledDf.x/;Dg.x/. 741

When the maps df .x/; dg.x/ satisfy df .x/ C �dg.x/ D 0; � > 0, then the 742

direction gradients are positively dependent and satisfy Df.x/C �Dg.x/ D 0. 743

In the exampleDf.x/ andDg.x/ are not positively dependent, yet x is a solution 744

to the optimisation problem. 745

It is often common to make some boundary assumption so that the solution does 746

not belong to the boundary of the feasible or admissible set Y . 747

In the more general optimisation problem .f; g/ W Y ! RmC1, the Kuhn 748

Tucker theorem implies that a global saddle point .x�; ��/ to the Lagrangian 749

L�.f; g/ D f CP
�igi gives a solution x� to the optimisation problem. Aside 750

from the boundary problem, we may find the global maxima of L�.f; g/ by finding 751

the critical points of L�.f; g/. 752

Thus we must choose x� such that 753

df .x�/C
mX
iD1

�idgi .x
�/ D 0: 754
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Once a coordinate system is chosen this is equivalent to finding .x�/, and 755

coefficients �1; : : : ; �m, all non-negative such that 756

Df.x�/C
mX
iD1

�iDgi .x
�/ D 0: 757

The Kuhn Tucker Theorem also showed that if .x�/ is such that gi .x�/ > 0, then 758

�i D 0 and if gi .x�/ D 0 then �i > 0. 759

Example 4.8. Maximise the function f W R! R: 760

x ! x2 W x 	 0
x ! 0 W x < 0

subject to g1.x/ D x 	 0 and g2.x/ D 1 � x 	 0. 761

Now L�.x/ D x2 C �1x C �2.1 � x/; @L
@x
D 2x C �1 � �2 D 0; @L

@�1
D x D 762

@L
@�2
D 1 � x D 0: 763

Clearly these equations have no solution. By inspection the solution cannot 764

satisfy g1.x/ D 0. Hence choose �1 D 0 and solve 765

L�.x/ D x2 C �.1 � x/: 766

Then @L
@x
D 2x � �; @L

@�
D 1 � x D 0. Thus x D 1 and � D 2 is a solution. 767

Suppose now that f; g1; : : : ; gm are all concave functions on the convex admis- 768

sible set Y D fx 2 Rn W xi 	 0; i D 1; : : : ; ng. Obviously if z D ˛y C .1 � ˛/x, 769

then 770

L�.f; g/.z/ D f .z/C
Xm

iD1 �igi .z/

D f̨ .y/C .1 � ˛/f .x/C
Xm

iD1 �i Œ˛gi .y/C .1 � ˛/gi .x/�
D ˛L�.f; g/.y/C .1 � ˛/L�.f; g/.x/:

Thus L�.f; g/ is a concave function. By Lemma 4.11, x� is a global maximum 771

of L�.f; g/ iff dL.f; g/.x�/ D 0 (aside from the boundary problem). 772

For more general functions, to find the global maximum of the Lagrangian 773

L�.f; g/, and thus the optimum to the problem .f; g/, we find the critical points 774

of L�.f; g/. Those critical points which have negative definite Hessian will then be 775

local maxima ofL�.f; g/. However we still have to examine the local maxima when 776

the Hessian of the Lagrangian is negative semi-definite to find the global maxima. 777

Even in this general case, any solution x� to the problem .f; g/ must be a global 778

maximum for a suitably chosen LagrangianL�.f; g/, and thus must satisfy the first 779

order condition 780



UNCORRECTED
PROOF

4 Differential Calculus and Smooth Optimisation

Fig. 4.11

Df.x�/C
Xm

iD1 �iDgi .x
�/ D 0 781

(again, subject to the boundary problem). 782

Example 4.9. Maximise f W R2 ! R W .x; y/ ! xy subject to the constraint 783

g.x; y/ D 1 � x2 � y2 	 0. We seek a solution to the first order condition: 784

DL.x; y/ D Df.x; y/C �Dg.x; y/ D 0: 785

Thus .y; x/C �.�2x;�2y/ D 0 or � D y

2x
D x

2y
so x2 D y2. 786

For x D �y; � < 0 and so Df.x; y/ D j�jDg.x; y/, (corresponding to a 787

minimum off on the feasible set g.x; y/ 	 0). 788

Thus we choose x D y and � D 1
2
. For .x; y/ on the boundary of the constraint 789

set we require 1 � x2 � y2 D 0. Hence x D y D ˙ 1p
2
. 790

The Lagrangian is therefore L D xy C 1
2
.1 � x2 � y2/ with differential (with 791

respect to x; y) 792

DL.x; y/ D .y � x; x � y/ and Hessian

HL.x; y/ D
��1 1
1 �1

�
:

The eigenvalues of HL are -2, 0 corresponding to eigenvectors (1, -1) and (1,1) 793

respectively. Hence HL is negative semi-definite, and so for example the point 794�
1p
2
; 1p

2

�
is a local maximum for the Lagrangian. 795

As we have observed in Example 3.4, the function f .x; y/ D xy is not 796

quasiconcave on R2, and hence it is not the case that Pf � Hf . However on 797

R2C D f.x; y/ 2 R2 W x 	 0; y 	 0g, f is quasi-concave, and so the optimality 798

conditionHg.x; y/ \Hf .x; y/ D ˆ is sufficent for an optimum. 799
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Fig. 4.12

Note also that Df.x; y/ D .y; x/ and so the origin (0,0) is a critical point of 800

f . However setting DL.x; y/ D 0 at .x; y/ D .0; 0/ requires � D 0. In this case 801

however 802

HL.x; y/ D
�
0 1

1 0

�
803

and as in Example 4.4, HL is non-degenerate with eigenvalues C1;�1. Hence 804

HL is not negative semi-definite, and so (0,0) cannot be a local maximum for the 805

Lagrangian. 806

However if we were to maximise f .x; y/ D �xy on the feasible set R2C subject 807

to the same constraint then L would be maximized at (0,0) with � D 0. 808

Example 4.10. In Example ?? we examined the maximisation of a convex pref- 809

erence correspondence of a consumer subject to a budget constraint of the form 810

B.p/ D fx 2 RnC W hp; xi � hp; ei D I g, given by an exogenous price vector 811

p 2 RnC, and initial endowment vector e 2 RnC. 812

Suppose now that the preference correspondence is given by a utility function: 813

f W R2C ! R W .x; y/! ˇlogx C .1 � ˇ/logy; 0 < ˇ < 1: 814

Clearly Df.x; y/ D
�
ˇ

x
;
1�ˇ
y

�
, and so Hf.x; y/ D

 �ˇ
x2
0

0
�.1�ˇ/
y2

!
is negative 815

definite. Thus f is concave on R2. The budget constraint is 816

g.x; y/ D I � p1x � p2y 	 0 817
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Fig. 4.13

where p1; p2 are the given prices of commodities x; y. The first order condition on 818

the Lagrangian is: Df.x; y/C �Dg.x; y/ D 0, i.e.,
�
ˇ

x
;
1�ˇ
y

�
C �.�p1;�p2/ D 0 819

and � > 0. Hence p1
p2
D ˇ

x
� y

1�ˇ . See Figure 4.13. 820

Now f is concave and has no critical point within the constraint set. Thus .x; y/ 821

maximises L� iff 822

y D x
�
p1

p2

��
1 � ˇ
ˇ

�
and g.x; y/ D 0: 823

Thus y D I�p1x
p2

and so x D Iˇ

p1
, y D I.1�ˇ

p2
, and � D 1

I
, is the marginal utility 824

of income. 825

Now consider a situation where prices vary. Then optimal consumption 826

.x�; y�/ D .d1.p1; p2/; d2.p1; p2// where di .p1; p2/ is the demand for commodity 827

x or y. As we have just shown, d1.p1; p2/ D Iˇ

p1
, and d2.p1; p2/ D I.1�ˇ/

p2
. 828

Suppose that all prices are increased by the same proportion i.e., .P 0
1; P

0
2/ D 829

˛.p1; p2/; ˛ > 0. 830

In this exchange situation I 0 D p0
1e1 C p0

2e2 D ˛I D ˛.p1e1 C p2e2/. 831

Thus x0 D I 0ˇ

p1
D ˛Iˇ

˛p1
D x0, and y0 D y. Hence di .˛p1; ˛p2/ D di .p1; p2/, for 832

i D 1; 2. The demand function is said to be homogeneous in prices. 833

Suppose now that income is obtained from supplying labor at a wage rate w say. 834

Let the supply of labor by the consumer be e D 1 � x3, where x3 is leisure time 835

and enters into the utility function. 836
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Then f W R3 ! R W .x1x2x3/ ! P3
iD1 ai log xi and the budget constraint is 837

p1x1 C p2x2 � .1 � x3/w, or g.x1; x2; x3/ D w � .p1x1 C p2x2 C wx3/ 	 0. The 838

first order condition is
�
a1
x1
; a2
x2
; a3
x3

�
D �.p1; p � 2;w/; � > 0. 839

Clearly the demand function will again be homogeneous, since d.p1; p2;w/ D 840

d.˛p1; ˛p2; ˛w/. 841

For the general consumer optimisation problem, we therefore normalise the price 842

vector. In general, in an n-commodity exchange economy let 843

� D fp 2 RnC Wk p kD 1g 844

be the price simplex. Here k is a convenient norm on Rn. 845

If f W RnC ! R is the utility function, let 846

D�f .x/ D Df.x/

k Df.x/ k 2 �: 847

Suppose then that x� 2 Rn is a maximum of f W RnC ! R subject to the budget 848

constraint hp; xi � I . 849

As we have seen the first order condition is 850

Df.x/C �Dg.x/ D 0; 851

whereDg.x/ D �p D .�p1; : : : ;�pn/; p 2 �, and 852

Df.x/ D
�
@f

@x1
; : : : ;

@f

@xn

�
: 853

ThusDf.x/ D �.p1; : : : ; pn/ D �p 2 RnC. But thenD�f .x/ D p

jjpjj 2 �. 854

Subject to boundary problems, a necessary condition for optimal consumer 855

behavior is that D�f .x/ D p

jjp . 856

As we have seen the optimality condition is that @f

@xi
=
@f

@xj
D pi

pj
, for the i th and 857

j th commodity, where @f

@xi
is often called the marginal utility of the i th commodity. 858

Now any point y on the boundary of the budget set satisfies 859

hp; yi D I D 1

�
hDf.x�/; x�i: 860

Hence y 2 H.p; I /, the hyperplane separating the budget set from the preferred 861

set at the optimum x�, iff hDf.x�/; y � x�i D 0. 862

Consider now the problem of maximisation of a profit function by a producer 863

�.x1; : : : ; xm; xmC1; : : : ; xn/ D
n�mX
jD1

pmCj xmCj �
mX
jD1

pj xj ; 864
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Fig. 4.14

where .x1; : : : ; xm/ 2 R are inputs, .xmC1; : : : ; xn/ are outputs and p 2 RnC is a 865

non-negative price vector. 866

As in Example 3.6, the set of feasible input-output combinations is given, by 867

the production set G D fx 2 RnC W F.x/ 	 0g where F W RnC ! R is a 868

smooth function and F.x/ D 0 when x is on the upper boundary or frontier of 869

the production set G. 870

At a point x on the boundary, the vector which is normal to the surface fx W 871

F.x/ D 0g is 872

Df.x/ D
�
@F

@x1
; : : : ;

@F

@xn

�
x

: 873

The first order condition for the Lagrangian is that 874

D�.x/C �Df .x/ D 0 875

or .�p1; : : : ;�pm; pmC1; : : : ; pn/C �
�
�F
�x1
; : : : ; @F

@xn

�
D 0. 876

For example with two inputs .x1 and x2) and one output .x3/ we might express 877

maximum possible output y in terms of x1 and x2, i.e., y D g.x1; x2/. Then the 878

feasible set is 879

fx 2 R3C W F.x1; x2; x3/ D g.x1; x2/� x3 	 0g: 880

Then .�p1;�p2; p3/C �
�
@g

@x1
;
@g

@x2
� 1

�
D 0 and so 881

p1 D p3 @g
@x1

; p2 D p3 @g
@x2

882



UNCORRECTED
PROOF

4.3 Constrained Optimisation

or p1
p2
D @g

@x1
=
@g

@x2
. 883

Here @g

@xj
is called the marginal product (with respect to commodity j for j D 884

1; 2). 885

For fixed Nx D . Nx1; Nx2/ consider the locus of points in R2C such that y D g. Nx/ is 886

a constant. If
�
@g

@x1
;
@g

@x2

�
Nx ¤ 0 at Nx, then by the implicit function theorem (discussed 887

in the next chapter) we can express x2 as a function x2.x1/ of x1, only, near Nx. 888

In this case @g

@x1
C dx2

dx1

@g

@x2
D 0 and so @g

@x1
=
@g

@x2
j Nx D dx2

dx1
jx D p1

p2
. 889

The ratio @g

@x1
=
@g

@x2
j Nx is called the marginal rate of technical substitution of x2 for 890

x1 at the point . Nx2; Nx2/. 891

Example 4.11. There are two inputs K (capital) and L (labor), and one output, Y , 892

say. 893

Let g.K;L/ D ŒdK�p C .1 � d/L�p�
�1
� . The feasibility constraint is 894

F.K;L; Y / D g.K;L/� Y 	 0: 895

Let �v;�w; p be the prices of capital, labor and the output. For optimality we 896

obtain: 897

.�v;�w; p/C �
�
@F

@K
;
@F

@L
;
@F

@Y

�
D 0: 898

On the production frontier,g.K;L/ D Y and so p D ��@F
@Y
D � since @F

@L
D �1. 899

Now let X D Œdk�� C .1 � d/L���. 900

Then @F
@K
D
�
� 1
�

�
Œ��dk���1�X� 1

��1. 901

Now Y D X� 1
� so Y 1C� D X� 1

��1. Thus @F
@K
D d. Y

K
/1C�. 902

Similarly @F
@L
D .1 � d/.Y

L
/1C�. Thus r

w D @F
@K
= @F
@L
D d

1�d .
L
K
/1C�. 903

In the case just of a single output, where the production frontier is given by a 904

function 905

xnC1 D g.x1; : : : ; xn/ and .x1; : : : ; xn/ 2 RnC 906

is the input vector, then clearly the constraint set will be a convex set if and only if g 907

is a concave function. (See Example 3.3.) In this case the solution to the Lagrangian 908

will give an optimal solution. However when the constraint set is not convex, then 909

some solutions to the Lagrangian problem may be local minima. See Figure 4.15 for 910

an illustration. 911

As with the consumer, the optimum point on the production frontier is unchanged 912

if all prices are multiplied by a positive number. 913

For a general consumer let d W RnC ! RnC; be the demand map where 914

d.p1; : : : ; pn/ D .x�
1 .p/; : : : ; x

�
n .p// D x�.p/ 915

and x�.p/ is any solution to the maximisation problem on the budget set 916
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Fig. 4.15

B.p1; : : : ; pn/ D fx 2 RnC W hp; xi � I g: 917

In general it need not be the case that d is single-valued, and so it need not be a 918

function. 919

As we have seen, d is homogeneous in prices and so we may regard d as a 920

correspondence 921

d W �CRnC: 922

Similarly for a producer let s W � ! RnC where s.p1; : : : ; pn/ D 923

.�x�
1 .p/; : : : ;�x�

m.p/; x
�
mC1.p/ : : :/ be the supply correspondence. (Here the first 924

m values are negative because these are inputs.) 925

Consider a society f1; : : : ; i; : : : ; mg and commodities named f1 : : : j : : : ng. Let 926

ei 2 RnC be the initial endowment vector of agent i , and e D Pm
iD1 ei the total 927

endowment of the society. Then a price vector p� 2 � is a market-clearing price 928

equilibrium when e CPm
iD1 si .p�/ D Pm

iD1 di .p�/ where si .p�/ 2 RnC belongs 929

to the set of optimal input-output vectors at price p� for agent i , and di.p�/ is an 930

optimal demand vector for consumer i at price vector p�. 931

As an illustration, consider a two person, two good exchange economy (without 932

production) and let eij be the intial endowment of good j to agent i . Let .f1; f2/ W 933

R2C W R2 be the C1-utility functions of the two players. 934

At .p1; p2/ 2 �, for optimality we have 935

�
@fi

@xi1
;
@fi

@xi2

�
D �i.p1; p2/; �i > 0: 936

But x1j C x2j D e1j C e2j , for j D 1 or 2, in market equilibrium. 937
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Fig. 4.16

Thus @fi
@xij
D � @fi

@xkj
when i ¤ k. Hence 1

�1

�
� @f1
@x11

;
@f1
@x12

�
D .p1; p2/ D 938

1
�

�
@f2
@x11

;� @f2
@x12

�
or
�
@f1
@x11

;
@f1
@x12

�
C �

�
@f2
@x11

;
@f2
@x12

�
D 0, for some � > 0. See 939

Figure 4.16. 940

We shall see in the next section this implies that the result .x11; x12; x21; x22/ of 941

optimal individual behaviour at the market-clearing price equilibrium is a Pareto 942

optimai outcome under certain conditions. 943

4.4 The Pareto Set and Price Equilibria 944

4.4.1 The Welfare and Core Theorems 945

Consider a society M D f1; : : : ; mg of m individuals where the preference of the 946

i th individual in M on a convex admissible set Y in Rn is given by a C1- function 947

ui W Y � Rn ! R. Then u D .u1; : : : ; um/ W Y � Rn ! Rm is called a C1-profile 948

for the society. 949
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A point y 2 Y is said to be Pareto preferred (for the society M ) to x 2 Y iff 950

ui .y/ > ui .x/ for all i 2 M . In this case write y 2 PM.x/ and call PM W Y ! 951

Y the Pareto correspondence. The (global) Pareto set for M on Y is the choice 952

P.u1; : : : ; um/ D fy 2 Y W PM.y/ D ˆg. We seek to characterise this set. 953

In the same way as before we shall let 954

Hi.x/ D fy 2 Y W dui .x/.y � x/ > 0g 955

whereHi W Y ! Y for each i D 1; : : : ; m. (Notice that Hi.x/ is open 8x 2 Y .) 956

Given a correspondence P W Y ! Y the inverse correspondence P�1 W Y ! Y 957

is defined by 958

P�1.x/ D fy 2 Y W x 2 P.y/g: 959

In �3.3 we said a correspondence P W Y ! Y (where Y is a topological space) 960

is lower demi-continuous (LDC) iff for all x 2 Y;P�1.x/ is open in Y . 961

Clearly if ui W W ! R is continuous then the preference correspondence Pi W 962

Y ! Y given by Pi .x/ D fy W ui .y/ > ui .x/g is LDC, since 963

P�1
i .y/ D fx 2 Y W ui .y/ > u.x/g 964

is open. 965

We show now that when ui W Y ! R is C1 then Hi W Y ! Y is LDC and as a 966

consequence if Hi.x/ ¤ ˆ then Pi.x/ ¤ ˆ. 967

This implies that if x is a global maximum of ui on Y (so Pi.x/ D ˆ) then 968

Hi.x/ D ˆ (so x is a generalised critical point). 969

Lemma 4.18. If ui W Y ! R is a C1-function on the convex admissible set Y , then 970

Hi W Y ! Y is lower demi-continuous and if Hi.x/ ¤ ˆ then Pi.x/ ¤ ˆ. 971

Proof. Suppose that Hi.x/ ¤ ˆ. Then there exists y 2 Y such that dui .x/.y � 972

x/ > 0. Let h D y � x. 973

By the continuity of dui W Y ! L.Rn;R/ there exists a neighbourhoodU of x 974

in Y , and a neighbourhood V of h in Rn such that dui .z/.h0/ > 0 for all z 2 U , for 975

all h0 2 V . 976

Since y 2 Hi.x/, we have x 2 H�1
i .y/. Now h D y � x. Let 977

U 0 D fx0 2 U W y � x0 2 V g: 978

For all x0 2 U 0; dui .x0/.y � x0/ > 0. Thus U 0 � H�1
i .y/. Hence H�1

i .y/ is open. 979

This is true at each y 2 Y , and so Hi is LDC. 980

Suppose that Hi.x/ ¤ ˆ and h 2 Hi.x/. Since Hi is LDC it is possible to 981

choose � 2 .0; 1/, by Taylor’s Theorem, such that 982

ui .x C �h/ D ui .x/dui .z/.�h/; 983
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where dui .z/.h/ > 0, and z 2 .x; x C �h/. Thus ui .x C �h/ > ui .x/ and so
Pi.x/ ¤ ˆ. ut

