Mathematical Methods in Economics and Social Choice Second Edition

In recent years, the usual optimization techniques, which have proved so useful in microeconomic theory, have been extended to incorporate more powerful topological and differential methods, and these methods have led to new results on the qualitative behavior of general economic and political systems. These developments have necessarily resulted in an increase in the degree of formalism in the publications in the academic journals. This formalism can often deter graduate students. The progression of ideas presented in this book will familiarize the student with the geometric concepts underlying these topological methods, and, as a result, make mathematical economics, general equilibrium theory, and social choice theory more accessible.

Marcus Berliant 33
St. Louis, Missouri, 200234

path of development from elementary differential calculus to the powerful tools of singularity theory. In the text I have referred to work of Debreu, Balasko, Smale, and Saari, among others who, in the last few years, have used the tools of singularity theory to develop a deeper insight into the geometric structure of both the economy and the polity. These ideas are at the heart of recent notions of "chaos." Some speculations on this profound way of thinking about the world are offered in section 5.6. Review exercises are provided at the end of the book.

I thank Annette Milford for typing the manuscript and Diana Ivanov for the preparation of the figures.

I am also indebted to my graduate students for the pertinent questions they asked during the courses on mathematical methods in economics and social choice, which I have given at Essex University, the California Institute of Technology, and Washington University in St. Louis.

In particular, while I was at the California Institute of Technology I had the privilege of working with Richard McKelvey and of discussing ideas in social choice theory with Jeff Banks. It is a great loss that they have both passed away. This book is dedicated to their memory.
Contents
1 Sets, Relations, and Preferences2
1.1 Elements of Set Theory3
1.1.1 A Set Theory4
1.1.2 A Propositional Calculus5
1.1.3 Partitions and Covers
1.1.4 The Universal and Existential Quantifiers1.2 Relations, Functions and Operations8
1.2.1 Relations 9
1.2.2 Mappings 10
1.2.3 Function 11
1.3 Groups and Morphisms 12
1.4 Preferences and Choices 13
1.4.1 Preference Relations 14
1.4.2 Rationality 15
1.4.3 Choices 16
1.5 Social Choice and Arrow's Impossibility Theorem 17
1.5.1 Oligarchies and Filters 18
1.5.2 Acyclicity and The Collegium 19
References 20
2 Linear Spaces and Transformations 21
2.1 Vector Spaces 22
2.2 Linear Transformations 23
2.2.1 Matrices 24
2.2.2 The Dimension Theorem 25
2.2.3 The General Linear Group 26
2.2.4 Change of Basis 27
2.2.5 Examples 28
2.3 Canonical Representation 29
2.3.1 Examples 30
2.3.2 Symmetric Matrices and Quadratic Forms 31
Name Index

Chapter 1
 Sets, Relations, and Preferences

In this chapter we introduce elementary set theory and the notation to be used 3 throughout the book. We also define the notions of a binary relation, of a function, as well as the axioms of a group and field. Finally we discuss the idea of an individual and social preference relation, and mention some of the concepts of social choice and welfare economics.

1.1 Elements of Set Theory

Let \mathcal{U} be a collection of objects, which we shall call the domain of discourse, the universal set, or universe. A set B in this universe (namely a subset of \mathcal{U}) is a subcollection of objects from \mathcal{U}. B may be defined either explicitly by enumerating the objects, for example by writing

$$
\begin{aligned}
& B=\{\text { Tom, Dick, Harry }\}, \text { or } \\
& B=\left\{x_{1}, x_{2} \cdot x_{3}, \cdots\right\}
\end{aligned}
$$

Alternatively B may be defined implictly by reference to some property $P(B)$, which characterises the elements of B, thus

$$
B=\{x: x \text { satisfies } P(B)\} .
$$

For example:

$$
B=\{x: x \text { is an integer satisfying } 1 \leq x \leq 5\}
$$

is a satisfactory definition of the set B, where the universal set could be the collection of all integers. If B is a set, write $x \in B$ to mean that the element x is a member of B. Write $\{x\}$ for the set which contains only one element, x.

If A, B are two sets write $A \cap B$ for the intersection: that is the set which contains 21 only those elements which are both in A and B. Write $A \cup B$ for the it union: that 22

Fig. 1.1

Let the square on the page represent the universal set $\mathcal{U} . A$ subset B of points within \mathcal{U} can then represent the set B. Given two subsets A, B the union is the hatched area, while the intersection is the double hatched area.