When u D .u1; : : : ; um/ W Y ! Rm is a C1-profile then define the 984

correspondence HM W Y ! Y by HM.x/ D \i2MHi.x/ i.e., y 2 HM.x/ iff 985

dui .x/.y � x/ > 0 for all i 2 M . 986

Lemma 4.19. If .u1; : : : ; um/ W Y ! Rm is a C1-profile, then HM W Y ! Y is 987

lower demi-continuous. If HM.x/ ¤ ˆ then PM .x/ ¤ ˆ. 988

Proof. Suppose that HM.x/ ¤ ˆ. Then there exists y 2 Hi.x/ for each i 2 M . 989

Thus x 2 H�1
i .y/ for all i 2 M . But each H�1

i .y/ is open; hence 9 an open 990

neighbourhood Ui of x in H�1
i .y/ let U D \i2MUi . Then x0 2 U implies that 991

x0 2 H�1
M .y/. Thus HM is LDC. As in the proof of Lemma 4.18 it is then possible 992

to choose h 2 Rn such that, for all i in M , 993

ui .x C h/ D ui .x/C dui .z/.h/ 994

where z belongs to U , and dui .z/.h/ > 0. Thus xCh 2 PM .x/ and so PM .x/ ¤ ˆ.
ut

The set fx W HM.x/ D ˆg is called the critical Pareto set, and is often written 995

as ‚M , or ‚.u1; : : : ; um/. By Lemma 4.19, ‚.u1; : : : ; um/ contains the Pareto set 996

P.u1; : : : ; um/. 997

Moreover we can see that ‚M must be closed in Y . To see this suppose that 998

HM.x/ ¤ ‚, and y 2 HM.x/ ¤ ˆ. Thus x 2 H�1
M .y/. But HM is LDC and so 999

there is a neighbourhood U of x in Y such that x0 2 H�1
M .y/ for all x0 2 U . Then 1000

y 2 HM.x
0/ for all x0 2 U , and so HM.x

0/ ¤ ˆ for all x0 2 U . 1001

Hence the set fx 2 Y W HM.x/ ¤ ˆg is open and so the critical Pareto set is 1002

closed. 1003

In the same way, the Pareto correspondence PM W Y ! Y is given by PM .x/ D 1004

\i2MPi.x/ where Pi.x/ D fy W ui .y/ > ui .x/g for each i 2 M . Since each Pi is 1005

LDC, so must be PM , and thus the Pareto set P.u1; : : : ; um/ must also be closed. 1006

Suppose now that u1; : : : ; um, are all concave C1-or strictly pseudo-concave 1007

functions on the convex set Y . 1008

By Lemma 4.17, for each i 2 M;Pi .x/ � Hi.x/ at each x 2 Y . If x 2 1009

‚.u1; : : : ; um/ then 1010

\i2MPi.x/ � \i2MHi.x/ D ˆ 1011

and so x must also belong to the (global) Pareto set. Thus if u D .u1; : : : ; um) 1012

with each ui concave C1 or strictly pseudo-concave, then the global Pareto set P.u/ 1013

and the critical Pareto set ‚.u/ coincide. In this case we may more briefly say the 1014

preference profile represented by u is strictly convex. 1015

A point in P.u1; : : : ; um/ is the precise analogue, in the case of a family of 1016

functions, of a maximum point for a single function, while a point in‚.u1; : : : ; um/ 1017

is the analogue of a critical point of a single function u W Y ! R. In the case of 1018
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a family or profile of functions, a point x belongs to the critical Pareto set ‚M.u/, 1019

when a generalid Lagrangian L.u1; : : : ; um/ has differential dL.x/ D 0. 1020

This allows us to define a Hessian for the family and determine which critical 1021

Pareto points are global Pareto points. 1022

Suppose then that u D .u1; : : : ; um/ W Y ! Rm where Y is a convex admissible 1023

set in Rn and each ui W Y ! R is a C1-function. 1024

A generalised Lagrangian L.�; u/ is a semipositive combination
Pm

iD1 �iui 1025

where each �i 	 0 but not all �i D 0. 1026

For convenience let us write 1027

RmC D fx 2 Rm W xi 	 0 for i 2 M g
RmC D fx 2 Rm W xi > 0 for i 2 M g; and

RmC D RmCnf0g:

Thus � 2 RmC iff each �i 	 0 but not all �i D 0. Since each ui W Y ! R 1028

is a C1-function, the differential at x is a linear map dui .x/ W Rn ! R. Once a 1029

coordinate basis for Rn is chosen, dui .x/ may be represented by the row vector 1030

Dui .x/ D
�
@ui
@x
jx; : : : ; @ui

@xn
jx
�
: 1031

Similarly the profile u W Y ! Rm has differential at x represented by the .n�m/ 1032

Jacobian matrix 1033

Du.x/ D

0
B@
Du1.x/

:::

Dum.x/

1
CA W Rn ! Rm: 1034

Suppose now that � 2 Rm. Then define � �Du.x/ W Rn ! R by 1035

.� �Du.x//.v/ D h�;Du.x/.v/i 1036

where h�;Du.x/.v/i is the scalar product of the two vectors �;Du.x/.v/ in Rm. 1037

Lemma 4.20. The gradient vectors fDui .x/ W i 2 M g are linearly dependent and 1038

satisfy the equation 1039
mX
iD1

�iDui .x/ D 0 1040

iff [Im Du.x/�? is the subspace of Rm spanned by � D .�1; : : : ; �m/. 1041

Here � 2 [Im DU.x/�? iff h�;wi D 0 for all w 2 ImDu.x/. 1042

Proof.

� 2 ŒIm Du.x/�? , h�;wi D 0 8 w 2 Im Du.x/
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, h�;Du.x/.v/i D 0 8 v 2 Rn

, .� �Du.x//.v/ D 0 8 v 2 Rn

, � �Du.x/ D 0:

But � �Du.x/ D 0,Pm
iD1 �iDui .x/ D 0, where � D .�1; : : : ; �m/. ut

Theorem 4.21. If u W Y ! Rm is a C1-profile on an admissible convex set and x 1043

belongs to the interior of Y , then x 2 ‚.u1; : : : ; um/ iff there exists � 2 RmC such 1044

that dL.�; u/.x/ D 0. 1045

If x belongs to the boundary of Y and dL.�; u/.x/ D 0, for � 2 RmC, then 1046

x 2 ‚.u1; : : : ; um/ . 1047

Proof. Pick a coordinate basis for Rm. Suppose that there exists � 2 RmC such that 1048

L.�; u/.x/ D
mX
iD1

�iui .x/ 2 R; 1049

satisfies
Pm

iD1 �iDui .x/ D 0 (that is to say DL.�; u/.x/ D 0). 1050

By Lemma 4.20 this implies that 1051

� 2 ŒIm.Du.x//�?: 1052

However suppose x … ‚.u1; : : : ; um/. Then there exists v 2 Rn such that 1053

Du.x/.v/ D w 2 RmC, i.e., hDui .x/; vi D wi > 0 for all i 2 M , where 1054

w D .w1; : : : ;wm/. But w 2 ImDu.x/ and w 2 RmC. 1055

MoreoverX 2 RmC and so h�;wi > 0 (since not all �i D 0). 1056

This contradicts � 2 ŒIm.Du.x//�?, since h�; !i ¤ 0. Hence x 2 1057

‚.u1; : : : ; um/. Thus we have shown that for any x 2 Y , if DL.�; u/.x/ D 0 1058

for some � 2 RmC, then x 2 ‚.u1; : : : ; um/. Clearly DL.�; u/.x/ D 0 iff 1059

DL.�; u/.x/ D 0, so we have proved sufficiency. 1060

To show necessity, suppose that fDui .x/ W i 2 M g are linearly independent. 1061

If x belongs to the interior of Y then for a vector h 2 Rn there exists a vector 1062

y D x C �h, for � sufficiently small, so that y 2 Y and 8i 2 M; hDui .x/; h/ > 0. 1063

Thus x … ‚.u1; : : : ; um/. 1064

So suppose that DL.�; u/.x/ D 0 where � ¤ 0 but � … RmC. Then for at least 1065

one i; �i < 0. But then there exists a vector w 2 RmC where w D .w1; : : : ;wm/ and 1066

wi > 0 for each i 2 M , such that h�;wi D 0. By Lemma 4.20, w 2 Im.Du.x//. 1067

Hence there exists a vector h 2 Rn such that Du.x/.h/ D w. 1068

But w 2 RmC, and so hDui .x/; hi > 0 for all i 2 M . Since x belongs to the 1069

interior of Y , there exists a point y D x C ˛h such that y 2 Hi.x/ for all i 2 M . 1070

Hence x … ‚.u1; : : : ; um/. 1071

Consequently if x is an interior point of Y then x 2 ‚.u1; : : : ; um/ implies that
dL.�; u/.x/ D 0 for some semipositive � in RmC. ut
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Fig. 4.17

Example 4.12. To illustrate, we compute the Pareto set in R2 when the utility 1072

functions are 1073

u1.x1; x2/ D x˛1 x2 where ˛ 2 .0; 1/; and

u2.x1; x2/ D 1 � x21 � x22:

We maximise u1 subject to the constraint u2.x1; x2/ 	 0. 1074

As in Example 4.9, the first order condition is 1075

.˛xx
˛�1x2; x1˛/C �.�2x1;�2x2/ D 0: 1076

Hence � D ˛x1
˛�1x2
2x1

D x˛1
2x2

, so ˛x22 D x12, or x1 D ˙p˛x1. 1077

If x1 D �p˛x2 then � D x1
˛p
2
2.�x1/ < 0, and so such a point does not belong 1078

to the critical Pareto set. Thus .x1; x2/ 2 ‚.u1; u2/ iff x1 D x2
p
2. Note that if 1079

x1 D x2 D 0 then the Lagrangian may be written as 1080

L.�; u/.0; 0/ D �1u1.0; 0/C �2u2.0; 0/ 1081

where �1 D 0 and �2 is any positive number. In the positive quadrant R�C, the 1082

critical Pareto set and global Pareto set coincide. 1083

Finally to maximise u1 on the set f.x1; x2/ W u2.x1; x2/ 	 0g we simply choose � 1084

such that u2.x1; x2/ D 0. 1085
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Thus x12 C x2
2 D ˛x2

2 C x22 D 1 or x2 D 1p
1C˛ and so .x1; x2/ D 1086� p

˛p
1C˛ ;

1p
1C˛

�
. 1087

In the next chapter we shall examine the critical Pareto set ‚.u1; : : : ; um/ 1088

and demonstrate that the set belongs to a singularity “manifold” which can be 1089

topologically characterised to be of “dimension” m � 1. This allows us then to 1090

examine the price equilibria of an exchange economy. 1091

Note that in the example of a two person exchange economy studied in �4.3.2, 1092

we showed that the result of individual optimising behaviour led to an outcome, x, 1093

such that 1094

Du1.x/C �Du2.x/ D 0 1095

where � > 0. As we have shown here this “market clearing equilibrium” must 1096

belong to the critical Pareto set ‚.u1; u2/. Moreover, when both u1 and u2 represent 1097

strictly convex preferences, then this outcome belongs to the global Pareto set. We 1098

develop this in the following theorem. 1099

The Welfare Theorem for an Exchange Economy. Consider an exchange econ- 1100

omy where each individual in the society M D f1; : : : ; i; : : : ; mg has initial 1101

endowment ei 2 RnC. 1102

1. Suppose that the demand x�
i .p/ 2 RnC of agent i at each price p 2 � is such 1103

that x�
i .p/ maximises the C1-utility function ui W Rn ! R on the budget set 1104

Bi .p/ D fxi 2 RnC W hp; xii � hp; eiig and satisfies 1105

(a) Dui .x�
i .p// D �ip; �i > 0, 1106

(b) hp; x�
i .p/i D hp; eii. 1107

2. Suppose further that p� is a market clearing price equilibrium in the sense that 1108Pm
iD1 x�

i .p
�/ DPm

iD1 ei 2 Rn. 1109

Then x� D .x�
1 .p

�/; : : : ; x�
m.p// 2 ‚.u1; : : : ; um/. 1110

Moreover if each ui is either concave, or strictly pseudo-concave then x� belongs 1111

to the Pareto set, P.u1; : : : ; um/. 1112

Proof. We need to define the set of outcomes first of all. An outcome, x, is a vector 1113

x D .x1; : : : ; xi ; : : : ; xm/ 2 .RnC/m D RnmC ; 1114

where xi D .xi1; : : : ; xin/ 2 RnC is an allocation for agent i . However there are n 1115

resource constraints 1116
mX
iD1

xij D
mX
iD1

eij D e�j ; 1117

for j D 1; : : : ; n, where ei D .ei1; : : : ; ein/ 2 RnC is the initial endowment of agent 1118

i . 1119

Thus the set, Y , of feasible allocations to the members of M is a hyperplane of 1120

dimension n.m � 1/ in RnmC through the point .e1; : : : ; em/. 1121
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As coordinates for any point x 2 Y we may choose 1122

x D .x11; : : : ; x1n; x21; : : : ; x2n; : : : ; x.m�1/1; : : : ; x.m�1/n/ 1123

where it is implict that the bundle of commodities available to agentm is 1124

xm D .xm1; : : : ; xmn/ 1125

where xmj D e�j �Pm�1
iD1 xij . 1126

Now define u�
i W Y CR, the extended utility function of i on Y by 1127

u�
i .x/ D ui .xi1; : : : ; xin/: 1128

For i 2M , it is clear that the direction gradient of i on Y is 1129

Du�
i D

�
0; : : : ; 0;

@ui
@xi

; : : : ;
@ui
@xin

; 0; : : :

�
D .: : : ; 0; : : : ;Dui .x/; : : : ; 0/: 1130

For agentm D @u�
m

@xij
D � @um

@xmj
for i D 1; : : : ; m � 1; thus 1131

Du�
m.x/ D �

�
@um
@xm1

; : : : ;
@um
@xmn

; : : : ;

�

D �.Dum.x/; : : : ; : : : ;Dum.x//:

If p� is a market-clearing price equilibrium, then by definition 1132

mX
iD1

x�
i .p

�/
mX
iD1

ei : 1133

Thus x�.p�/ D .x�
1 .p

�/; : : : ; x�
m�1.p�// belongs to Y . But each x�

i is a critical 1134

point of ui W RnC ! R on the budget set Bi.p�/ and Dui .x�
i .p

�// D �ip�. 1135

Thus the Jacobian for u� D .u�
1 ; : : : ; u

�
m/ W Y ! Rm at x�.p�/ is 1136

Du�.x�/ D

2
6664
�1p

� 0 : : : : : : 0

0 �2p
�

:::
::: �m�1p�

��mp� ��mp� ��mp�

3
7775 1137

Hence 1
�1
DU �

1 .x
�/C 1

�2
DU �

2 .x
�/ : : :C 1

�m
Du�

m.x
�/ D 0. But each �i > 0 for 1138

i D 1; : : : ; m. Then dL.
; u�/.x�.p�// D 0 where L.
; u�/.x/ DPm
iD1 
iu�

i .x/ 1139

and 
i D 1
�i

and 
 2 RmC. 1140

By Theorem 4.21, x�.p�/ belongs to the critical Pareto set. 1141
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Clearly, if for each i; ui W RnC ! R is concave C1- or strictly pseudo-concave
then u�

1 W Y ! R will be also. By previous results, the critical and global Pareto set
will coincide, and so x�.p�/ will be Pareto optimal. ut

One can also show that the competitive allocation, x�.p�/ 2 RnmC , constructed 1142

in this theorem is Pareto optimal in a very simple way. By definition x�.p�/ is 1143

characterised by the two properties: 1144

1.
Pm

iD1 x�
i .p

�/ DPm
iD1 ei in Rn (feasibility) 1145

2. If ui .xi / > ui .x�
i .p

�// then hp�; xi i > hp�; ei i (by the optimality condition for 1146

agent i ). 1147

But if x�
i .p

�/ is not Pareto optimal, then there exists a vector x D .x1; : : : ; xm/ 2 1148

RnmC such that ui .xi / > ui .x�
i .p

�// for i D 1; : : : ; m. By (2), hp�; xi i > hp�; ei i 1149

for each i and so 1150

mX
iD1
hp�; xi i D hp�;

mX
iD1

xi i > hp�;
mX
iD1

ei i: 1151

But if x 2 RnmC is feasible then
Pm

iD1 xi �
Pm

iD1 ei which implies 1152

hp�;
Pm

iD1 xi i � hp�;
Pm

iD1 eii. 1153

By contradiction x�.p�/ must belong to the Pareto optimal set. 1154

The observation has an immediate extension to a result on existence of a core of 1155

an economy. 1156

Definition 4.3. Let e D .e1; : : : ; em/ 2 RnmC be an initial endowment vector for a 1157

society M . Let D be any family of subsets of M , and let P D .P1; : : : ; Pm/ be a 1158

profile of preferences for society M , where each Pi W RnC ! RnC is a preference 1159

correspondence for i on the i th consumption space Xi � RnC. 1160

An allocation x 2 RnmC is S -feasible (for S � M ) iff x D .xij / 2 RnmC and 1161P
i2S xij D

P
i2S eij for each j D 1; : : : ; n. 1162

Given e and P , an allocation x 2 RnmC belongs to the D-core of .e; P / iff x D 1163

.x1; : : : ; xm/ is M -feasible and there exists no coalition S 2 D and an allocation 1164

y 2 RnmC such that y is S -feasible and of the form y D .y; : : : ; ym/ with yi 2 1165

Pi.xi /;8i 2 S . 1166

To clarify this definition somewhat, consider the set Y from the proof of the 1167

welfare theorem. Y D YM is a hyperplane of dimension n.m � 1/ through the 1168

endowment point e 2 RnmC . For any coalition S 2 D of cardinality s, there is a 1169

hyperplaneYs , say, of dimension n.s�1/ through the endowment point e, consisting 1170

of S -feasible trades among the members of S . Clearly Ys � YM . If x 2 YM but 1171

there is some y 2 Ys such that every member of S prefers y to x, then the members 1172

of S could refuse to accept the allocation x. If there is no such point x, then x is 1173

“unbeaten”, and belongs to the D-core of the economy described by .e; P /. 1174

Core Theorem. Let D be any family of subsets of M . Suppose that p� 2 � is a 1175

market clearing price equilibrium for the economy .e; P / and x�.B/ 2 RnmC is the 1176
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demand vector, where 1177

x�.p�/ D .x�
1 .p/; : : : ; x

�
m.p// 2 YM ; and Pi.x

�
i .p

�//
\
Bi.p

�/ D ˆ: 1178

Then x�.p�/ belongs to the D-core, for the economy .e; P /. 1179

Proof. Suppose that x�.p�/ is not in the core. Then there is some y 2 Ys such that 1180

y D .yi W i 2 S/ and y 2 Pi.xi / for each i 2 S . Now x�
i .p

�/ is a most preferred 1181

point for i on Bi.p�/ so hp�; yi i > hp�; ei i for all i 2 S . 1182

Hence 1183

hp�;
X
i2S

yi i D
X
i2S
hp�; yi i >

X
i2S
hp�; ei i: 1184

However if y 2 Ys , then
P

i2S yi D
P

i2S ei 2 RnC, which implies
hp�;

P
i2S.yi � ei /i D 0. By contradiction, x�.p�/ must be in the core. ut

The Core Theorem shows, even if a price mechansim is not used, that if a market 1185

clearing price equilibrium, p� does exist, then the core is non-empty. This means in 1186

essence that the competitive allocation, x�.p�/, is Pareto optimal for every coalition 1187

S 2 D. 1188

By the results of �3.8, a market clearing price equilibriump� will exist under cer- 1189

tain conditions on preference. In particular suppose preference is representable by 1190

smooth utility functions that are concave or strictly pseudo-concave and monotonic 1191

in the individual consumption spaces. Then the conditions of the Welfare Theorem 1192

will be satisfied, and there will exist a market clearing price equilibirum, p�, and a 1193

competitive allocation, x�.p�/, at p� which belongs to the Pareto set for the society 1194

M . Indeed, since the Core Theorem is valid when D consists of all subsets of N , 1195

the two results imply that x�.p�/ will then belong to the critical Pareto set ‚S , 1196

associated with each coalition S 2 M . This in turn suggests for any S , there is 1197

a solution x� D x�.p�/ to the Lagrangian problem dLS.
; u/.x�/ D 0, where 1198

LS.p; u�/.x/ DPi2S 
iu�
i .x/ and 
i 	 08i 2 S . 1199

Here u�
i W YS ! R is the extended utility function for i on YS . 1200

It is also possible to use the concept of a core in the more general context 1201

considered in �3.8, where preferences are defined on the full space X D Q
i Xi 2 1202

RnmC . In this case, however, a price equilibrium may not exist if the induced social 1203

preference violates convexity or continuity. It is then possible for the D-core to be 1204

empty. 1205

Note in particular that the model outlined in this section implicitly assumes that 1206

each economic agent chooses their demand so as to optimize a utility function on 1207

the budget set determined by the price vector. Thus prices are treated as exogeneous 1208

variables. However, if agents treat prices as strategic variables then it may be rational 1209

for them to compute their effect on prices, and thus misrepresent their preferences. 1210

The economic game then becomes much more complicated than the one analyzed 1211

here. 1212
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A second consideration is whether the price equilibria are unique, or even locally 1213

unique. If there exists a continuum of pure equilibria, then prices may move around 1214

chaotically. 1215

A third consideration concerns the attainment of the price equilibrium. In �3.8 we 1216

constructed an abstract peference correspondence for an “auctioneer” so as to adjust 1217

the price vector to increase the value of the excess supply of the commodities. We 1218

deal with these considerations in the next section and in Chapter 5. 1219

4.4.2 Equilibria in an Exchange Economy 1220

The Welfare Theorem gives an important insight into the nature of competitive allo- 1221

cations. The coefficients 
i of the Lagrangean L.
;U / of the social optimisation 1222

problem turn out to be inverse to the coefficients �i in the individual optimisation 1223

problems, where �i is equal to the marginal utility of income for the i th agent. 1224

This in turn suggests that it is possible for an agent to transform hi utility function 1225

from ui to u0
i in such a way as to decrease �i and thus increase 
i , the “weight” 1226

of the i th agent in the social optimisation problem. This is called the problem of 1227

preference manipulation and is an interesting research problem with applications in 1228

trade theory. 1229

Secondly the weights 
i can be regarded as functionally dependent on the initial 1230

endowment vector .e1; : : : ; em/ 2 RnmC . Thus the question of market equilibrium 1231

could be examined in terms of the functions 
i W RnmC ! R; i D 1; : : : ; m. 1232

It is possible that one or a number of agents could destroy or exchange 1233

commodities so as to increase their weights. This is termed the problem of resource 1234

manipulation or the transfer paradox (see Gale, 1974, and Balasko, 1978). 1235

Example 4.13. To illustrate these observations consider a two person .i D 1; 2/ 1236

exchange economy with two commodities .j D 1; 2/. 1237

As in Example 4.10, assume the preference of the i th agent is given by a utility 1238

function fi W R2C ! R W fi .x; y/ D ˇi logx C .1 � ˇi /logy where 0 < ˇi < 1. 1239

Let the initial endowment vector of i be ei D .eil ; ei2/. At the price vector p D 1240

.p1; p2/, demand by agent i is di .p1; p2/ D
�
Ii ˇi
p1
;
Ii .1�ˇi /
p1

�
here I D p1eilCp2ei2 1241

is the value at p of the endowment. 1242

Thus agent i “desires” to change his initial endowment from ei to e0
i : 1243

.ei1; ei2/! .e0
i1; e

0
i2/ D

�
ˇiei1 C ˇiei2p2

p1
; .1� ˇi /ei2 C .1 � ˇi /ei1p1

p2

�
: 1244

Another way of interpreting this is that i optimally divides expenditure between 1245

the first and second commodities in the ratio ˇ W .1 � ˇ/. Thus agent i offers to 1246

sell .1 � ˇ/ei1 p1p2 units of commodity 1 for .1 � ˇ/ei1pl monetary units and buy 1247
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.1 � ˇi /ei1 p1p2 units of the second commodity, and offers to sell ˇiei2 units of the 1248

second commodity and buy ˇiei2
p1
p2

units of the first commodity. 1249

At the price vector .p1; p2/ the amount of the first commodity on offer is .1 � 1250

ˇi /e11 C .1 � 1 � ˇ2/e21 and the amount on request is ˇ1e12p�
2 C ˇ2e22p�

2 where 1251

p�
2 is the ratio p2 W p1 of relative prices. For .p1; p2/ to be a market-clearing price 1252

equilibrium we require 1253

e11.1 � ˇ1/C e21.1 � ˇ2/ D p�
2 .e22ˇ1 C e22ˇ2/: 1254

Clearly if all endowments are increased by a multiple ˛ > 0, then the equilibrium 1255

relative price vector is unchanged. Thus p�
2 is uniquely determined and so the final 1256

allocations .e0
11; e

0
12/; .e

0
21; e

0
22/ can be determined. 1257

As we showed in Example 4.10, the coefficients�i for the individual optimisation 1258

problems satisfy �i D 1
Ii

, where �i is the marginal utility of income for agent i . 1259

By the previous analysis, the weights 
i in the social optimisation problem 1260

satisfy 
i D Ii . After some manipulation of the price equilibrium equation we 1261

find 1262

i


k
D ei1.ei2 C ˇkek2/C ei2.1 � ˇk/ek1
ek1.ek2 C ˇiei2/C ek2.1 � ˇi /ei1 : 1263

Clearly if agent i can increase the ratio 
i W 
k , then the relative utility of i 1264

vis-à-vis k is increased. However since the relative price equilibrium is uniquely 1265

determined in this example, it is not possible for agent i , say, to destroy some of the 1266

initial endowments .ei1; ei2/ so as to bring about an advantageous final outcome. 1267

The interested reader is referred to Balasko (1978). 1268

In this example the (relative) price equilibrium is unique, but this need not 1269

always occur. Consider the two person, two commodity case illustrated below in 1270

Figure 4.18. As in the Welfare Theorem, the set of feasible outcomes Y is the subset 1271

of R4C D .x11; x12; x21; x22/ such that x11 C x21 D e�1I x12 C x22 D e�2, and this is 1272

a two-dimensional hyperplane through the point .e11; e12; e21; e22/. Thus Y can be 1273

represented in the usual two-dimensional Edgeworth box where point A, the most 1274

preferred point for agent 1, satisfies .x11; x12/ D .e�1; e�2/. 1275

The price ray Qp is that ray through .e11; e12/ where tan ˛ D p1
p2

. Clearly .p1; p2/ 1276

is an equilibrium price vector if the price ray intersects the critical Pareto set 1277

‚.f1; f2/ at a point .x11; x12/ in Y where Qp is tangential to the indifference curve. 1278

for f1 and f2 through .x11; x12/. At such a point we then have Df1.x11; x12/ C 1279


Df2.x11; x12/ D 0. 1280

As Figure 4.18 indicates there may well be a second price ray Qp which satisfies 1281

the tangency property. Indeed it is possible that there exists a family of such rays, or 1282

even an open set V in the price simplex such that each p in V is a market clearing 1283

equilibrium. We now explore the question of local uniqueness of price equilibria. 1284

To be more formal let X D RnC be the commodity or consumption space. An 1285

initial endowment is a vector e D .e1; : : : ; em/ 2 Xm. A C r utility function is a 1286

C r -function u D .u1; : : : ; um/ W X ! Rm. 1287
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Fig. 4.18

Let Cr.X;Rm/ be the set of C r -profiles, and endow Cr.X;R
m/ with a topology 1288

in the following way. (See the next chapter for a more complete discussion of the 1289

Whitney topology.) 1290

A neighbourhood of f 2 Cr.X;Rm/ is a set 1291

fg 2 Cr.X;Rm/ W kdkg.x/ � dkf .x/k < �.x/g for k D 0; : : : ; r 1292

where �.x/ > 0 for all x 2 X . (We use the notation that d0g D g and d1g D dg.) 1293

Write C r.X;Rm/ for Cr.X;Rm/ with this topology. A property K is called 1294

generic iff it is true for all profiles which belong to a residual set in C r.X;Rm/. 1295

Here residual means that the set is the countable intersection of open dense sets in 1296

C r.X;Rm/. 1297

If a property is generic then we may say that almost all profiles in C r.X;Rm/ 1298

have that property. 1299

A smooth exchange economy is a pair .e; u/ 2 Xm � C r.X;Rm/. As before the 1300

feasible outcome set is 1301

Y D
(
.x1; : : : ; xm/ 2 Xm W

mX
iD1

xi D
mX
iD1

ei

)
1302

and a price vector p belongs to the simplex � D fp 2 X W kpk D lg, where � is 1303

an object of dimension n � 1. 1304

As in the welfare theorem, the demand by agent i at p 2 � satisfies : x�
i .p/ 1305

maximises ui on 1306
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B.p/ D fxi 2 X W hp; xii � hp; eiig: 1307

As we have observed, under appropriate boundary conditions, we may assume 8i 2 1308

M;x�
i .p/ satisfies 1309

1. hp; x�
i .p/i D hp; eii 1310

2. D�ui .x�
i .p// D p 2 � Say .x�.p�/; p�/ D .x�

1 .p
�/; : : : ; x�

m.p
�/; p�/ 2 1311

Xm � � is a market or Walrasian equilibrium iff x�.p�/ is the competitive 1312

allocation at p� and satisfies 1313

mX
iD1

x�
i .p

�/ D
mX
iD1

ei 2 RnC: 1314

The economy .e; u/ is regular iff .e; u/ is such that the set of Walrasian equilibria 1315

is finite. 1316

Debreu-Smale Theorem on Generic Existence of Regular Economies. There is 1317

a residual set U in C r.X;Rm/ such that for every profile u 2 U , there is a dense set 1318

V 2 Xm with the property that .e; u/ is a regular economy whenever .e; u/ 2 V �U . 1319

The proof of this theorem is discussed in the next chapter (the interested reader 1320

might also consult Smale, 1976). However we can give a flavor of the proof here. 1321

Consider a point .e; x; p/ 2 Xm � Xm � �. This space is of dimension 2nmC 1322

.n � 1/. 1323

Now there are n resource restrictions 1324

mX
iD1

xij D
mX
iD1

eij 1325

for j D 1; : : : ; n, together with .m � 1/ budget restrictions hp; xii D hp; eii for 1326

i D l; : : : ; m � 1. 1327

Note that the budget restriction for the mth agent is redundant. 1328

Let � D f.e; x; p/ 2 Xm �Xm ��g be the set of points satisfying these various 1329

restrictions. Then � will be of dimension 2nmC .n� 1/� ŒnCm� 1� D 2nm�m. 1330

However, we also have m distinct vector equations D0ui .x/ D p; i D 1331

l; : : : ; m. 1332

Since these vectors are normalised, each one consists of .n � 1/ separate 1333

equations. Chapter 5 shows that singularity theory implies that for every profile 1334

u in a residual set, each of these constraints is independent. Together thesem.n�1/ 1335

constraints reduce the dimension of � by m.n � 1/. Hence the set of points in � 1336

satisfying the first order optimality conditions is a smooth object Zu of dimension 1337

2nm�m �m.n� 1/ D nm: 1338

Now consider the projection 1339
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Fig. 4.19

Zu � Xm � .Xm ��/! Xm W .e; x; p/) e; 1340

and note that both Zu and Xm have dimension nm. 1341

A regular economy .e; u/ is one such that the projection map proj: Zu ! Xm W 1342

.e; x; p/ C e has differential with maximal rank nm. Call e a regular value in this 1343

case. From singularity theory it is known that for all u in a residual set U , the set 1344

of regular values of the projection map is dense in Xm. Thus when u 2 U , and e is 1345

regular, the set of Walrasian equilibria for .e; u/ will be finite. Figure 4.19 illustrates 1346

this. At e1 there is only one Walrasian equilibrium, while at e3 there are three. 1347

Moreover in a neighbourhood of e3 the Walrasian equilibria move continuously with 1348

e. At e4 the Walrasian equilibrium set is one-dimensional. As e moves from the right 1349

past e2 the number of Walrasian equilibria drops suddenly from 3 to 1, and displays 1350

a discontinuity. Note that the points .x; p/ satisfying .e; x; p/ 2 .proj /�1.e/ need 1351

not be Walrasian equilibria in the classical sense, since we have considered only the 1352

first order conditions. It is clearly the case that if there is non-convex preference, 1353

then the first order conditions are not sufficient for equilibrium. However, Smale’s 1354

theorem shows the existence of extended Walrasian equilibria. The same difficulty 1355

occurs in the proof that a Walrasian equilibrium gives a Pareto optimal point in Y . 1356

Let ‚0.u/ D ‚0.u1; : : : ; um/ be the set of points satisfying the first order 1357

condition dL.X; u/ D 0 where X 2 RmC. suppose that we solve this with �1 ¤ 0. 1358

Then we may write Du1.x/CPm
iD2

�i
�i
DDi.x/ D 0. 1359

Clearly there are .m � 1/ degrees of freedom in this solution and indeed ‚0 D 1360

.u1; : : : ; um/ can be shown to be a geometric object of dimension .m � 1/ “almost 1361

always” (see Chapter 5). However ‚0.u/ will contain points that are the “social” 1362

equivalents of the minima of a real-valued function. 1363
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Fig. 4.20

Fig. 4.21

Note, by Lemma 4.21, that‚0.u/ and the critical Pareto set‚.u/ coincide, except 1364

for boundary points. If the boundary of the space is smooth, then it is possible to 1365

define a Lagrangian which characterises the boundary points in ‚.u/. 1366

For example consider Figure 4.20, of a two agent two commodity exchange 1367

economy. 1368

Agent 1 has non-convex preference, and the critical Pareto set consists of three 1369

componentsABC , ADC and EFG. 1370

On ADC although the utilities satisfy the first order condition, there exist nearby 1371

points that both agents prefer. For example, both agents prefer a nearby point y to 1372

x. See Figure 4.21. 1373

In Figure 4.22 from an initial endowment such as e D .e11; e12/, there exists three 1374

Walrasian extended equilibria, but at least one can be excluded. Note that if e is the 1375

initial endowment vector, then the Walrasian equilibrium B which is accessible by 1376

exchange along the price vector may be Pareto inferior to a Walrasian equilibrium, 1377

F , which is not readily accessible. 1378



UNCORRECTED
PROOF

4.4 The Pareto Set and Price Equilibria

Fig. 4.22

Fig. 4.23

Example 4.14. Consider the example due to Smale (as in Figure 4.23). Let Y D R2
1379

and suppose 1380

u1.x; y/ D y � x2

u2.x; y/ D �y
x2 C 1:

Then Du1.x; y/ D .�2x; 1/

Du2.x; y/ D
�

2xy

.x2 C 1/2 ;
�1

x2 C 1
�
:

Let DL�.x; y/ D �1.�2x; 1/C �2
�

2xy
.x2C1/2 ;

�1
x2C1

�
: 1381

Clearly one solution will be x D 0, in which case 1382

�1.0; 1/C �2.0; 1/ D 0 or �1 D �2 D 1: 1383

The Hessian for L at x D 0 is then 1384

HL.0; y/ D D2u1.0; y/CD2u2.0; y/
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D
��2 0
0 0

�
C
�
2y 0

0 0

�

which is negative semi-definite for 2.y � 1/ < 0 or y < 1. 1385
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Chapter 5 1

Singularity Theory and General Equilibrium 2

In the last section of the previous chapter we introduced the critical Pareto set ‚.u/ 3

of a smooth profile for a society, and the notion of a regular economy. Both ideas 4

relied on the concept of a singularity of a smooth function f W X ! <m, where a 5

singularity is a point analogous to the critical point of a real-valued function. 6

In this final chapter we introduce the fundamental result in singularity theory, 7

that the set of singularity points of a smooth profile almost always has a particular 8

geometric structure. We then go on to use this result to discuss the Debreu-Smale 9

Theorem on the generic existence of regular economies. No attempt is made to 10

prove these results in full generality. Instead the aim is to provide a geometric 11

understanding of the ideas. Section 5.4 uses an example of Scarf (1960) to illustrate 12

the idea of an excess demand function for an exchange economy. The example 13

provides a general way to analyse a smooth adjustment process leading to a 14

Walrasian equilibrium. Sections 5.5 and 5.6 introduce the more abstract topological 15

ideas of structural stability and chaos in dynamical systems. 16

5.1 Singularity Theory 17

In Chapter 4 we showed that when f W X ! < was a C2-function on a normed 18

vector space, then knowledge of the first and second differential of f at a critical 19

point, x, gave information about the local behavior (near x) of the function. In 20

this section we discuss the case of a differentiable function f W X ! Y between 21

general normed vector spaces, and consider regular points (where the differential has 22

maximal rank) and singularity points (where the differential has non-maximal rank). 23

For both kinds of points we can locally characterise the behavior of the function. 24
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5.1.1 Regular Points: The Inverse and Implict Function 25

Theorem 26

Suppose that f W X ! Y is a function between normed vector spaces and that 27

for all x0 in a neighbourhood U of the point x the differential df .x0/ is defined. 28

By the results of �3.2, if df .x0/ is bounded, or if X is finite-dimensional, then 29

df .x0/ will be a continuous linear function. Suppose now that X and Y have the 30

same finite dimension (n) and df .x0/ has rank n at all x0 2 U . Then we know 31

that df .x0/�1 W Y ! X is a linear map and thus continuous. We shall call f a 32

C2-diffeomorphism on U in this case. 33

In general, when Y is an infinite-dimensional vector space, then even if df .x0/�1 34

exists it need not be continuous. However when X and Y are complete normed 35

vector spaces then the existence of df .x0/�1 is sufficient to guarantee that df .x0/�1 36

is continuous. 37

Essentially a normed vector space X is complete iff any “convergent” sequence 38

.xk/ does indeed converge to a point in X . More formally, a Cauchy sequence is 39

a sequence .xk/ such that for any � > 0 there exists some number k.�/ such that 40

r; s > k.�/ implies that kxr � xsk < �. If .xk/ is a sequence with a limit x0 in X 41

then clearly .xk/must be a Cauchy sequence. On the other hand a Cauchy sequence 42

need not in general converge to a point in the spaceX . If every Cauchy sequence has 43

a limit in X , then X is called complete. A complete normed vector space is called 44

a Banach space. Clearly <n is a Banach space. Suppose now that X; Y are normed 45

vector spaces of the same dimension, and f W U � X ! Y is a C r -differentiable 46

function on U , such that df .x/ has a continuous inverse Œdf .x/��1 at x. We call f a 47

C r -diffeomorphism at x. Then we can show that f has an inverse f �1 W f .U /! U 48

with differential df �1.f .x// D Œdf .x/��1. Moreover there exists a neighbourhood 49

V of x in U such that f is a Cr -diffeomorphism on V . In particular this means that 50

f has an inverse f �1 W f .V / ! V with continuous differential df �1.f .x60// D 51

Œdf .x0/��1 for all x0 2 V , and that f �1 is C r -differentiable on V . To prove the 52

theorem we need to ensure that Œdf .x/��1 is not only linear but continuous, and it is 53

sufficient to assume X and Y are Banach spaces. 54

Inverse Function Theorem. Suppose f W U � X ! Y is C r -differentiable, 55

where X and Y are Banach spaces of dimension n. Suppose that the linear map 56

df .x/ W X ! Y , for x 2 U , is an isomorphism with inverse Œdf .x/��1 W Y ! 57

X . Then there exist open neighbourhoods V of x in U and V 0 of f .x/ such that 58

f W V ! V 0 is a bijection with inverse f �1 W V 0 ! V . Moreover f �1 is itself 59