We shall use \subset to mean "included in". Thus " $A \subset B^{\prime \prime}$ means that every element in A is also an element of B. Thus:

Fig. 1.2

Suppose now that $P(A)$ is the property that characterizes A, or that

$$
A=\{x: x \text { satisfies } P(A)\} .
$$

The symbol \equiv means "identical to", so that $[x \in A] \equiv " x$ satisfies $P(A)$ ".

$$
\begin{aligned}
& \begin{array}{l}
\text { Associated with any set theory is a propositional calculus which satisfies } \\
\text { properties analogous with a Boolean algebra, except that we use } \wedge \text { and } \vee \text { instead of } \\
\text { the symbols } \cap \text { and } \cup \text { for "and" and "or". } \\
\text { For example: } \\
\qquad A \cup B=\left\{x: \text { " } x \text { satisfies } P(A)^{\prime \prime} \vee \text { " } x \text { satisfies } P(B)^{\prime \prime}\right\} \\
\qquad A \cap B=\left\{x: " x \text { satisfies } P(A)^{\prime \prime} \wedge \text { " } x \text { satisfies } P(B)^{\prime \prime} .\right.
\end{array}
\end{aligned}
$$

The analogue of " \subset " is "if ... then" or "implies", which is written \Rightarrow. Thus $A \subset B$ [" x satisfies $P(A) " \Rightarrow$ " x satisfies $P(B)$ "].

The analogue of " $=$ " in set theory is the symbol " \Longleftrightarrow " which means "if and

$$
\begin{aligned}
& {[A=B]=\left[" x \text { satisfies } P(A)^{\prime \prime} \Longleftrightarrow " x \text { satisfies } P(B)^{\prime \prime}\right] \text {.Hence }} \\
& {[A=B]=\left[" x \in A^{\prime \prime} \Longleftrightarrow " x \in B^{\prime \prime}\right]=[A \subset B \text { and } B \subset A] .}
\end{aligned}
$$

1.1.2 A Propositional Calculus

Let $\left\{\mathcal{U}, \Phi, P_{1}, \ldots, P_{i}, \ldots\right\}$ be a family of simple propositions. \mathcal{U} is the universal proposition and always true, whereas Φ is the null proposition and always false. Two propositions P_{1}, P_{2} can be combined to give a proposition $P_{1} \wedge P_{2}$ (i. e., P_{1} and P_{2}) which is true iff both P_{1} and P_{2} are true, and a proposition $P_{1} \vee P_{2}$ (i.e., P_{1} or P_{2}) which is true if either P_{1} or P_{2} is true. For a proposition P, the complement \bar{P} in \mathcal{U} is true iff P is false, and is false iff P is true.

Now extend the family of simple propositions to a family P, by including 7 in P any propositional sentence $S\left(P_{1}, \ldots, P_{i}, \ldots\right)$ which is made up of simple 7 propositions combined under $-, \vee, \wedge$. Then P satisfies closure with respect to 7 $(-, \vee, \wedge)$ and is called a propositional calculus.

Let T be the truth function, which assigns to any simple proposition, $P i$, the 78 value 0 if P_{i} is false and 1 if P_{i} is true. Then T extends to sentences in the obvious way, following the rules of logic, to give a truth function $T: P \rightarrow 0$, 1. If $T\left(S_{1}\right)=8$ $T\left(S_{2}\right)$ for all truth values of the constituent simple propositions of the sentences S_{l} 8 and S_{2}, then $S_{1}=S_{2}$ (i.e., S_{l} and S_{2} are identical propositions).

For example the truth values of the proposition $P_{1} \vee P_{2}$ and $P_{2} \wedge P_{1}$ are given by the table:

$T\left(P_{1}\right)$	$T\left(P_{2}\right)$	$T\left(P_{1} \vee P_{2}\right)$	$T\left(P_{2} \vee P_{1}\right)$
0	0	0	0
0	1	1	1
1	0	1	1
1	1	1	1

(iii) Negation is given by reversing the truth value. Hence $\overline{\bar{P}}=P$.

$T(P)$	$T(\bar{P})$	$T\left(P^{=}\right)$
0	1	0
1	0	1

$T(P)$	$T(\bar{P})$	$T(P \vee \bar{P})$	$T(P \wedge \bar{P})$
0	1	1	0
1	0	1	0

Example 1.1. Truth tables can be used to show that a propositional calculus $P=$ $\left(\mathcal{U}, \Phi, P_{1}, P_{2}, \ldots\right)$ with the operators $(-, \vee, \wedge)$ is a Boolean algebra.

Suppose now that $S 1\left(A_{1}, \ldots, A_{n}\right.$,) is a compound set (or sentence) which is made up of the sets A_{1}, \ldots, A_{n}, together with the operators $\left\{\cup, \cap,{ }^{-}\right\}$.