C r -differentiable on V 0, and for all x0 2 V , df �1.f .x0// D Œdf .x0/��1. f is called 60

a local C r -diffeomorphism, at x. 61

Outline of Proof. Let t D df .x/ W X ! Y . Since Œdf .x/��1 exists and is 62

continuous, t�1 W Y ! X is linear and continuous. 63

It is possible to choose a neighbourhoodV 0 of f .x/ in f .U / and a closed ball Vx 64

in U centered at x, such that, for each y 2 V 0, the function gy W Vx � U � X ! 65
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Vx � X defined by gy.x0/ D x0 � t�1Œf .x0/ � y� is continuous. By Brouwer’s 66

Theorem, each gy has a fixed point. 67

That is to say for each y 2 V 0, there exists x0 2 Vx such that gy.x0/ D x0. But 68

then t�1Œf .x0/ � y� D 0. Since, by hypothesis, t�1 is an isomorphism, its kernel 69

D f0g, and so f .x0/ D y. Thus for each y 2 V 0 we establish gy.x0/ D x0 is 70

equivalent to f .x0/ D y. Define f �1.y/ D gy.x
0/ D x0, which gives the inverse 71

function on V 0. To show f �1 is differentiable, proceed as follows. 72

Note that dgy.x0/ D Id � t�1 ı df .x0/ is independent of y. Now dgy.x
0/ is a 73

linear and continuous function fromX toX and is thus bounded. SinceX is Banach, 74

it is possible to show that L.X; X/, the topological space of linear and continuous 75

maps from X to X , is also Banach. Thus if u 2 L.X; X/, so is .Id � u/�1. This 76

follows since .Id � u/�1 converges to an element of L.X; X/. 77

Now dgy.x
0/ 2 L.X; X/ and so .Id � dgy.x0//�1 2 L.X; X/. But then t�1 ı

df .x0/ has a continuous linear inverse. Now t�1 ı df .x0/ W X ! Y ! X and t�1
has a continuous linear inverse. Thus df .x0/ has a continuous linear inverse, for all
x0 2 V . Let V be the interior of Vx . By the construction the inverse of df .x0/, for
x0 2 V , has the required property. ut

This is the fundamental theorem of differential calculus. Notice that the theorem 78

asserts that if f W <n ! <n and df .x/ has rank n at x, then df .x0/ has rank n for 79

all x0 in a neighbourhood of x. 80

Example 5.1. (i) For a simple example, consider the function exp W < ! <C W 81

x ! ex. Clearly for any finite x 2 <; d.exp/.x/ D ex ¤ 0, and so the rank 82

of the differential is 1. The inverse � W <C ! < must satisfy 83

d�.y/ D Œd.exp/.x/��1 D 1

ex
84

where y D exp.x/ D ex . Thus d�.y/ D 1
y

. 85

Clearly � must be the function loge W y ! loge y. 86

(ii) Consider sin: .0; 2�/! Œ�1; C1�. 87

Now d.sin/.x/ ¤ 0. Hence there exist neighbourhoods V of x and V 0 of 88

sin x and an inverse � W V 0 ! V such that 89

d�.y/ D 1

cox x

1p
1 � y2: 90

This inverse � is only locally a function. As Figure 5.1 makes clear, even when 91

sin x D y, there exist distinct values x1; x2 such that sin.x1/ D sin.x2/ D y. 92

However d.sin/.x1/ ¤ d.sin/.x2/. 93

The figure also shows that there is a neighbourhoodV 0 of y such that � W V 0 ! V 94

is single-valued and differentiable on V 0. Suppose now x D �
2

. Then d.sin/


�
2

� D 95

0. Moreover there is no neighbourhood V of �
2

such that sin W 
�
2
� �; �

2
C �� D 96

V ! V 0 has an inverse function. 97



UNCORRECTED
PROOF

5 Singularity Theory and General Equilibrium

Fig. 5.1

Note one further consequence of the theorem. For h small, we may write 98

f .x C h/ D f .x/C df .x/ ı Œdf .x/��1.f .x C h/ � f .x//:
D f .x/C df .x/ .h/;

where .h/ D dŒf .x/��1.f .xCh/�f .x//. Now by a linear change of coordinates 99

we can diagonalise df .x/. So that in the case f D .f1; : : : ; fn/ W <n ! <n 100

we can ensure @fi
@xj
jx D @ij , where @ij D 1 if i D j and 0 if i ¤ j . Hence 101

f .x C h/ D f .x/ C . 1.h/; : : : ;  n.h//. There is therefore a C r -diffeomorphic 102

change of coordinates � near x such that �.Q/ D x and 103

f .�.h1; : : : ; hn// D f .x/C .h1; : : : ; hn/: 104

In other words by choosing coordinates appropriately f may be represented by 105

its linear differential. 106

Suppose now that f W U � <n ! <m is a C1-function. The maximal rank of df 107

at a point x in U is min.n; m/. If indeed df .x/ has maximal rank then x is called a 108

regular point of f , and f .x/ a regular value. In this case we write x 2 S0.f /. The 109

inverse function theorem showed that when n D m and x 2 S0.f / then f could be 110

regarded as an identity function near x. 111

In particular this means that there is a neighbourhood U of x such that 112

f �1Œf .x/� \ U D fxg is an isolated point. 113
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In the case that n ¤ m we use the inverse function theorem to characterise f at 114

regular points. 115

Implicit Function Theorem for Vector Spaces 116

1. (Surjective Version). Suppose that f W U � <n ! <m; n 	 m, and rank 117

.df .x// D m, with f .x/ D 0 for convenience. If f is C r -differentiable at x, 118

then there exists a C r -diffeomorphism � W <n ! <n on a neighbourhood of the 119

origin such that �.0/ D x, and f ı �.h1; : : : ; hn/ D .h1; : : : ; hm/. 120

2. (Injective Version). If f W U � <n ! <m; n � m, rank .df .x// D n, with 121

f .0/ D y, and f is C r -differentiable at x then there exists a C r -diffeomorphism 122

 W <m !<m such that  .y/ D 0 and 123

 f .h1; : : : ; hn/ D .h1; : : : ; hn; 0; : : : ; 0/: 124

Proof. 1. Now df .x/ D ŒBC �, with respect to some coordinate system, where B 125

is an .m � m/ non singular matrix and C is an .n � m/ � m matrix. Define 126

F W <n ! <n by 127

F.x1; : : : ; xn/ D .f .x1; : : : ; xn/; xmC1; : : : ; xn/: 128

Clearly DF.x/ has rank n, and by the inverse function theorem there exists an 129

inverse � to F near x. Hence F ı �.h1; : : : ; hn/ D .h1; : : : ; hn/. But then f ı 130

�.h1; : : : ; hn/ D .h1; : : : ; hn/. 131

2. Follows similarly. ut
As an application of the theorem, suppose f W <m �<n�m !<m. Write x for a 132

vector in <m, and y for a vector in <n�m, and let df .x; y/ D ŒBC � where B is an 133

m�mmatrix and C is an .n�m/�mmatrix. Suppose thatB is invertible, at .x; y/, 134

and that f .x; y/ D 0. Then the implicit function theorem implies that there exists 135

an open neighbourhoodU of y in <n�m and a differentiable function g W U ! <m 136

such that g.y0/ D x0 and f .g.y0/; y0/ D 0 for all y0 2 V . 137

To see this define 138

F W <m �<n�m ! <m �<n�m
139

by F.x; y/ D .f .x; y/; y/. 140

Clearly dF.x; y/ D
�
B C

O I

�
and so dF.x; y/ is invertible. Thus there exists a 141

neighbourhood V of .x; y/ in <n on which F has a diffeomorphic inverseG. Now 142

F.x; y/ D .0; y/. So there is a neighbourhood V 0 of .0; y/ and a neighbourhood 143

V of .x; y/ s. t. G : V � <n ! V 0 � <n is a diffeomorphism. 144
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Let g.y0/ be the x coordinate of G.0; y0/ for all y0 such that .0; y0/ 2 V 0. 145

Clearly g.y0/ satisfiesG.0; y0/ D .g.y0/; y0/ and so F ıG.0; y0/ D F.g.y0/; y/ D 146

.f .g.y0; y0//; y0/ D .0; y0/: 147

Now if .x0; y0/ 2 V 0 then y0 2 U where U is open in <n�m. Hence for all 148

y0 2 U; g.y0/ satisfies f .g.y0/; y0/ D 0. Since G is differentiable, so must be 149

g W U � <n�m ! <m. Hence x0 D g.y0/ solves f .x0; y0/ D 0. 150

Example 5.2. 1. Let f W <3 ! <2 where 151

f1.x; y; z/ D x2 C y2 C z2 � 3
f2.x; y; z/ D x3y3z3 � x C y � z:

At .x; Y; z/ D .1; 1; 1/; f1 D f2 D 0. 152

We seek a function g W < ! <2 such that f .g1.z/; g2.z/; z/ D 0 for all z in 153

a neighbourhood of 1. 154

Now 155

df .x; y; z/ D
�

2x 2y 2z
3x2y3z3 � 1 3x3Y 2z3 C 1 3x3y3z2 � 1

�
156

and so 157

df .1; 1; 1/ D
�
2 2 2

2 4 2

�
: 158

The matrix 159�
2 2

2 4

�
160

is non-singular. Hence there exists a diffeomorphism G W R3 ! <3 such that 161

G.O;O; 1/ D .1; 1; 1/, and G.O;O; z0/ D .g1.z0/; g2.z0/; z0/ for z0 near 1. 162

2. In a simpler example consider f W <2 ! < W .x; y/! .x�a/2C.y�b/2�25 D 163

0, with df .x; y/ D .2.x � a/; 2.y � b//. 164

Now let F.x; y/ D .x; f .x; y//, where F W <2 ! <2, and suppose y ¤ b. 165

Then dF.x; y/ D
 
1 0
@f

@x

@f

@y

!

D
�

1 0

2.x � a/ 2.y � b/
�

with inverse dG.x; y/ D 1
2.y�b/

�
2.y � b/ 0
�2.x � a/ 1

�
. 166

Define g.x0/ to be the y-coordinate of G.x0; 0/. Then F ı G.x0; 0/ D 167

F.x0; g.x0// D F.x0; f .x0; y0// D .x0; 0/, and so y0 D g.x0/ for f .x0; y0/ D 0 168

and y0 sufficiently close to y. 169
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Note also that 170

dg

dx

ˇ̌
ˇ̌
x0 D dG2

@x

ˇ̌
ˇ̌
.x0; g0/

D � .x
0 � a/

.y0 � b/ : 171

In Example 5.2(1), the “solution” g.z/ D .x; y/ to the smooth constraint 172

f .x; y; z/ D 0 is, in a topological sense, a one-dimensional object (since it is given 173

by a single constraint in <2). 174

In the same way in Example 5.2(2) the solution y D g.x/ is a one-dimensional 175

object (since it is given by a single constraint in <2). 176

More specifically say that an open set V in <n is an r-dimensional smooth 177

manifold iff there exists a diffeomorphism 178

� W V � <n ! U � <r : 179

When f W <n !<m and rank .df .x// D m � n then say that f is a submersion 180

at x. If rank .df .x// D n � m then say f is an immersion at x. 181

One way to interpret the implicit function theorem is as follows: 182

(1) When f is a submersion at x, then the inverse f �1.f .x// of a point f .x/ 183

“looks like” an object of the form fx; hmC1; : : : ; hng and so is a smooth manifold in 184

<n of dimension .n �m/. 185

(2) When f is an immersion at x, then the image of an (n-dimensional) 186

neighborhood U of x “looks like” an n-dimensional manifold, f .u/, in <m. These 187

observations can be generalized to the case when f W Xn ! Y m is “smooth”, 188

andX; Y are themselves smooth manifolds of dimension n;m respectively. Without 189

going into the formal details, X is a smooth manifold of dimenson n if it is a 190

paracompact topological space and for any x 2 X there is a neighborhood V of 191

x and a smooth “chart”, � W V � X ! U � <n. In particular if x 2 Vi \ Vj for 192

two open neighborhoods, Vi ; Vj of x then 193

�i ı ��1
j W �j .Vi \ Vj / � <n ! �i.Vi \ Vj / � <n: 194

is a diffeomorphism. A smooth structure onX is an atlas, namely a family f.�i ; Vi /g 195

of charts such that fVi g is an open cover of X . The purpose of this definition is that 196

if f W Xn ! Y m then there is an induced function near a point x given by 197

fij D  1 ı f ı ��1
j W <n ! ��1

j .Vj /! Y ! <m: 198

Here .�j ; Vj / is a chart at x, and . i ; Vi / is a chart at f .x/. If the induced 199

functions ffij g at every point x are differentiable then f is said to be differentiable, 200

and the “induced” differential of f is denoted by df . The charts thus provide 201

a convenient way of representing the differential df of f at the point x. In 202

particular once .�j ; Vj / and . i ; Vi / are chosen for x and f .x/, then df .x/ can be 203

represented by the Jacobian matrix Df.x/ D .@fij /. As before Df.x/ will consist 204

of n columns and m rows. Characteristics of the Jacobian, such as rank, will be 205
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independent of the choices for the charts (and thus coordinates) at x and f .x/. (See 206

Chillingsworth, 1976, for example, for the details.) 207

If the differential df of a function f W Xn ! Y m is defined and continuous then 208

f is called C1. Let C1.X; Y / be the collection of such C1-maps. Analogous to the 209

case of functions between real vector spaces, we may also write Cr.X; Y / for the 210

class of C r -differentiable functions between X and Y . 211

The implicit function theorem also holds for members of C1.X; Y /. 212

Implicit Function Theorem for Manifolds. Suppose that f W Xn ! Y m is a 213

C1-function between smooth manifolds of dimension n;m respectively. 214

1. If n 	 m and f is a submersion at x (i.e., rank df .x/ D m) then f �1.f .x// 215

is (locally) a smooth manifold in X of dimension .n � m/. Moreover, if Z is a 216

manifold in Y n of dimension r , and f is a submersion at each point in f �1.Z/, 217

then f �1.Z/ is a submanifold of X of dimension n �mC r . 218

2. If n � m and f is an immersion at x (i.e., rank df .x/ D n) then there is a 219

neighbourhood U of x in X such that f .U / is an n-dimensional manifold in Y 220

and in particular f .U / is open in Y . 221

The proof of this theorem is considerably beyond the scope of this book, but 222

the interested reader should look at Golubitsky and Guillemin (1973, page 9) or 223

Hirsch (1976, page 22). This theorem is a smooth analogue of the isomorphism 224

theorem for linear functions given in �2.2. For a linear function T W <n ! <m 225

when n 	 m and T is surjective, then T �1.y/ has the form x0 CK where K is the 226

.n � m/-dimensional kernel. Conversely if T W <n ! <m and n < m when T is 227

injective, then image .T / is an n-dimensional subspace of <m. More particularly if 228

U is an n-dimensional open set in <n then T .U / is also an n-dimensional open set 229

in <m. 230

Example 5.3. To illustrate, consider Example 5.2(2) again. When y ¤ b, df has 231

rank 1 and so there exists a “local” solution y0 D g.x0/ such that f .x0; g.x0// D 0. 232

In other words 233

f �1.0/ D f.x0; g.x0// 2 <2 W x0 2 U g; 234

which essentially is a copy of U but deformed in <2. Thus f �1.0/ is “locally” a 235

one-dimensional manifold. Indeed the set S1 D f.x; y/ W f .x; y/ D 0g itself is a 236

1-dimensional manifold in <2. 237

If y ¤ b, and .x; y/ 2 S1 then there is a neighbourhood U of x and a 238

diffeomorphism g W S1 ! < W .x0; y0/ C g.y0/ and this parametrises S1 near 239

.x; y/. 240

If y D b, then we can do the same thing through a local solution x0 D h.y0/ 241

satisfying f .h.y0/; y0/ D 0. 242
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Fig. 5.2

5.1.2 Singular Points and Morse Functions 243

When f W Xn ! Y m is a C1- function between smooth manifolds, and rank df .x/ 244

is maximal (D min.n;m/) then as before write x 2 S0.f /. 245

The set of singular points of f is S.f / D XnS0.f /. Let z D min.n;m/ and say 246

that x is a corank r singularity, or x 2 Sr.f /, if rank .df .x// D z� r . 247

Clearly S.f / D [r>1Sr.f /. 248

In the next section we shall examine the corank t singularity sets of aC1-function 249

and show that they have a nice geometric structure. In this section we consider the 250

case m D 1. 251

In the case of a C2-function f W Xn C <, either x will be regular (in S0.f // 252

or a critical point (in S1.f /) where df .x/ D 0. We call a critical point of f non- 253

degenerate iff d2f .x/ is non-singular. A C2-function all of whose critical points 254

are non degenerate is called a Morse function. A Morse function, f , near a critical 255

point has a very simple representation. 256

A local system of coordinates at a point x in X is a smooth assignment 257

y
�!.h1; : : : ; hn/ 258

for every y in some neighbourhoodU of x in X . 259

Lemma 5.1. (Morse). If f W Xn ! < is C2 and x is a non-degenerate critical 260

point of index k, then there exists a local system of coordinates (or chart (�; V )) at 261

x such that f is given by 262

y
�!.h1; : : : ; hn/ g!f .x/ �

kX
iD1

h2i C
nX

iDkC1
h2i : 263

As before the index of the critical point is the number of negative eigenvalues of 264

the Hessian Hf at x. The C2-function g has Hessian 265
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266

with k negative eigenvalues. Essentially the Morse lemma implies that when x is a 267

non-degenerate critical point of f , then f is topologically equivalent to the function 268

g with a similar Hessian at the point. 269

By definition, if f is a Morse function then all its critical points are non- 270

degenerate. Moreover if x 2 S1.f / then there exists a neighbourhood V of x such 271

that x is the only critical point of f in V . 272

To see this note that for y 2 V , 273

df .y/ D dg.h1; : : : ; hn/ D .�2h1; : : : ; 2hn/ D 0 274

iff h0
1 D : : : D hn D 0, or y D x. Thus each critical point of f is isolated, and so 275

S1.f / is a set of isolated points and thus a zero-dimensional object. 276

As we shall see almost any smooth function can be approximated arbitrarily 277

closely by a Morse function. 278

To examine the regular points of a differentiable function f W X ! <, we can 279

use the Sard Lemma. 280

First of all a set V in a topological spaceX is called nowhere dense if its closure, 281

clos.V /, contains no non-empty open set. Alternatively Xnclos.V / is dense. 282

If X is a complete metric space then the union of a countable collection of 283

closed nowhere dense sets is nowhere dense. This also means that a residual set 284

(the intersection of a countable collection of open dense sets) is dense. (See �3.1.2). 285

A set V is of measure zero inX iff for any � > 0 there exists a family of cubes, with 286

volume less than �, covering V . If V is closed, of measure zero, then it is nowhere 287

dense. 288

Lemma 5.2. (Sard). If f W Xn ! < is a C r -map where r 	 n, then the set 289

f .S1.f // of critical values of f has measure zero in <. Thus f .S0.f //, the set 290

of regular values of f , is the countable intersection of open dense sets and thus is 291

dense. 292

To illustrate this consider Figure 5.3. f is a quasi-concaveC1-function f W < ! 293

<. The set of critical points of f , namely S1.f /, clearly does not have measure zero, 294

since S1.f / has a non-empty interior. Thus f is not a Morse function. However 295

f .S1.f // is an isolated point in the image. 296

Example 5.4. To illustrate the Morse lemma let Z D S1�S1 be the torus (the skin 297

of a doughnut) and let f W Z !< be the height function. 298
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Fig. 5.3

Fig. 5.4 Critical Points on Z.

Point s, at the bottom of the torus, is a minimum of the function, and so the index 299

of s D 0. Let f .s/ D 0. 300

Then near s; f can be represented by 301

.h1; h2/! Ch21 C h22: 302

Note that the Hessian of f at s is

�
2 0

0 2

�
, and so is positive definite. 303

The next critical point, t , is obviously a saddle, with index 1, and so we can write 304

.h1; h2/! f .t/C h21 � h22. Clearly Hf.t/ D
�
2 0

0 �2
�

. 305

Suppose now that a 2 .f .s/; f .t//. Clearly a is a regular value, and so any. 306

point x 2 Z satisfying f .x/ D a is a regular point, and f is a submersion at x. By 307
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the implicit function theorem f �1.a/ is a one-dimensional manifold. Indeed it is a 308

single copy of the circle, S1. 309

The next critical point is the saddle, u, near which f is represented as 310

.h1; h2/! f .u/� h21 C h22: 311

Now for b 2 .f .t/; f .u//; f �1.b/ is a one-dimensional manifold, but this time 312

it is two copies of S1. Finally v is a local maximum and f is represented near v by 313

.h1; h2/! f .u/� h21 � h22. Thus the index of v is 2. 314

We can also use this example to introduce the idea of the Euler characteristic 315

�.X/ of a manifoldX . IfX has dimension, n, let ci .X; f / be the number of critical 316

points of index i , of the function f W X ! < and let 317

�.X; f / D
nX
iD0
.�1/ici .X; f /: 318

For example the height function, f , on the torus Z has 319

(i) c0.Z; f / D 1, since s has index 0 320

(ii) c1.Z; f / D 2, since both t and u have index 1 321

(iii) c2.Z; f / D 1, since v has index 2. 322

Thus �.Z; f / D 1 � 2 C 1 D 0. In fact, it can be shown that �.X; f / is 323

independent of f , when X is a compact manifold. It is an invariant of the smooth 324

manifoldX , labelled .�.X//. Example 5.4 illustrates the fact that �.Z/ D 0. 325

Example 5.5. (1) The sphere S1. It is clear that the height function f W S1 ! < 326

has an index 0 critical point at the bottom and an index 1 critical point at the 327

top, so �.S1/ D 1 � 1 D 0. 328

(2) The sphere S2 has an index 0 critical point at the bottom and an index 2 critical 329

point at the top, so �.S2/ D c0 C c2 D 1C 1 D 2. 330

It is possible to deform the sphere, S2, so as to induce a saddle, but this 331

creates an index 0 critical point. In this case c0 D 2; c1 D 1, and c2 D 1 as in 332

Figure 5.5. Thus �.S2/ D 2� 1C 1 D 2 again. 333

(3) More generally, �.Sn/ D 0 if n is odd andD 2 if n is even. 334

(4) To compute �.Bn/ for the closed n-ball, take the sphere Sn and delete the top 335

hemisphere. The remaining bottom hemisphere is diffeomorphic to Bn. By 336

this method we have removed the index n critical point at the top of Sn. 337

For n D 2k C 1 odd, we know 338

�.S2kC1/ D
2kX
iD0
.�1/i ci .Sn/ � cn.Sn/ D 0; 339

so �.B2kC1/ D �.S2kC1/C 1 D 1. For n D 2k, even we have
iD0P
2k�1

.�1/ci .Sn/C 340

cn.S
n/ D 2, so �.B2k/ D �.S2k/� 1 D 1. 341
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Fig. 5.5 Critical points in
S2.

5.2 Transversality 342

To examine the singularity set S.f / of a smooth function f W X ! Y we introduce 343

the idea of transversality 344

A linear manifold V in <n of dimension v is of the form x0 CK , where K is a 345

vector subspace of <n of dimension v. Intuitively if V and W are linear manifolds 346

in <n of dimension v;w then typically they will not intersect if v C w < n. 347

On the other hand if v C w 	 n then V \ W will typically be of dimension 348

v C w� n. 349

For example two lines in <2 will intersect in a point of dimension 1C 1 � 2. 350

Another way of expressing this is to define the codimension of V in <n to be 351

n�v. Then the codimension of V \W inW will typically be w�.vCw�n/ D n�v, 352

the same codimension. 353

Suppose now that f W Xn ! Y m where X; Y are vector spaces of dimension 354

n;m respectively. Let Z be a z-dimensional linear manifold in Y . Say that f is 355

transversal to Z iff for all x 2 X , either (i) f .x/ … Z or (ii) the image of df .x/, 356

regarded as a vector subspace of Y m, together with Z span Y . In this case write 357

f \T Z. The same idea can be extended to the case whenX; Y;Z, are all manifolds. 358

Whenever f \T Z, then if x 2 f �1.z/; f will be a submersion at x, and so f �1.Z/ 359

will be a smooth manifold inX of codimension equal to the codimension ofZ in Y . 360

Another way of interpreting this is that the number of constraints which determine 361

Z in Y will be equal to the number of constraints which determine f �1.Z/ in X . 362

Thus dim.f �1.Z// D n � .m � z/. 363

In the previous chapter we put the Whitney C s-topology on the set of C s- 364

differentiable maps Xn ! Y m, and called this C s.X; Y /. In this topological 365

space a residual set is dense. The fundamental theorem of singularity theory is that 366

transversal intersection is generic. 367

Thom Transversality Theorem. Let Xn; Y m be manifolds and Zz a submani- 368

fold of Y . Then the set 369
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ff 2 C s.X; Y / W f T\Zg D T\.X; Y I Z/ 370

is a residual (and thus dense) set in the topological space C s.X; Y /. 371

Note that if f 2 T\.X; Y I Z/ then f �1.Z/will be a manifold inX of dimension 372

n �mC z. 373

Moreover if g 2 C s.X; Y / but g is not transversal to Z, then there exists some 374

C s-map, as near to g as we please in the C s topology, which is transversal to Z. 375

Thus transversal intersection is typical or generic. 376

Suppose now that f W Xn C Y m, and corank df .x/ D r , so rank df .x/ D 377

min.n; m/� r . In this case we said that x 2 Sr.f /, the corank r singularity set of 378

f . We seek to show that Sr.f / is a manifold in X , and compute its dimension. 379

Suppose Xn; Y m are vector spaces, with dimension n;m respectively. As before 380

L.X; Y / is the normed vector space of linear maps from X to Y . Let Lr .X; Y / be 381

the subset of L.X; Y / consisting of linear maps with corank r . 382

Lemma 5.3. Lr .X; Y / is a submanifold of L.X; Y / of codimension .n�zCr/.m� 383

zC r/ where z D min.n; m/. 384

Proof. Choose bases such that a corank r linear map S is represented by a matrix 385�
A B

C D

�
where rank .A/ D k D z � r . 386

Let U be a neighbourhood of S in L.X; Y /, such that for all S 0 2 U , corank 387

.S 0/ D r . 388

Define F W U ! L.<n�k; <m�k/ by F.S 0/ D D0 � C.A0/�1B 0. 389

Now S 0 2 F�1.0/ iff rank .S 0/ D k. The codimension of 0 in L.<n�k; <m�k/ 390

is .n� k/.m� k/. Since F is a submersion F�1.0/ D Lr .X; Y / is of codimension 391

.n � zC r/.m � zC r/: Q: E: D. 392

Now if f 2 C s.X; Y /, then df 2 C s�1.X; L.X; Y //. If df .x/ 2 L.X; Y / 393

then x 2 Sr.f /. By the Thom Transversality Theorem, there is a residual set in 394

C s�1.X; L.X; Y // such that df .x/ is transversal to Lr .X; Y /. But then Sr.f / D 395

df �1.Lr .X; Y // is a submanifold of X of codimension .n � z C r/.m � z C r/. 396

Thus we have: 397

The Singularity Theorem. There is the residual set V in C s.X; Y / such that for 398

all f 2 V , the corank r singularity set of f is a submanifold in X of codimension 399

.n � zC r/.m � zC r/. 400

If f W Xn ! < then codim S1.f / D .n � 1 C 1/.1 � 1 C 1/ D n. Hence 401

generically the set of critical points will be zero-dimensional, and so critical points 402

will be isolated. Now a Morse function has isolated, non-degenerate critical points. 403

Let Ms.X/ be the set of Morse functions on X with the topology induced from 404

C s.X; </. 405

Morse Theorem. The set Ms.X/ of C s-differentiable Morse functions (with non- 406

degenerate critical points), is an open dense set in C s.X; </. Moreover if f 2 407

Ms.X/, then the critical points of f are isolated. 408
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More generally if f W Xn ! Y m with m � n then in the generic case, S1.f / is 409

of codimension .n �mC 1/.n �mC 1/ D n �mC 1 in X and so S1.f / will be 410

of dimension .m � 1/. 411

Suppose now that n > 2m � 4, and n 	 m. Then 2n � 2m C 4 > n and so 412

r.n�mC r/ > n for r 	 2. But codimension .Sr.f // D r.n�mC r/, and since 413

codimension Sr.f // > dimensionX; Sr.f / D ˆ for r 	 2. 414

Submanifold Theorem. IfZz is a submanifold of Y m and z < m thenZ is nowhere 415

dense in Y (here z D dim.Z/ and m D dim.Y /). 416

In the case n 	 m, the singularity set S.f / will generically consist of a union of 417

the various co-rank r singularity submanifolds, for r 	 1. The highest dimension 418

of these ism� 1. We shall call an S.f / a stratified manifold of dimension .m� 1/. 419

Note also that S.f / will then be nowhere dense inX . We also require the following 420

theorem. 421

Morse Sard Theorem. If f W Xn C Y m is a C s-map, where s > n � m, then 422

f .S.f // has measure zero in Y and f .S0.f // is residual and therefore dense in Y . 423

We are now in a position to apply these results to the critical Pareto set. Suppose 424

then that u D .u1; : : : ; um/ W Xn ! <m is a smooth profile on the manifold of 425

feasible states X . 426

Say x 2 0

‚.u1; : : : ; um/ D
0

‚.u/ iff dL.�; u/.x/ D 0, where L.�; u/ D 427Pm
iD1 �iui and � 2 <mC. 428

By Lemma ??, the critical Pareto set, ‚.u/, contains
0

‚.u/ but possibly also 429

contains further points on the boundary of X . However we shall regard
0

‚ as the 430

differential analogue of the Pareto set. By Lemma 4.19,
0

‚.u/ must be closed in X . 431

Moreover when n 	 m and x 2 0

‚.u/ then the differentials fdui .x/ W i 2 M g 432

must be linearly dependent. Hence
0

‚.u/ must belong to S.u/. But also S.u/ will 433

be nowhere dense in X . Thus we obtain the following theorem (Smale, 1973 and 434

Debreu, 1970). 435

Pareto Theorem. There exists a residual set U in C1.X; <m/, for dim.X/ 	 m, 436

such that for any profile u 2 U , the closed critical Pareto set
0

‚.u/ belongs to the 437

nowhere dense stratified singularity manifold S.u/ of dimension .m�1/. Moreover 438

if dim.X/ > 2m � 4, then ‚.u/ is itself a manifold of dimension .m � 1/, for all 439

u 2 C1.X; <m/. 440

As we have already observed this result implies that ‚.u/ can generally be 441

regarded as an .m � 1/ dimensional object parametrised by .m � 1/ coefficients 442�
�2
�1
; : : : ; �m

�1

�
say. Since points in

0

‚.u/ are characterised by first order conditions 443

alone, it is necessary to examine the Hessian of L to find the Pareto optimal points. 444
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5.3 Generic Existence of Regular Economies 445

In this section we outline a proof of the Debreu-Smale Theorem on the Generic 446

Existence of Regular Economies (see. Debreu, 1970, and Smale, 1974). 447

As in �4.4, let u D .u1; : : : ; um/ W XmC<m be a smooth profile, whereX D <nC, 448

the commodity space facing each individual. Let e D .e1; : : : ; em/ 2 Xm be an 449

initial endowment vector. Given u, define the Walras manifold to be the set 450

Zu D f.e; x; p/ 2 Xm �Xm ��g 451

(where � is the price simplex) such that .x; p/ is a Walrasian equilibrium for the 452

economy .e; u/. That is, .x; p/ D .x1; : : : ; xm; p/ 2 Xm �� satisfies: 453

1. individual optimality : D�ui .xi / D p for i 2M , 454

2. individual budget constraints: hp; xii D hp; ei i for i 2 M , 455

3. social resource constraints:
Pm

iD1 xij D
Pm

iD1 eij for each commodity j D 456

1; : : : ; n. 457

Note that we implicitly assume that each individual’s utility function, ui , is 458

defined on a domain Xi � X � <nC so that the differential dui .xi / at xi 2 Xi 459

can be represented by a vector Dui .xi / 2 <n. As we saw in Chapter 4, we may 460

normalize Dui and p so the optimality condition for i becomes D�ui .x/ D p 461

for p 2 �. For the space of normalized price vectors, we may identify � with 462

fp 2 <nC W kpk D 1g. Observe that dim.�/ D n � 1. 463

We seek to show that there is a residual set U in C s.X; <m/ such that the Walras 464

manifold is a smooth manifold of dimensionmn. 465

Now define the Debreu projection 466

� W Zu � Xm �Xm ��! Xm W .e; x; p/! e: 467

Note that both Zu, and Xm will then have dimensionmn. 468

By the Morse Sard Theorem the set 469

V D fe 2 Xm W d� has rank nm at .e; x p/g 470

is dense in Xm. 471

Say the economy .e; u/ is regular if a.e; x; p/ D e is a regular value of a (or 472

rank d� D mn) for all .x; p/ 2 Xm �� such that .e x; p/ 2 Zu/. 473

When e is a regular value of � , then by the inverse function theorem, 474

��1.e/ D f.e; x; p/1; .e; x; p/2; : : : .e; x; p/kg 475

is a zero-dimensional object, and thus will consist of a finite number of isolated 476

points. Thus for each e 2 V , the Walrasian equilibria associated with e will be finite 477
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in number. Moreover there will exist a neighbourhood N of e in V such that the 478

Walrasian equilibria move continuously with e in N . 479

Proof of the Generic Regularity of the Debreu Projection. Define  u W Xm � 480

�! �mCl where u 2 C r.X; <m/ by u.x; p/ D .D�u1.x1/; : : : ; D�um.xm/; p/ 481

where x D .x1; : : : ; xm/ and u D .u1; : : : ; um/. Let I be the diagonal f.p; : : : ; p/g 482

in �mC1. If .x; p/ 2  �1
u .I / then for each i , D�ui .xi / D p so the first order 483

individual optimality conditions are satisfied. By the Thom Transversality Theorem 484

there is a residual set (in fact an open dense set) of profiles U such that  u is 485

transversal to I for each u 2 U . But then the codimension of  �1
u .I / in Xm � � 486

equals the codimension of I in �mC1. 487

Now � and I are both of dimension .n � 1/ and so codimension .I / in �mC1 is 488

.mC1/.n�1/�.n�1/ D m.n�1/. Thus dim.Xm��/�dim. �1
u .I // D m.n�1/ 489

and dim. �1
u .I // D mnC .n � 1/�m.n� 1/ D nCm � 1, for all u 2 U . 490

Now let e 2 Xm be the initial endowment vector and 491

Y.e/ D
n
.x1; : : : ; xm/ 2 Xm W

Xm

iD1 xi D
Xm

iD1 ei
o

492

be the set of feasible outcomes, a hyperplane in <nmC of dimension n.m � 1/. For 493

each i , let Bi.p/ D fxi 2 X W hp; xi i D hp; ei ig, be the hyperplane through the 494

boundary of the i th budget set at the price vector p. 495

Define 496

X
.e/f.x; p/ 2 Xm �� W x 2 Y.e/; xi 2 Bi.p/; 8i 2 M g; 497

and � D f.e; x; p/ W e 2 Xm; .x; p/ 2P.e/g. 498

As discussed in Chapter 4, Y.e/ is characterized by n linear equations, while the 499

budget restrictions induce a further .m�1/ linear restraints (themth budget restraint 500

is redundant). Thus the dimension of � is 2mnC .n�1/�n� .m�1/ D 2mn�m. 501

(In fact, if � is taken to be the .n � 1/ dimensional simplex, then � will be a 502

linear manifold of dimension 2mn�m. More generally, � will be a submanifold of 503

Xm�Xm�� of dimension 2mn�m. At each point the projection is a regular map 504

(i:e:, the rank of the differential of .e; x; p/! .x; p/ is maximal). 505

To see this define � W Xm �Xm ��!<n �<m�l by 506

�.e; x; p/ D
 

mX
iD1

xi �
mX
iD1

ei ; h; x1i � hp; xm�1i � hp; em�1i
!
: 507

Clearly if �.e; x; p/ D 0 then x 2 Y.e/ and xi 2 Bi.p/ for each i . But 0 is 508

of codimension nCm � 1 in <n � <m�1; thus ��1.0/ is of the same codimension 509

in X2m � �. Thus dim.X2m � �/ � dim��1.0/ D nC m � 1 and dim��1.0/ D 510

2nmC .n�1/� .nCm�1/ D 2mn�m (giving the dimension of �) . In a similar 511

fashion, for .x; p/ 2 †.e/; �.e; x; p/ D 0, and so 512
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dim.Xm ��/� dim��1.0/ D nCm � 1: 513

Thus †.e/ is a submanifold of Xm �� of dimension 514

nmC .n � 1/� .nCm � 1/ D mn�m: 515

Finally define Zu D f.e; x; p/ 2 � W  u.x; p/ 2 I g. For each u 2 U; Zu is a 516

submanifold of X2m �� of dimensionmn. 517

To see this, let fu.e; x; p/ D  u.x; p/. Then 518

fu W � ! Xm �Xm ��! Xm ��  u!�mC1: 519

As we observed for all u 2 U;  u, is transversal to I in �mC1. But the 520

codimension of I in �mC1 is m.n � 1/. Since fu will be transversal to I , 521

dim.�/� dim.f �1
u .I // D m.n � 1/: 522

Hence dim.f �1
u .I // D mn. Clearly Zu D f �1

u .I /. 523

Thus for all u 2 U , the Debreu projection � W Zu ! Xm will be a C1-
map between manifolds of dimension mn. The Morse Sard Theorem gives the
result. ut

Thus we have shown that for each smooth profile u in an open dense set U , 524

there exists an open dense set V of initial endowments such that .e; u/ is a regular 525

economy for all e 2 V . 526

The result is also related to the existence of a demand function for an economy. 527

A demand function for i (with utility ui ) is the function 528

fi W ‚ � <C ! X 529

where fi .p; I / is that xi 2 X which maximizes ui on 530

Bi.p; I / D fx 2 X W hp; xi D I g: 531

Now define �i W X ! � � <C by �i.x/ D .D�ui .x/; hD�ui .x/; xi/. 532

But the optimality condition is precisely thatD�ui .x/ D p and hD�ui .x/; xi D 533

hp; xi D I . Thus when �i has maximal rank, it is locally invertible (by the inverse 534

function theorem) and so locally defines a demand function. 535

On the other hand if fi is a C1-function then �i must be locally invertible (by 536

fi ). If this is true for all the agents, then  u W Xm ��! �mC1 must be transversal 537

to I . Consequently if u D .u1; : : : ; um/ is such that each ui defines a C1-demand 538

function fi W � � <C ! X then u 2 U , the open dense set of the regular economy 539

theorem. 540
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Fig. 5.6 The Debreu Map.