For example suppose that

$$
\left.S_{1}\left(A_{1}, A_{2}, A_{3}\right)=A_{1} \cup\left(A_{2} \cap A_{3}\right)\right),
$$

and let $P\left(A_{1}\right), P\left(A_{2}\right), P\left(A_{3}\right)$ be the propositions that characterise A_{l}, A_{2}, A_{3}. Then

$$
S_{1}\left(A_{1}, A_{2}, A_{3}\right)=\left\{x: x \text { satisfies" } S_{1}\left(P\left(A_{1}\right), P\left(A_{2}\right), P\left(A_{3}\right)\right)^{\prime \prime}\right\}
$$

1.2 Relations, Functions and Operations

1.2.1 Relations

If X, Y are two sets, the Cartesian product set $X \times Y$ is the set of $\operatorname{ordered} \operatorname{pairs}(x, y)$ such that $x \in X$ and $y \in Y$.

For example if we let \mathfrak{R} be the set of real numbers, then $\mathfrak{R} \times \mathfrak{R}$ or \mathfrak{R}^{2} is the set

$$
(x, y): x \in \Re, y \in \Re,
$$

namely the plane. Similarly $\Re^{n}=\Re \times \ldots \times \mathfrak{R}$ (n times) is the set of n-tuples of real numbers, defined by induction, i.e., $\Re^{n}=\mathfrak{R} \times(\Re \times(\Re \times \ldots, \ldots))$.

A subset of the Cartesian product $Y \times X$ is called a relation, P, on $Y \times X$. If $(y, x) \in P$ then we sometimes write $y P x$ and say that y stands in relation P to x. If it is not the case that $(y, x) \in P$ then write $(y, x) \notin P$ or not $(y P x) \cdot X$ is called the domain of P, and Y is called the target or codomain of P.

If V is a relation on $Y \times X$ and W is a relation on $Z \times Y$, then define the relation $W \circ V$ to be the relation on $Z \times X$ given by

$$
\begin{aligned}
& (z, x) \in W \circ V \text { iffforsome } y \in Y \\
& (z, x) \in \operatorname{Wand}(y, x) \in V .
\end{aligned}
$$

The new relation $W \circ V$ on $Z \times X$ is called the composition of W and V.
The identity relation (or diagonal) e_{x} on $X \times X$ is

$$
e_{X}=\{(x, x): x \in X\} .
$$

If P is a relation on $Y \times X$, its inverse, P^{-1}, is the relation on $X \times Y$ defined by

$$
P^{-1}=\{(x, y) \in X \times Y:(Y, X) \in P\}
$$

Note that:

$$
P^{-1} \circ P=\left\{(z, x) \in X \times X: \exists y \in Y \operatorname{s.t}(z, y) \in P^{-1} \text { and }(y, x) \in P\right\} .
$$

Suppose that the domain of P is X, i.e., for every $x \in X$ there is some $y \in Y$ s.t. $(y, x) \in P$. In this case for every $x \in X$, there exists $y \in Y$ such that $(x, y) \in P^{-1}$ and so $(x, x) \in P^{-1} \circ P$ for any $x \in X$. Hence $e_{X} \subset P^{-1} \circ P$. In the same way

$$
P \circ P^{-1}=\left\{(t, y) \in Y \times Y: \exists x \in X \text { s.t }(t, x) \in P \text { and }(x, y) \in P^{-1}\right\}
$$ and so $e_{Y} \subset P \circ P^{-1}$.

1	\longrightarrow	1
	\nearrow	\searrow
4	\longrightarrow	4
2	\searrow	2
3	\longrightarrow	3

with relation

$$
W \circ V=(3,2),(2,2),(4,2),(1,4),(4,4),(1,1),(4,1) .
$$

$$
\begin{aligned}
\phi P^{-1} & =x:(x, y) \in P^{-1} \\
& =x:(x, y) \in P \\
& =x: y \in \phi p(x) .
\end{aligned}
$$

More generally if $\phi: X \rightarrow Y$ is a mapping then the inverse mapping $\phi^{-1}: Y \rightarrow X$ is given by

$$
\phi^{-1}(y)=x: y \in \phi(x)
$$

Thus

$$
\phi P^{-1}=(\phi P)^{-1}: Y \rightarrow X .
$$

For example let \mathcal{Z}_{4} be the first four positive integers and let P be the relation on $\mathcal{Z}_{4} \times \mathcal{Z}_{4}$ given by

$$
P=(2,3),(3,2),(1,2),(4,4),(4,1)
$$

Then the mapping ϕ_{P} and inverse ϕ_{P-1} are given by:

$\phi_{P}:$	1	\longrightarrow	4	$\phi_{P-1}:$	4	\longrightarrow	1
	\nearrow	1		1	\searrow		
					\searrow	4	
2	\longrightarrow	3		3	\longrightarrow	2	
		\longrightarrow	2	2	\longrightarrow	3	