As a final note suppose that u 2 U and e is a critical value of the Debreu 541

projection. Then it is possible that ��1.e/ D e � W where W is a continuum of 542

Walrasian equilibria. Another possibility is that there is a continuum of singular 543

or catastrophic endowments C , so that as the endowment vector crosses C the 544

number of Walrasian equilibria changes suddenly. As we discussed in �4.4, at a 545

“catastrophic” endowment, stable and unstable Walrasian equilibria may merge (see 546

Balasko, 1975). 547

Another question is whether for every smooth profile, u, and every endowment 548

vector, e, there exists a Walrasian equilibrium .x; p/. This is equivalent to the 549

requirement that for every u the projectionZu ! Xm is onto Xm. 550

In this case for each e 2 Xm there will exist some .e; x; p/ 2 Zu. This is clearly 551

necessary if there is to exist a market clearing price equilibrium p for the economy 552

.e; u/. 553

The usual general equilibrium arguments to prove existence of a market clearing 554

price equilibrium typically rely on convexity properties of preference (see Chap- 555

ter 3). However weaker assumptions on preference permit the use of topological 556

arguments to show the existence of an extended Walrasian equilibrium (where only 557

the first order conditions are satisfied). 558

When the market-clearing price equilibrium does exist, it is useful to consider a 559

price adjustment process (or “auctioneer”) to bring about equilibrium. 560

5.4 Economic Adjustment and Excess Demand 561

To further develop the idea of a demand function and price adjustment process, we 562

consider the following famous example of Scarf (1960). 563
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Example 5.5. There are three individuals i 2 M D f1; 2; 3g and three commodi- 564

ties. Agent i has utility ui .xi1; x
i
2; x

i
3/ D min.xii ; x

i
j / where xi D .xi1; x

i
2; x

3
3/ 2 565

<3C is the i th commodity space. 566

At income I , and price vector p D .p1; p2; p3/; i demands equal amounts of 567

xii ; x
j
j and zero of xik : thus .pi C pj /x D I , so xii D I.pi C pj /�1 D xij . 568

Suppose the initial endowment ei of agent i is 1 unit of the i th good, and nothing 569

of the j th and kth. Then I D pi and so i 0s demand function fi has the form 570

fi .p/ D .fi i .p/; fij .p/; fik.p// D
�

pi
piCpj ;

pi
piCpj 0

�
2 <3. 571

The excess demand function by i is i .p/ D fi .p/ � ei . 572

Since ei D .ei i ; eij ; eik/ D .1; 0; 0/ this gives 573

i .p/ D
� �pj
pi C pj ;

pi

pi C pj ; 0
�
D .i i ; ij ; ik/: 574

Suppose now the other two consumers are described by cyclic permutation 575

of subscripts, e.g., j has 1 unit of the j th good and utility uj .x
j
j ; x

j

k ; x
j
i / D 576

min.xjj ; x
j

k /, etc., then the total excess demand at p is 577

.p/ D
3X
iD1

i .p/ 2 <3: 578

For example, the excess demand in commodity j is: 579

j D 1j C 2j C 3j D pi

pi C pj �
pk

pj C pk : 580

Since each i chooses fi .p/ to maximize utility subject to hp1; fi .p/i D I hp; eii 581

we expect
P3

iD1h; fi .p/� rii D 0: 582

To see this note that 583

hp; .p/i

D
�
p;

�
p3

p3 C p1 �
p2

p1 C p2 ;
p1

p1 C p2 �
p3

p2 C p3;
p2

p2 C p3 �
p1

p1 C p3
��

D 0:

The equation hp; .p/i D 0 is known as Walras’ Law. To interpret it, suppose we 584

let � be the simplex in <3 of price vectors such that kpk D 1, and pi > 0. Walras’ 585

Law says that the excess demand vector .p/ is orthogonal to the vector p. In other 586

words .p/ may be thought of as a tangent vector in �. (This is easier to see if we 587

identify� with a quadrant of the sphere, S2.) 588

We may therefore consider a price adjustment process, which changes the price 589

vector p.t/, at time t by the differential equation dp.t/

dt
D .p/ .�/. 590
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This adjustment process is a vector field on � : that is at every p there exists a 591

rule that changes p.t/ by the equation dp.t/

dt
D .p/. 592

If at a vector p�, the excess demand .p�/ D 0 then dp.t/

dt

ˇ̌
ˇ�
p
D 0, and the price 593

adjustment process has a stationary point. The flow on � can be obtained by inte- 594

grating the differential equation. It is easy to see that if p� satisfies p�
1 D p�

2 D p�
3 595

then .p�/ D 0, so there clearly is a price equilibrium where excess demand is zero. 596

The price adjustment equation .�/ does not result in a flow into the price 597

equilibrium. 598

To see this, compute the scalar product 599

h.p2p3; p1p3; p1p2/; .p/i D �p3 .p
2
1 � p22/
p1 C p2 C p2

.p23 � p21/
p1 C p3 C p1

.p21 � p23/
p2 C p3

D p3.p1 � p2/C p2.p3 � p1/C p1.p2 � p1/
D 0:

But if .p/ D dp

dt
then we obtain p2p3

dp

dt
C p1p2 dpdt D 0. 600

The obvious solution to this equation is that p1.t/p2.t/p3.t/ D constant. 601

In other words when the adjustment process satisfies .�/ then the price vector 602

p (regarded as a function of time, t ,) satisfies the equation p1.t/p2.t/p3.t/ D 603

constant. The flow through any point p D .p1; p2; p3/, other than the equilibrium 604

price vector p�, is then homeomorphic to a circle S1, inside �. 605

Just to illustrate, consider a vector p with p3 D 0. 606

Then .p/ D
� �p2
p1Cp2 ;

p1
p1Cp2 ; 0

�
. 607

Because we have drawn the flow on the simplex � D fp 2 <3C W
P
pi D 1g the 608

flow dp

dt
.t/ D .p/ is discontinuous in p at the three vertices of �. 609

However in the interior of � the flow is essentially circular (and anticlockwise). 610

See Figure 5.7. 611

To examine the nature of the flow given by the differential equation dp

dt
.t/ D 612

.p/, define a Lyapunov function at p.t/ to be L.p.t// D 1
2

P3
iD1.pi .t/ � p�

i /
2

613

where p� D .p�
1 ; p

�
2 ; p

�
3 / is the equilibrium price vector satisfying .p�/ D 0. 614

Since p� 2 �, we may choose p� D 
 1
3
; 1
3
; 1
3

�
. 615

Then 616

dL

dt
D

3X
iD1
�.pi .t/ � p�

i /
dpi

dt

D
3X
iD1

i .p.t//pi .t/ �
3X
iD1

p�
i i .p.t//

D �1
3

3X
iD1

i .p.t//:
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Fig. 5.7 Flow on the price
simplex.

(This follows since hp; .p/i D 0.) 617

If i .p.t// > 0 for i D 1; 2; 3 then dl
dt
< 0 and so the Lyapunov distanceL.p.t// 618

of p.t/ from p� decreases as t !1. In other words if ıp.t/ D p.t/� p� then the 619

distance kıp.t/k ! 0 as t !1. The equilibrium p� is then said to be stable. 620

If on the contrary .p.t// < 08i , then dL
dt
> 0 and kıp.t/k increases as t !1. 621

In this case p� is called unstable. 622

However it is easy to show that the equilibrium point p� is neither stable nor 623

unstable. To see this consider the price vector p.t/ D 

2
3
; 1
6
; 1
6

�
. It is then easy 624

to show that  D 

0; 3

10
; �3
10

�
so the flow through p (locally) keeps the distance 625

L.p.t// constant. To see howL.p.t// behaves near p.t/, consider the points p.t � 626

ıt/ D 
 2
3
; 1
6
� 1

20
; 1
6
C 1

10

�
and p.t C dt/ D 
 2

3
; 1
6
C 1

10
; 1
6
� 1

10

�
. After some easy 627

arithmetic we find that .t � ıt/ D .0:195; 0:409;�0:814/ so that kıp.t � ıt/k is 628

increasing at p.t � ıt/. On the other hand .t C ıt/ D .�0:195; 0:814;�0:409/ 629

so kıp.t C ıt/k is decreasing at p.t C ıt/. In other words the total excess demand 630P3
iD1 i .p.t// oscillates about zero as we transcribe one of the closed orbits, so the 631

distance k.ıp.t/k increases then decreases. 632

The Scarf Example gives a way to think more abstractly about the process of 633

price adjustment in an economy. 634

As we have observed, the differential equation dp

dt
D .p/ on� defines a flow in 635

�. That is if we consider any point p0 2 � and then solve the equation for p, we 636

obtain an “orbit” 637

fp.t/ 2 �; t 2 .�1; 1/I p.0/ D p0 and dp D .p.t//g 638

that commences at the point p.0/ D p0, and gives the past and future trajectory. 639

Because the differential equation has a unique solution, any point p0 can belong 640

to only one orbit. As we saw, each orbit in the example satisfies the equation 641

p1.t/ � p2.t/ � p3.t/ D constant. The phase portrait of the differential equation 642

is its collection of orbits. 643

The differential equation dp

dt
D .p/ assigns to each point p 2 � a vector 644

.p/ 2 <n, and so  may be regarded as a function  W � ! <n. In fact  is a 645

continuous map except at the boundary of�. This discontinuity only occurs because 646

� itself is not smooth at its vertices. If we ignore this boundary feature, then we may 647
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Fig. 5.8 Smoothing the Scarf Profile.

write  2 C0.�; <n/, where C0 as before stands for the set of continuous maps. In 648

fact if we examine  as a function of p then it can be seen to be differentiable, so 649

 2 C1.�; <n/. Obviously C1.�; <n/ has a natural metric and therefore the set 650

C1.�; <n/ can be given the C1-topology. A differential equation dp

dt
D .p/ of this 651

kind can thus be treated as an element of C1.�; <n/ in which case it is called a 652

vector field. C1.�; <n/ with the C1 -topology is written C1.�; <n/ or V1.�/. We 653

shall also write P.�/ for the collection of phase portraits on�. Obviously, once the 654

vector field, , is specified, then this defines the phase portrait, �./, of . 655

In the example,  was determined by the utility profile u and endowment vector 656

e 2 <3�3. As Figure 5.8 illustrates the profile u can be smoothed by rounding each 657

ui without changing the essence of the example. 658

5.5 Structural Stability of a Vector Field 659

More abstractly then we can view the excess demand function  as a map from 660

C s.X; <m/ �Xm to the metric space of vector fields on �: that is 661

 W C s.X; <m/ �Xm ! V1.�/: 662

The genericity theorem given above implies that, in fact, there is an open dense 663

set U in C s.X; <m/ such that  is indeed a C1 vector field on �. Moreover  is 664

an excess demand function obtained from the individual demand functions ffi g as 665

described above. 666

An obvious question to ask is how  “changes” as the parameters u 2 C s.X; <m/ 667

and e 2 Xm change. One way to do this is to consider small perturbations in a vector 668

field  and determine how the phase portrait of  changes. 669
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Fig. 5.9 Dissimilar phase portraits.

It should be clear from the Scarf example that small perturbations in the utility 670

profile or in e may be sufficient to change  so that the orbits change in a qualitative 671

way. If two vector fields, 1, and 2 have phase portraits that are homeomorphic, 672

then �.1/ and �.2/ are qualitatively identical (or similar). 673

Thus we say 1 and 2 are similar vector fields if there is a homeomorphism 674

h W � ! � such that each orbit in the phase portrait �.1/ of 1 is mapped by h to 675

an orbit in �.2/. 676

As we saw in the Scarf example, each of the orbits of the excess demand function, 677

1, say, comprises a closed orbit (homeomorphic to S1). Now consider the vector 678

field 2 whose orbits approach an equilibrium price vector p�. The phase portraits 679

of 1 and 2 are given in Figure 5.9. 680

The price equilibrium in Figure 5.9(ii) is stable since limt!1p.t/ ! p�. 681

Obviously each of the orbits of 2 are homeomorphic to the half open interval 682

.�1; 0�. Moreover .�1; 0� and S1 are not homeomorphic, so 1 and 2 are not 683

similar. 684

It is intuitively obvious that the vector field, 2 can be obtained from 1 by a 685

“small perturbation”, in the sense that k1 � 2k < ı, for some small ı > 0. When 686

there exists a small perturbation 2 of 1, such that 1 and 2 are dissimilar, then 1 687

is called structurally unstable. On the other hand, it should be plausible that, for any 688

small perturbation 3 of 2 then 3 will have a phase portrait �.3/ homeomorphic 689

to �.2/, so 2 and 3 will be similar. Then 2 is called structurally stable. Notice 690

that structural stability of 2 is a much more general property than stability of the 691

equilibrium point p� (where 2.p�/ D 0). 692

All that we have said on � can be generalised to the case of a smooth manifold 693

Y . So let V1.Y / be the topological space of C1-vector fields on Y and P.Y / the 694

collection of phase portraits on Y . 695

Definition 5.1. (1) Let 1; 2 2 V1.Y /. Then 1 and 2 are said to be similar 696

(written 1 
 2) iff there is a homeomorphism h W Y ! Y such that an orbit 697

� is the phase portrait �.1/ of 1 iff h.�/ is in the phase portrait of �.2/. 698

(2) The vector field  is structurally stable iff there exists an open neighborhood 699

V of  in V1.Y / such that  0 
  for all  0 2 V . 700
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Fig. 5.10 A Source

(3) A property K of vector fields in V1.2/ is generic iff the set f 2 V1.y/ W  701

satisfies K g is residual in V1.Y /. 702

As before, a residual set, V , is the countable intersection of open dense sets, and, 703

when V1.Y / is a “Baire” space, V will itself be dense. 704

It was conjectured that structural stability is a generic property. This is true if the 705

dimension of Y is 2, but is false otherwise (Smale’s 1966, Peixoto 1962). 706

Before discussing the Peixoto-Smale Theorems, it will be useful to explore 707

further how we can qualitatively “classify” the set of phase portraits on a manifold 708

Y . The essential feature of this classification concerns the nature of the critical or 709

singularity points of the vector field on Y and how these are constrained by the 710

topological nature of Y . 711

Example 5.6. Let us return to the example of the torus Z D S1 � S1 examined 712

in Example 5.4. We defined a height function f W Z ! < and considered the four 713

critical points fs; t; u; vg of f . TO remind the reader v was an index 2 critical point 714

(a local maximum of f ). Near v; f could be represented as 715

f .h1; h2/ D f .v/ � h21 � h22: 716

Now f defines a gradient vector field  where 717

.h1; h2/ D �df .h1; h2/ 718

Looking down on v we see the flow near v induced by  resembles Figure 5.10. 719

The field  may be interpreted as the law of motion under a potential energy field, 720

f , so that the system flows from the “source”, v, towards the “sink”, s, at the bottom 721

of Z. 722

Another way of characterizing the source, v, is by what we can call the “degree” 723

of v. Imagine a small ball B2 around v and consider how the map g W S1 ! S1 W 724

.hl ; h2/! .h1; h2/

k.h1; h2/k behaves as we consider points .h1; h2/ on the boundary S1 of 725

B2. 726

At point 1, .h0
1; h

0
2/ points “north” so 1! 10. Similarly at 2, ..h21; h

2
2/ points 727

east, so 2 ! 20. As we traverse the circle once, so does g. The degree of g is C1, 728

and the degree of v is alsoC1. However the saddle, u, is of degree �1. 729
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Fig. 5.11

Fig. 5.12 A Saddle.

At 1, the field points north, but at 2 the field points west, so as we traverse the 730

circle on the left in a clockwise direction, we traverse the circle on the right in an 731

anti-clockwise direction. Because of this change of orientation, the degree of u is 732

�1. 733

It can also easily be shown that the sink s has degreeC1. 734

The rotation at s induced by g is clockwise. It can be shown that, in general, 735

the Euler characteristic can be interpreted as the sum of the degrees of the critical 736

points. Thus �.Z/ D 1�1�1C1, since the degree at each of the two saddle points 737

is �1, and the degree at the source and sink isC1. 738

Example 5.7. It is obvious that the flow for the Scarf example is not induced by 739

a gradient vector field. If there were a function f W � ! < satisfying .p/ D 740

�df .p/, then the orbits of  would correspond to decreasing values of f . As we 741

saw however, there are circular orbits for . It is clearly impossible to have a circular 742

flow such that f decreases round the circle. However the Euler characteristic still 743

determines the nature of the zeros (or singularities) of . 744

First we compute the degree of the singularity p� where .p�/ D 0. 745
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Fig. 5.13 A Sink.

Fig. 5.14

As we saw in Example 5.5, the orbits look like smoothed triangles homeomorphic 746

to S1. Let S1 be a copy of the circle (see Figure 5.14). At 1, g points west, while at 747

2, g points northwest. At 3, g points northeast, at 4, g points east. Clearly the degree 748

isC1 again. 749

As we showed, the Euler characteristic �.�/ of the simplex isC1, and the degree 750

of the only critical point p� of the vector field  isC1. This suggests that again there 751

is a relationship between the Euler characteristic �.Y / of a manifold Y and the sum 752

of the degrees of the critical points of any vector field  on Y . One technical point 753

should be mentioned, concerning the nature of the flow on the boundary of �. In 754

the Scarf example the flow of  was “along” the boundary, @�, of �. In a real 755

economy one would expect that as the price vector approaches the boundary @� (so 756

that pi ! 0 for some price pi), then excess demand i for that commodity would 757

rapidly increase as .i !1/. This essentially implies that the vector field  would 758

point towards the interior of�. So now consider perturbations of the Scarf example 759

as in Figure 5.15. 760

In Figure 5.15(a) is a perturbation where one of the circular orbits (called S ) are 761

retained; only flow commencing near to the boundary approaches S , as does any 762

flow starting near to the zero p� where .p�/ D 0. In this case the boundary�@ is 763
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Fig. 5.15

a repellor; the closed orbit is an attractor, and the singularity point or zero, p�, is 764

a source (or point repellor). In Figure 5.15(b) the flow is reversed. The closed orbit 765

S is a repellor; p� is a sink (or attractor), while �@ is an attractor. Now consider a 766

copy�0 of� inside� (given by the dotted line in Figure 5.15(b)). On the boundary 767

of �0 the flow points outwards. Then �.�0/ is still 1 and the degree of p� is still 1. 768

This illustrates the following theorem. 769

Poincaré-Hopf Theorem. Let Y be a compact smooth manifold with boundary @Y . 770

Suppose  2 V1.Y / has only a finite number of singularities, and points outwards 771

on @Y . Then �.Y / is equal to the sum of the degrees of the singularities of . 772

To apply this theorem, suppose  is the vector field given by the excess demand 773

function. Suppose that  points towards the interior of�. Then the vector field .�/ 774

points outward. By the Debreu-Smale Theorem, we can generically assume that  775

has (at most) a finite number of singularities. Since �.�/ D 1, there must be at least 776

one singularity of .�/ and thus of . Unfortunately this theorem does not allow us 777

to infer whether or not there exists a singularityp� which is stable (i.e., an attractor). 778

The Poincaré-Hopf Theorem can also be used to understand singularities of 779

vector fields on manifolds without boundary. As we have suggested, the Euler 780

characteristic of a sphere is 2 for the even dimensional case and 0 for the odd 781

dimensional case. This gives the following result. 782

The “Hairy Bail” Theorem. Any vector field  on S2n (even dimension) must have 783

a singularity. However there exists a vector field  on S2nC1 (odd dimension) such 784

that .p/ D 0 for no p 2 S2nC1. 785

To illustrate Figure 5.16 shows a vector field on S2 where the flow is circular on 786

each of the circles of latitude, but both north and south poles are singularities. The 787
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Fig. 5.16 Zeros of a field on
S2

flow is evidently non-gradient, since no potential function, f , can increase around 788

a circular orbit. 789

Example 5.8. As an application, we may consider a more general type of flow, by 790

defining at each point x 2 Y a set h.x/ of vectors in the tangent space at x. As 791

discussed in Chapter 4, h could be induced by a family of utility functions fui W 792

Y ! <; i 2M g, such that 793

h.x/ D fv 2 <n W hdui .x/; vi > 0; 8i 2M g: 794

That is to say v 2 h.x/ iff each utility function increases in the direction v. We 795

can interpet Lemma ?? to assert that h.x/ D ˆ whenever x 2 0

‚.u1; : : : ; um/, the 796

critical Pareto set. 797

Suppose that
0

‚ D ˆ. Then in general we can use a selection theorem to select 798

from h.x/ a non-zero vector .x/, at every x 2 Y , such that  is a continuous vector 799

field. That is,  2 V1.Y /, but  has no singularities. However if �.Y / ¤ 0 then any 800

vector field  on Y has critical points whose degrees sum to �.Y /, subject to the 801

boundary condition of the Poincaré-Hopf Theorem. 802

Pareto Theorem. If �.Y / ¤ 0 then
0

‚.u/ ¤ ˆ for any smooth profile u on Y . 803

The Euler characteristic can be interpreted as an obstruction to the nonexistence 804

of equilibria, or of fixed points. For example suppose that �.Y / D 0. Then it is 805

possible to construct a vector field  on Y without zeros. It is then possible to 806

construct a function f W Y ! Y which follows the trajectories of  a small distance, 807

�, say. But then the function f is homotopic to the identity. 808

That is to say, from each point x construct a path cx W Œ0; 1�! Y with cx.0/ D x 809

and cx.1/ D f .x/ whose gradient dc
dt
.t/ at time t is given by the vector field  a t 810
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the point x0 D cx.t/. Say that f is induced by the vector field, . The homotopy 811

F W Œ0; 1� � Y ! Y is then given by F.0; x/ D x and F.t; x/ D cx.t/. Since cx 812

is continuous, so is F . Thus F is a homotopy between f and the identity on Y . A 813

function f W Y ! Y which is homotopic to the identity is called a deformation of 814

Y . 815

If �.Y / D 0 then it is possible to find a vector field  on Y without singularities 816

and then construct a deformation f of Y induced by . Since .x/ D 0 for no x; f 817

will not have a fixed point. Conversely if f is a deformation on Y and �.Y / ¤ 0, 818

then the homotopy between f and the identity generates a vector field . Were f to 819

have no fixed point, then  would have no singularity. If f and thus  have the right 820

behavior on the boundary, then  must have at least one singularity. This contradicts 821

the fixed point free property of f . 822

Lefschetz Fixed Point Theorem. If Y is a manifold with �.Y / D 0 then there 823

exists a fixed point free deformation of Y . If �.Y / ¤ 0 then any deformation of Y 824

has a fixed point. 825

Note that the Lefschetz Fixed Point Theorem does not imply that any function 826

f W S2 ! S2 has a fixed point. For example the “antipodal” map f .x/ D �x, for 827

kxk D 1, is fixed point free. However f cannot be induced by a continuous vector 828

field, and is therefore not a deformation. The Lefschetz fixed point theorem just 829

stated is in fact a corollary of a deeper result: For any continuous map f W Y ! Y , 830

with Y compact, there is an “obstruction” called the Lefschetz number �.f /. If 831

�.f / ¤ 0, then f must have a fixed point. If Y is “homotopy equivalent” to the 832

compact ball then �.f / ¤ 0 for every continuous function on the ball, so the ball 833

has the fixed point property. On the other hand if f is homotopic to the identity, 834

Id , on Y then �.f / D �.Id/, and it can be shown that �.Id/ D �.Y / the Euler 835

characteristic of Y . It therefore follows that �.Y / is an obstruction to the existence 836

of a fixed point free deformation of the compact manifold Y . 837

Example 5.9. To illustrate an application of this theorem in social choice, suppose 838

that Y is a compact manifold of dimension at most k.�/ � 2, where k.�/ is 839

the Nakamura number of the social choice rule, � (See Section 3.8). Suppose 840

.u1; : : : ; um/ is a smooth profile on Y . Then it can be shown (Schofield 1984) that if 841

the choice C�.�/.Y / is empty, then there exists a fixed point free deformation on 842

Y . Consequently if �.X/ ¤ 0, then C�.�/.Y / must be non-empty. 843

Example 5.10. It would be useful to be able to use the notion of the Lefschetz 844

obstruction to obtain conditions under which the singularities of the excess demand 845

function, , of an economy were stable. However, as Scarf’s example showed, it 846

is entirely possible for there to be a single attractor, or a single repellor (as in 847

Figure 5.15) or even a situation with an infinite number of closed orbits. However, 848

consider a more general price adjustment process as follows. At each p in the 849

interior, Int �, of � let 850

�.p/ D fv 2 <n W hv; .p/i > 0g: 851
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A vector field v 2 V1.�/ is dual to  iff v.p/ 2 �.p/ for all p 2 Int �, and 852

v.p/ D 0 iff .p/ D 0 for p 2 Int �. It may be possible to find a vector field, v, 853

dual to  which has attractors. Suppose that v is dual to , and that f W � ! � is 854

induced by v. As we have seen, the Lefschetz number of f gives information about 855

the singularities of v. 856

Dierker (1972) essentially utilized the following hypothesis: there exists a dual 857

vector field, v, and a function f W � ! � induced by v such that f D f0 858

is homotopic to the constant map f1 W � ! f. 1
n
; : : : ; 1

n
/g such that fp 2 � W 859

ft .p/ D p for t 2 Œ0; 1�g is compact. Under the assumption that the economy 860

is regular (so the number of singularities of  is finite), then he showed that the 861

number of such singularities must be odd. Moreover, if it is known that  only has 862

stable singularities, then there is only one. The proof of the first assertion follows 863

by observing that �.f0/ D �.f1/. But f1 is the constant map on � so �.f1/ D 1. 864

Moreover �.f0/ is equal to the sum of the degrees of the singularities of v, and 865

Dierker shows that at each singularity of v, the degree is ˙1. Consequently the 866

number of singularities must be odd. Finally if there are only stable singularities, 867

each has degreeC1, so it must be unique. 868

Example 5.11. As a further application of the Lefschetz obstruction, sup pose, 869

contrary to the usual assumption that negative prices are forbidden, that p 2 Sn�1
870

rather than �. It is natural to suppose that .p/ D .�p/ for any p 2 Sn�1. 871

Suppose now that .p/ D 0 for no p 2 Sn�1. This defines an (even) spherical map 872

g W Sn�1 ! Sn�1 by g.p/ D .p/=k.p/k. Thus g.p/ D g.�p/. The degree 873

.deg.g// of such a g can readily be seen to be an even integer, and it follows that 874

the Lefschetz obstruction of g is �.g/ D 1C .�1/n�1deg.g/. 875

Clearly �.g/ ¤ 0 and so g has a fixed point Np such that g. Np/ D Np. But then 876

.p/ D ˛p for some ˛ > 0. This violates Walras’ Law, since hp; .p/i D ˛kpk2 ¤ 877

0, so .p/ D 0 for some p 2 Sn�1. Keenan (1992) goes on to develop some of the 878

earlier work by Rader (1972) to show, in this extended context, that for generic, 879

regular economies there must be an odd number of singularities. 880

The above examples have all considered flows on the simplex or the sphere. To 881

return to the idea of structural stability, let us consider once again examples of a 882

vector field on the torus. 883

Example 5.12. (1) For a more interesting deformation of the torusZ D S1 � S1, 884

consider Figure 5.17. 885

The closed orbit at the top of the torus is a repellor,R, say. Any flow starting 886

near to R winds towards the bottom closed orbit, A, an attractor. There are no 887

singularities, and the induced deformation is fixed point free. 888

(2) Not all flows on the torus Z need have closed orbits. Consider the flow on Z 889

given in Figure 5.18. If the tangent of the angle, � , is rational, then the orbit 890

through x is closed, and will consist of a specific number of turns round Z. 891

However suppose this flow is perturbed. There will be, in any neighborhood 892

of � , an irrational angle. The orbits of an irrational flow will not close up. 893

To relate this to the Peixoto Theorem which follows, with rational flow there 894
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Fig. 5.17

Fig. 5.18

will be an infinite number of closed orbits. However the phase portrait for 895

rational flow cannot be homeomorphic to the portrait for irrational flow. Thus 896

any perturbations of rational flow gives a non-homeomorphic irrational flow. 897

Clearly any vector field on the torus which gives rational flow is structurally 898

unstable. 899

Structural Stability Theorem. 900

1. If dimY D 2 and Y is compact, then structural stability of vector fields on Y is 901

generic. 902

2. If dim Y 	 3, then structural stability is non-generic. 903

Peixoto (1962) proved part (1) by showing that structurally stable vector fields 904

on compact Y (of dimension 2) must satisfy the following properties: 905

(1) there are a finite number of non-degenerate isolated singularities (that is, critical 906

points which can be sources, sinks, or saddles) 907
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Fig. 5.19

(2) there are a finite number of attracting or repelling closed orbits 908

(3) every orbit (other than closed orbits) starts at a source or saddle, or winds away 909

from a repellor and finishes at a saddle or sink, or winds towards an attractor 910

(4) no orbit connects saddle points. 911

Peixoto showed that for any vector field  on Y and any neighborhood V of  in 912

V1.Y / there was a vector field  0 in V that satisfied the above four conditions and 913

thus was structurally stable. 914

Although we have not carefully defined the terms used above, they should be 915

intuitively clear. To illustrate, Figure 5.19(i) shows an orbit connecting saddles, 916

while Figure 5.19(ii) shows that after perturbation a qualitatively different phase 917

portrait is obtained 918

In Figure 5.19(i), A and B are connected saddles, C is a repellor (orbits starting 919

near to C leave it) and D is a closed orbit. A small perturbation disconnects A and 920

B as shown in Figure 5.19(ii), and orbits starting near toD (either inside or outside) 921

approachD, so it is an attractor. 922

The excess demand function, , of the Scarf example clearly has an infinite 923

number of closed orbits (all homeomorphic to S1). Thus  cannot be structurally 924

stable. From Peixoto’s Theorem, small perturbations of  will destroy this feature. 925

As we suggested, a small perturbation may change  so that p� becomes a stable 926

equilibrium (an attractor) or an unstable equilibrium (a repellor). 927

Smale’s (1966) proof that structural stability was non-generic in three or more 928

dimensions was obtained by constructing a diffeomorphism f W Y 3 ! Y 3 (with 929

Y D S1 � S1 � S1). This induced a vector field  2 V1.Y / that had the property 930
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that for a neighborhood V of  in V1.y/, no  0 in V was structurally stable. In 931

other words every 0 when perturbed led to a qualitatively different phase portrait. 932

We could say that  was chaotic. Any attempt to model  by an approximation  0, 933

say, results in an essentially different vector field. The possibility of chaotic flow 934

and its ramifications will be discussed in general terms in the next section. The 935

consequence for economic theory is immediate, however. Since it can be shown that 936

any excess demand function  and thus any vector field can result from an economy, 937

.u; e/, it is possible that the price adjustment process is chaotic. 938

As we observed after Example 5.7, an economically realistic excess demand 939

function  on � should point into the price simplex at any price vector on @�. This 940

follows because if pi ! 0 then i would be expected to approach1. Let V10 .�/ 941

be the topological space of vector fields on �, of the form dp

dt

ˇ̌̌
p
D .p/, such that 942

dp

dt

ˇ̌̌
p

points into the interior of � for p near @�. 943

The Sonnenschein-Mantel-Debreu Theorem. The map 944

 W C s.X; <m/ �Xm ! V10 .�/ 945

is onto if m 	 n. 946

Suppose that there are at least as many economic agents .m/ as commodities. 947

Then it is possible to construct a well-behaved economy .u; e/ with monotonic, 948

strictly convex preferences induced from smooth utilities, and an endowment vector 949

e 2 Xm, such that any vector field in V10 .�/ is generated by the excess demand 950

function for the economy .u; e/. 951

Versions of the theorem were presented in Sonnenschein (1972), Mantel (1974), 952

and Debreu (1974). A more recent version can be found in Mas-Colell (1985). As 953

we have discussed in this section, because the simplex � has �.�/ D 1, then the 954

“excess demand” vector field  will always have at least one singularity. In fact, from 955

the Debreu-Smale theorem, we expect  to generically exhibit only a finite number 956

of singularities. Aside from these restrictions, , is essentially unconstrained. If there 957

are at least four commodities (and four agents) then it is always possible to construct 958

.u; e/ such that the vector field induced by excess demand is “chaotic”. 959

As we saw in Section 5.4, the vector field  of the Scarf example was structurally 960

unstable, but any perturbation of  led to a structurally stable field  0, say, either 961

with an attracting or repelling singularity. The situation with four commodities is 962

potentially much more difficult to analyze. It is possible to find .u; e/ such that 963

the induced vector field  on � is chaotic—in some neighborhood V of  there is 964

no structurally stable field. Any attempt to model  by  0, say, must necessarily 965

incorporate some errors, and these errors will multiply in some fashion as we 966

attempt to map the phase portrait. In particular the flow generated by  through 967

some point x 2 � can be very different from the flow generated by  0 through x. 968

This phenomenon has been called “sensitive dependence on initial conditions.” 969
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5.6 Speculations on Chaos 970

It is only in the last twenty years or so that the implications of “chaos” (or failure of 971

structural stability in a profound way) have begun to be realized. In a recent book 972

Kauffman commented on the failure of structural stability in the following way. 973

“One implication of the occurrence or non-occurrence of structural stability is 974

that, in structurally stable systems, smooth walks in parameter space must (result 975

in) smooth changes in dynamical behavior. By contrast, chaotic systems, which are 976

not structurally stable, adapt on uncorrelated landscapes. Very small changes in the 977

parameters pass through many interlaced bifurcation surfaces and so change the 978

behavior of the system dramatically.”1
979

The whole point of the Debreu-Smale Theorem is that generically the Debreu 980

map is regular. Thus there are open sets in the parameter space (of utility profiles and 981

endowments) where the number, E./, of singularities of  is finite and constant. 982

As the Scarf example showed, however, even though E./ may be constant in 983

a neighborhood, the vector field  can be structurally unstable. The structurally 984

unstable circular vector field of the Scarf example is not particularly surprising. 985

After all, similar structurally unstable systems are common (the oscillator or 986

pendulum is one example). These have the feature that, when perturbed, they 987

become structurally unstable. Thus the dynamical system of a pendulum with 988

friction is structurally stable. Its phase portrait shows an attractor, which still persists 989

as the friction is increased or decreased. Smale’s Structural Instability Theorem 990

together with the Sonnenschien-Mantel-Debreu Theorem suggests that the vector 991

field generated by excess demand can indeed be chaotic when there are at least 992

four commodities and agents. This does not necessarily mean that chaotic price 993

adjustment processes are pervasive. As in Dierker’s example, even though the vector 994

field .p/ D dp

dt
can be chaotic, it may be possible to find a structurally stable vector 995

field, v, dual to , which is structurally stable. 996

This brief final section will attempt to discuss in an informal fashion, whether or 997

not it is plausible for economies to exhibit chaotic behavior. 998

It is worth mentioning that the idea of structural stability is not a new one, though 999

the original discussion was not formalized in quite the way it is today. Newton’s 1000

great work Philosophiae Naturalis Principia Mathematics (published in 1687) grew 1001

out of his work on gravitation and planetary motion. The laws of motion could 1002

be solved precisely giving a vector field and the orbits (or phase portrait) in the 1003

case of a planet (a point mass) orbiting the sun. The solution accorded closely 1004

with Kepler’s (1571–1630) empirical observations on planetary motion. However, 1005

the attempt to compute the planetary orbits for the solar system had to face the 1006

problem of perturbations. Would the perturbations induced in each orbit by the other 1007

planets cause the orbital computations to converge or diverge? With convergence, 1008

computing the orbit of Mars, say, can be done, by approximating the effects of 1009

1IS. Kauffman, The Origins of Order (1993) Oxford University Press: Oxford.
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Jupiter, Saturn perhaps, on the Mars orbit. The calculations would give a prediction 1010

very close to the actual orbit. Using the approximations, the planetary orbits could 1011

be computed far into the future, giving predictions as precise as calculating ability 1012

permitted. Without convergence, it would be impossible to make predictions with 1013

any degree of certainty. Laplace in his work “Mécanique Céleste” (published 1014

between 1799 and 1825) had argued that the solar system (viewed as a formal 1015

dynamical system) is structurally stable (in our terms). Consistent with hi view was 1016

the use of successive approximations to predict the perihelion (a point nearest the 1017

sun) of Haley’s comet, in 1759, and to infer the existence and location of Neptune 1018

in 1846. 1019

Structural stability in the three-body problem (of two planets and a sun) was the 1020

obvious first step in attempting to prove Laplace’s assertion. In 1885 a prize was 1021

announced to celebrate the King of Sweden’s birthday. Henri-Poincaré submitted 1022

his entry “Sur le problème des trois corps et les Equations de la Dynamique.” 1023

This attempted to prove structural stability in a restricted three body problem. 1024

The prize was won by Poincaré’s entry, although it was later found to contain an 1025

error. Poincaré had obtained his doctorate in mathematics in Paris in 1878, had 1026

briefly taught at Caen and later became professor at Paris. His work on differential 1027

equations in the 1880’s and his later work on Celestial Mechanics in the 1890’s 1028

developed new qualitative techniques (in what we now call differential topology) to 1029

study dynamical equations. 1030

In passing it is worth mentioning that since there is a natural periodicity to any 1031

rotating celestial system, the state space in some sense can be viewed as products 1032

of circles (that is tori). Many of the examples mentioned in the previous section, 1033

such as periodic (rational) or a-periodic (non-rational) flow on the torus came up 1034

naturally in celestial mechanics. 1035

One of the notions implicitly emphasized in the previous sections of this chapter 1036

is that of bifurcation: namely a dynamical system on the boundary separating 1037

qualitatively different systems. At such a bifurcation, features of the system separate 1038

out in pairs. For example, in the Debreu map, a birfurcation occurs when two of the 1039

price equilibria coalesce. This is clearly linked to the situation studied by Dierker, 1040

where the number of price equilibria (in �) is odd. At a bifurcation, two equilibria 1041

with opposite degrees coalesce. In a somewhat similar fashion Poincaré showed 1042

that, for the three-body problem, if there is some value 
0 (of total mass, say) such 1043

that periodic solutions exist for 
 � 
0 but not for 
 > 
0, then two periodic 1044

solutions must have coalesced at 
0. However Poincaré also discovered that the 1045

bifurcation could be associated with the appearance of a new solution with period 1046

double that of the original. This phenomenon is central to the existence of a period- 1047

doubling cascade as one of the characteristics of chaos. Near the end of his Celestial 1048

Mechanics, Poincaré writes of this phenomenon: 1049

“Neither of the two curves must ever cut across itself, but it must bend back 1050

upon itself in a very complex manner an infinite number of times. . . . Nothing is 1051
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more suitable for providing us with an idea of the complex nature of the three body 1052

problem.”2
1053

Although Poincaré was led to the possibility of chaos in his investigations into the 1054

solar system, it appears that the system is in fact structurally stable. Arnol’d showed 1055

in 1963 that for a system with small planets, there is an open set of initial conditions 1056

leading to bounded orbits for all time. Computer simulations of the system far 1057

into time also suggests it is structurally stable.3 Even so, there are events in the 1058

system that affect us and appear to be chaotic (perhaps catastrophic would be a 1059

more appropriate term). The impact of large asteroids may have a dramatic effect 1060

on the biosphere of the earth, and these have been suggested as a possible cause of 1061

mass extinction. The onset and behavior of the ice ages over the last 100,000 years 1062

is very possibly chaotic, and it is likely that there is a relationship between these 1063

violent climatic variations and the recent rapid evolution of human intelligence.4 1064

More generally, evolution itself is often perceived as a gradient dynamical pro- 1065

cess, leading to increasing complexity. However Stephen Jay Gould has argued over 1066

a number of years that evolution is far from gradient-like: increasing complexity 1067

coexists with simple forms of life, and past life has exhibited an astonishing variety.5 1068

Evolution itself appears to proceed at a very uneven rate.6 1069

“Empirical” chaos was probably first discovered by Edward Lorenz in his 1070

efforts to numerically solve a system of equations representative of the behavior 1071

of weather.7 A very simple version is the non-linear vector equation 1072

dx

dt
D
0
@dx1dx2
dx3

1
A D

0
@�a.x1 � x2/�x1x3 C a2x1 � x2
x1x2 � a3x3

1
A 1073

which is chaotic for certain ranges of the three constants, a1, a2, a3. 1074

The resulting “butterfly” portrait winds a number of times about the left hole 1075

(A in Figure 5.20), then about the right hole (B), then the left, etc. Thus the phase 1076

prortrait can be described by a sequence of winding numbers (w1l ; w1k; w2l ; w2k , etc.). 1077

Changing the constants a1, a2, a3 slightly changes the winding numbers. 1078

2My observations and quotations are taken from D. Goroff’s introduction and the text of a recent
edition of Poincaré’s New Methods of Celestial Mechanics, (1993) American Institute of Physics:
New York.
3See I. Peterson, Newton’s Clock: Chaos in the Solar System (1993) Freeman: New York.
4See W. H. Calvin, The Ascent of Mind. Bantam: New York.
5S. J. Gould, Full House (1996) Harmony Books: New York; S. J. Gould, Wonderful Life (1989)
Norton: New York.
6N. Eldredge and S. J. Gould, “Punctuated Equilibria: An Alternative to Phyletic Gradualism,” in
Models in Paleobiology (1972), T. J. M. Schopf, ed. Norton: New York.
7E. N. Lorenz, “The Statistical Prediction of Solutions of Dynamical Equations,” Proceedings Int.
Symp. Num. Weather Pred (1962) Tokyo; E. N. Lorenz “Deterministic Non Periodic Flow,” J Atmos
Sci (1963): 130–141.
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Fig. 5.20 The Butterfly.

Given that chaos can be found in such a simple meteorological system, it is 1079

worthwhile engaging in a thought experiment to see whether “climatic” choas 1080

is a plausible phenomenon. Weather occurs on the surface of the earth, so the 1081

spatial context is S2 � I , where I is an interval corresponding to the depth of 1082

the atmosphere. As we know, �.S2/ D �.S2 � I / D 2 so we would expect 1083

singularities. Secondly there are temporal periodicities, induced by the distance 1084

from the sun and earth’s rotation. Thirdly there are spatial periodicities or closed 1085

orbits. Chief among these must be the jet stream and the oceanic orbit of water from 1086

the southern hemisphere to the North Atlantic (the Gulf Stream) and back. The 1087

most interesting singularities are the hurricanes generated each year off the coast 1088

of Africa and channeled across the Atlantic to the Caribbean and the coast of the 1089

U.S.A. Hurricanes are self-sustaining heat machines that eventually dissipate if they 1090

cross land or cool water. It is fairly clear that their origin and trajectory is chaotic. 1091

Perhaps we can use this thought experiment to consider the global economy. First 1092

of all there must be local periodicities due to climatic variation. Since hurricanes and 1093

monsoons, etc. effect the economy, one would expect small chaotic occurrences. 1094

More importantly, however, some of the behavior of economic agents will be based 1095

on their future expectations about the nature of economic growth, etc. Thus one 1096

would expect long term expectations to affect large scale “decisions” on matters 1097

such as fertility. The post-war “baby boom” is one such example. Large scale 1098

periodicities of this kind might very well generate smaller chaotic effects (such as, 1099

for example, the oil crisis of the 1970’s), which in turn may trigger responses of 1100

various kinds. 1101

It is evident enough that the general equilibrium (GE) emphasis on the existence 1102

of price equilibria, while important, is probably an incomplete way to understand 1103

economic development. In particular, GE theory tends to downplay the formation 1104

of expectations by agents, and the possibility that this can lead to unsustainable 1105

“bubbles”. 1106
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Remember, it is a key assumption of GE that agents’ preferences are defined on 1107

the commodity space alone. If, on the contrary, these are defined on commodities 1108

and prices, then it is not obvious that the assumptions of the Ky Fan Theorem 1109

(cf., Chapter 3) can be employed to show existence of a price equilibrium. Indeed 1110

manipulation of the kind described in Chapter 4 may be possible. More generally 1111

one can imagine energy engines (very like hurricanes) being generated in asset 1112

markets, and sustained by self-reinforcing beliefs about the trajectory of prices. It is 1113

true that modern decentralised economies are truly astonishing knowledge or data- 1114

processing mechanisms. From the perspective of today, the argument that a central 1115

planning authority can be as effective as the market in making “rational” investment 1116

decisions appears to have been lost. Hayek’s case, the so-called “calculation” 1117

argument, with von Mises and against Lange and Schumpeter, was based on the 1118

observation that information is dispersed throughout the economy and is, in any 1119

case, predominantly subjective. He argued essentially that only a market, based on 1120

individual choices, can possibly “aggregate” this information.8 1121

Recently, however, theorists have begun to probe the degree of consistency or 1122

convergence of beliefs in a market when it is viewed as a game. It would seem that 1123

when the agents “know enough about each other”, then convergence in beliefs is a 1124

consequence.9 1125

In fact the issue about the “truth-seeking” capability of human institutions is very 1126

old and dates back to the work of Condorcet.10 Nonetheless it is possible for belief 1127

cascades or bubbles to occur under some circumstances.11 It is obvious enough 1128

that economists writing after the Great Crash of the 1930’s might be more willing 1129

than those writing today to consider the possibility of belief cascades and collapse. 1130

John Maynard Keynes’ work on The General Theory of Employment, Interest and 1131

Money (1936) was very probably the most influential economic book of the century. 1132

What is interesting about this work is that it does appear to have grown out of 1133

work that Keynes did in the period 1906 to 1914 on the foundation of probability, 1134

and that eventually was published as the Treatise on Probability (1921). In the 1135

Treatise, Keynes viewed probability as a degree of belief. He also wrote: “The old 1136

assumptions, that all quantity is numerical and that all quantitative characteristics 1137

are additive, can no longer be sustained. Mathematical reasoning now appears as an 1138

aid in its symbolic rather than its numerical character. I, at any rate, have not the 1139

8See F. A. Hayek, “The Use of Knowledge in Society,” American Economic Review (1945) 55:
519–530, and the discussion in A. Gamble, Hayek: The Iron Cage of Liberty (1996) Westview:
Boulder, Colorado.
9See R. J. Aumann, “Agreeing to Disagree,” Annals of Statistics (1976) 1236–1239 and K. J. Arrow
“Rationality of Self and Others in an Economic System,” Journal of Business (1986) 59: S385–
S399.
10See his work on the so-called Jury Theorem in his Essai of 1785. A discussion of Condorcet’s
work can be found in I. McLean and F. Hewitt, Condorcet: Foundations of Social Choice and
Political Theory (1994) Edward Elgar: Aldershot, England.
11See S. Bikhchandani, D. Hirschleifer and I. Welsh, “A Theory of Fads, Fashion, Custom, and
Cultural Change as Information Cascades,” Journal of Political Economy (1992) 100: 992–1026.



UNCORRECTED
PROOF

5 Singularity Theory and General Equilibrium

same lively hope as Condorcet, or even as Edgeworth, ‘Eclairer le Science morales 1140

et politiques par le flambeau de l’Algèbre.’ ”12
1141

Macro-economics as it is practiced today tends to put a heavy emphasis on 1142

the empirical relationships between economic aggregates. Keynes’ views, as I 1143

infer from the Treatise, suggest that he was impressed neither by econometric 1144

relationships nor by algebraic manipulation. Moreover, his ideas on ”speculative 1145

euphoria” and crashes13 would seem to be based on an understanding of the 1146

economy grounded not in econometrics or algebra but in the qualitative aspects of 1147

its dynamics. 1148

Obviously I have in mind a dynamical representation of the economy somewhere 1149

in between macro-economics and general equilibrium theory. The laws of motion of 1150

such an economy would be derived from modeling individuals’ “rational” behavior 1151

as they process information, update beliefs and locally optimise. At present it is 1152

not possible to construct such a micro-based macro-economy because the laws of 1153

motion are unknown. Nonetheless, just as simulation of global weather systems can 1154

be based on local physical laws, so may economic dynamics be built up from local 1155

“rationality” of individual agents. In my view, the qualitative theory of dynamical 1156

systems will have a major r81e in this enterprise. The applications of this theory, as 1157

outlined in the chapter, are intended only to give the reader a taste of how this theory 1158

might be developed.ff 1159
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Review Exercises 1

Chapter 1 2

1.1. Consider the relations: 3

P D f.2; 3/; .1; 4/; .2; 1/; .3; 2/; .4; 4/g andQ D f.1; 3/; .4; 2/; .2; 4/; .4; 1/g: 4

Compute Q ı P; P ı Q; .P ı Q/�1 and .Q ı P/�1. Let �Q and �P be the 5

mappings associated with these two relations. Are either �Q and �P functions, and 6

are they surjective and/or injective? 7

1.2. Suppose that each member i of a society M D f1; : : : ; mg has weak and strict 8

preferences .Ri ; Pi / on a finite setX of feasible states. Define the weak Pareto rule, 9

Q, on X by xQy iff xRiy8i 2 M , and xPjy for some j 2 M . Show that if each 10

Ri ; i 2M , is transitive, then Q is transitive. Hence show that the Pareto choice set 11

CQ.X/ is non empty. 12

1.3. Show that the set ‚ D fei� W 0 � � � 2�g, of all 2 � 2 matrices representing 13

rotations, is a subgroup of .M 0.2/; ı/, under matrix composition, ı. 14

Chapter 2 15

2.1. With respect to the usual basis for <3, let x1 D .1; 1;O/, x2 D .0; 1; 1/; x3 D 16

.1; 0; 1/. Show that fx1; x2; x3g are linearly independent 17

2.2. Suppose f W <5 ! <4 is a linear transformation, with a 2-dimensional kernel. 18

Show that there exists some vector z 2 <4, such that for any vector y 2 <4 there 19

exists a vector y0 2 Im.f / with y D y0 C �z for some � 2 <. 20
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2.3. Find all solutions to the equations A.x/ D bi , for i D 1; 2; 3, where A D 210
@1 4 2 3

3 1 �1 1
1 �1 4 6

1
A and b1 D

0
@73
4

1
A, b2 D

0
@11
1

1
A and b3 D

0
@ 32
1

1
A. 22

2.4. Find all solutions to the equation A.x/ D b where A D
0
@6 �1 1 4

1 1 3 �1
3 4 1 2

1
A and 23

b D
0
@43
7

1
A. 24

2.5. Let F W <4 !<2 be the linear transformation represented by the matrix 25

�
1 5 �1 3
�1 0 �4 2

�
: 26

Compute the set F �1.y/, when y D
�
4

1

�
. 27

2.6. Find the kernel and image of the linear transformation, A, represented by the 28

matrix 290
@3 7 2

4 10 2

1 �2 5

1
A : 30

Find new bases for the domain and codomain of A so that A can be represented 31

as a matrix 32�
I 0

0 0

�
33

with respect to these bases 34

2.7. Find the kernel of the linear transformation,A, represented by the matrix 35

0
@ 1 3 1

2 �1 �5
�1 1 3

1
A : 36

Use the dimension theorem to compute the image of A. Does the equation 37

A.x/ D b have a solution when 38

b D
0
@11
1

1
A‹ 39
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2.8. Find the eigenvalues and eigenvectors of 40

�
2 �1
1 4

�
: 41

Is this matrix positive or negative definite or neither? 42

2.9. Diagonalize the matrix 430
@ 4 1 11 8 0

1 10 2

1
A : 44

2.10. Compute the eigenvalues and eigenvectors of 45

0
@ 1 0 00 0 1

0 1 0

1
A 46

and thus diagonalize the matrix. 47

Chapter 3 48

3.1. Show that if A is a set in a topological space .X; T / then the interior, Int.A/, 49

of A is open and the closure, Clos.A/, is closed. Show that Int.A/ � A � Clos.A/. 50

What is the interior and what is the closure of the set Œa; b/ in<, with the Euclidean 51

topology? What is the boundary of Œa; b/? Determine the limit points of Œa; b). 52

3.2. If two metrics d1; d2 on a spaceX are equivalent write d1 
 d2. Show that
 is 53

an equivalence relation on the set of all metrics onX . Thus show that the Cartesian, 54

Euclidean and city block topologies on <n are equivalent. 55

3.3. Show that the set, L.<n; <m/, of linear transformations from <n to <m is a 56

normed vector space with norm 57

kf k D supx2<n

� kf .xk/
kxk W kxk ¤ 0

	
; 58

with respect to the Euclidean norms on <n and <m. In particular verify that kkL 59

satisfies the three norm properties. Describe an open neighbourhood of a member f 60

of L.<n; <m/ with respect to the induced topology on L.<n; <m/. Let M.n; m/ 61

be the set of n �m matrices with the natural topology (see page 106), and let 62

M W L.<n<m/!M.n;m/ 63
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be the matrix representation with respect to bases for <n and <m. Discuss the 64

continuity of M with respect to these topologies for L.<n; <m/ andM.n;m/. 65

3.4. Determine, from first principles, whether the following functions are continu- 66

ous on their domain: 67

1. <C ! < W x ! logex; 68

2. < ! <C W x ! x2; 69

3. < ! <C W x ! ex ; 70

4. < ! < W x ! cos x; 71

5. < ! < W x ! cos 1
x

. 72

3.5. What is the image of the interval Œ�1; 1� under the function x ! cos 1
x

? Is the 73

image compact? 74

3.6. Determine which of the following sets are convex 75

1. X1 D f.x1; x2/ 2 <2 W 3x21 C 2x22 � 6g; 76

2. X2 D f.x1; x2/ 2 <2 W x1 � 2; x2 � 3g; 77

3. X3 D f.x1; x2/ 2 <2C W x1x2 � 1g; 78

4. X4 D f.x1; x2/ 2 <2C W x2 � 3 	 �x21g. 79

3.7. In <2, let BC .x; r1/ be the Cartesian open ball of radius r1 about x, and 80

BE.y; r2/ the Euclidean ball of radius r2 about x. Show that these two sets are 81

convex. For fixed x; y 2 <2 obtain necessary and sufficient restrictions on r1; r2 so 82

that these two open balls may be strongly separated by a hyperplane. 83

3.8. Determine whether the following functions are. convex, quasi-concave, or 84

concave: 85

1. < ! <C W x ! ex ; 86

2. < ! < W x ! x7; 87

3. <2 !< W .x; y/! xy; 88

4. < ! < W x ! 1
x

; 89

5. <2 !< W .x; y/! x2 � y. 90

Chapter 4 91

4.1. Suppose that f W <n ! <m and g W <m ! <k are both C r -differentiable. Is 92

g ı f W <n ! <k , a C r -differentiable function? If so, why? 93

4.2. Find and classify the critical points of the following functions 94

1. <2 !< W .x; y/! x2 C xy C 2y2 C 3; 95

2. <2 !< W .x; y/! �x2 C xy � y2 C 2x C y; 96

3. <2 !< W .x; y/! e2x � 2x C 2y. 97
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4.3. Determine the critical points, and the Hessian at these points, of the function 98

<2 ! < W .x; y/! x2y. 99

Compute the eigenvalues and eigenvectors of the Hessian at critical points, and 100

use this to determine the nature of the critical points. 101

4.4. Show that the origin is a critical point of the function: 102

<3 ! < W .x; y; z/! x2 C 2y2 C 3z2 C xy C xz: 103

Determine the nature of this critical point by examining the Hessian. 104

4.5. Determine the set of critical points of the function 105

<2 !< W .x; y/! �x2y2 C 4xy � 4x2: 106

4.6. Maximise the function <2 ! < W .x; y/ ! x2y subject to the constraint 107

1 � x2 � y2 D 0. 108

4.7. Maximise the function <2 ! < W .x; y/ ! a logx C b logy, subject to the 109

constraint px C qy � I , where p; q; I 2 <C. 110

Chapter 5 111

5.1. Show that if dimension .X/ 	 m, then for almost every smooth profile u D 112

.u1; : : : ; um/ W X ! <m it is the case that Pareto optimal points in the interior of X 113

can be parametrised by at most .m�1/ strictly positive coefficients f�1; : : : ; �m�1g. 114

5.2. Consider a two agent, two good exchange economy, where the initial endow- 115

ment of good j , by agent i is eij . Suppose that each agent, i , has utility function 116

ui W .xi1; xi2/! a logxi1C b logxi2. Compute the critical Pareto set ‚, within the 117

feasible set 118

Y D f.x11; x12; x21; x22/ 2 <4Cg; 119

where the coordinates of Y satisfy 120

x11 C x21 D e11 C e21 and x12 C x22 D e12 C e22: 121

What is the dimension of Y and what is the codimension of ‚ in Y ? Compute 122

the market-clearing equilibrium. 123

5.3. Figure R1 shows a “butterfly singularity”, A, <2. Compute the degree of this 124

singularity. Show why such a singularity (though it is isolated) cannot be associated 125

with a generic excess demand function on the two-dimensional price simplex. 126
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Fig. R1 The Butterfly Singularity.
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Poincaré-Hopf Theorem 266;

positive definite form 82;
preference manipulation 222;
preference relation 28;
prefilter 44;
price adjustment process 257;
price equilibrium 134, 208;

existence 154-156;
price vector 130, 132;
producer optimisation 131;
product rule 166;
product topology 97;
production set 132;
profit function 131;
propositional calculus 4;
pseudo-concave function 191;
q-majority 42;
quadratic form 81;
quasi-concave function 116;
rank of a matrix 61;
rank of a transformation 59;
rationality 30;
real vector space 47;
reflexive relation 28;
regular economy 226, 252;
regular point 237;
regular value 237;
relation 9;
relative topology 7, 97;
repellor for a vector field 266;
residual set 97, 225;
resource manipulation 222;
retract 140;
retraction 140;
Rolle’s theorem 171;
rotations 19, 86;
saddle 82;
saddle point 180;
Sard’s lemma 244;
scalar 26;
scalar product 56, 89;
separating hyperplane 125;
separation of convex sets 124;
set theory 1-4;
shadow prices 130;
Shauder’s Fixed Point Theorem 148;
similar matrices 68;
singular matrix 16;
singular point 243;
singularity set of a function 247;
singularity theorem 249;
smooth function 168;
social choice 32;
social utility function 34;



UNCORRECTED
PROOF

Subject Index

Sonnenschein-Mantel-Debreu Theorem 274,
276;

stratified manifold 250;
strict Pareto rule 34, 40;
strict partial order 31, 40;
strict preference relation 28;
strictly pseudo-concave function 191;
strictly quasi-concave function 187;
structural stability of a vector field 260, 272-

274;
subgroup 20;
submanifold 248;
submanifold theorem 250;
submersion 240;
supremum of a function 102;
surjective function 13;
symmetric matrix 79;
symmetric relation 28;
tangent to a function 162;
Taylor’s theorem 175;
Thom transversality theorem 248;
topological space 95;
topology 7;
toms 243, 245;
trace of a matrix 76;

transfer paradox 222;
transitive relation 28;
transversality 247;
triangle inequality 92;
truth table 5;
two party competition 154;
Tychonoff’s theorem 113;
union of sets 1;
universal quantifier 8;
universal set 1;
utility function 30;
vector field 259;
vector space 47;
vector subspace 48;
Venn diagram 3;
Walras’ Law 256;
Walras manifold 251;
Walrasian equilibrium 226;
weak monotone function 117;
weak order 31;
weak Pareto rule 34;
Weierstrass theorem 111;
welfare theorem 216;
Whitney topology 225, 248;



UNCORRECTED
PROOF

Name Index

Aliprantis, C. 157;
Arrow, K. J. 38, 41, 45, 231, 281;
Aurnann, R. J. 280;
Balasko, Y. 222-223, 231, 255, 282;
Bergstrom, T. 152, 157;
Bikhchandani, S. 281 ;
Brouwer, L. E. J. 139, 142, 156;
Browder, F. E. 147, 156;
Brown, R. 157, 283;
Calvin, W. H. 278;
Chillingsworth, D. R. J. 282;
Condorcet, M. J. A. N. 281;
Debreu, G. 226, 250, 252, 254-255, 266,

274-277, 282-283;
Dierker, E. 270, 277, 282;
Eldridge, N. 278;
Fan, K. 148, 157, 280;
Gale, D. 222, 231;
Gamble, A. 280;
Gleick, J. 284;
Golubitsky, M. 282;
Goroff, D. 278;
Gould, S. J. 278;
Greenberg, J. 157;
Guesnerie, R. 231;
Guillemin, V. 282;
Hahn, F. H. 231;
Hayek, F. A. 280;
Heal, E. M. 156;
Hewitt, F. 281;
Hildenbrand, W. 128, 231;
Hirsch, M. 282;
Hirschleifer, D. 281;
Hubbard, J. H. 284;
Kauffinan, S. 275;
Keenan, D. 271, 283;
Kepler, J. 276;

Keynes, J. M. 281;
Kiman, A. P. 45, 128, 231;
Knaster, B. 146, 157;
Konishi, H. 158;
Kuhn, H. W. 136, 156;
Kuratowski, K. 146, 157;
Laffont, J. -J. 231;
Lange, O. 280;
Lqlace, P. S. 277;
Lorenz, E. N. 278, 284;
Mantel, R. 274-276, 283;
Mas-Colell, A. 282;
Mazerkiewicz, S. 146, 157;
McLean, I. 281;
Michael, E. 145-146, 157;
Minsky, H. 281;
Mises, L. von 280;
Nakamura, K. 42-43, 45, 150;
Nash, J. F. 152, 157;
Newton, I. 276;
Peixoto, M. 262, 272, 283;
Peterson, I. 278;
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