If we compose P^{-1} and P as above then we obtain

$$
P^{-1} \circ P=(1,1),(1,4),(4,1),(4,4),(2,2),(3,3),
$$

with mapping

$$
\phi_{P-1} \circ \phi_{P}
$$

$$
1 \quad \longrightarrow \quad 1
$$

$$
4 \xrightarrow{\nearrow \searrow}
$$

$$
2 \quad \longrightarrow \quad 2
$$

$$
3 \quad \longrightarrow \quad 3
$$

Note that $P^{-1} \circ P$ contains the identity or diagonal relation $\mathrm{e}=\{(1,1),(2,2),(3,3)$, $(4,4)\}$ on $\mathcal{Z}_{4}=\{1,2,3,4\}$. Moreover $\phi P^{-1} \circ \phi P=\phi\left(P^{-1} \circ P\right)$.

The mapping $i d_{X}: X \rightarrow X$ defined by $i d_{X}(x)=x$ is called the identity mapping on X. Clearly if e_{X} is the identity relation, the $, \phi_{e X},=i d_{X}$ and graph $\left(i d_{X}\right)=e_{x}$.

If ϕ, ψ are two mappings $X \rightarrow Y$ then write $\psi \subset \phi$ iff for each $x \in X, \psi(x) \subset$ $\phi(x)$.

As we have seen $e_{X} \subset P^{-1} \circ P$ and so

$$
\phi_{e X}=i d_{X} \subset \phi\left(P^{-1} \circ P\right)=\phi P^{-1} \circ \phi P=(\phi P)^{-1} \circ \phi P .
$$

(This is only precisely true when X is the domain of P, i.e., when for every $x \in X$ there exists some $y \in Y$ such that $(y, x) \in P$.)

1.2.3 Function

If for all x in the domain of ϕ, there is exactly one y such that $y \in \phi(x)$ then is called a function. In this case we generally write $f: X+Y$, and sometimes $x \rightarrow^{f} y$ to indicate that $f(x)=y$. Consider the function f and its inverse f^{-1} given by

Clearly f^{-1} is not a function since it maps 4 to both 1 and 4, i.e., the graph of
f^{-1} is $(1,4),(4,4),(2,3),(3,2)$. In this case $i d_{X}$ is contained in $f^{-} l \circ f$ but is not 249 identical to $f^{-1} \circ f$. Suppose that f^{-1} is in fact a function. Then it is necessary that 250 for each y in the image there be at most one x such that $f(x)=y$. Alternatively if251 $f\left(x_{l}\right)=f\left(x_{2}\right)$ then it must be the case that $x_{l}=x_{2}$.In this case f is called 1-1 or ${ }_{252}$ injective. Then f^{-1} is a function and

$$
\begin{aligned}
& i d_{X}=f^{-1} \circ f \text { on the domain } X \text { of } f \\
& i d_{Y}=f \circ f^{-1} \text { on the image } Y \text { of } f
\end{aligned}
$$

A mapping $\phi: X \rightarrow Y$ is said to be surjective (or called a surjection) iff every $y \in Y$ belongs to the image of ϕ; that is, $\exists x \in X$ s.t. $y \in \phi(x)$. bijective.

A function $f: X \rightarrow Y$ which is both injective and surjective is said to be

Example 1.3. Consider

$$
\begin{array}{cccc}
& \pi & \pi^{-1} \\
1 & \longrightarrow & 4 & 1 \\
4 & \longrightarrow & 2 & 4 \\
2 & \longrightarrow & 3 & 2 \\
3 & \longrightarrow & 1 & \longrightarrow
\end{array}
$$

In this case the domain and image of π coincide and π is known as a permutation
(Remember \mathfrak{R} is the set of real numbers.) There are three cases:

Consider the possibilities where ϕ is a mapping $\mathfrak{R} \rightarrow \mathfrak{R}$, with graph $(\phi) \subset \mathfrak{R}^{2}$.

(iii) ϕ is an injective function.

1.3 Groups and Morphisms

We earlier defined the composition of two mappings $\phi: X \rightarrow Y$ and $\psi: Y \rightarrow X$
to be $\psi \circ \phi: X \rightarrow Z$, given by $(\psi \circ \phi)(x)=\psi[\phi(x)]=\cup\{\psi(y): y \in \phi(x)\}$. In
the case of functions $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ this translates to

$$
(g \circ f)(x)=g[f(x)]=\{g(y): y=f(x)\} .
$$

Since both f, g are functions the set on the right is a singleton set, and so $g \circ f$ is a 274 function. Write $\mathcal{F}(A, B)$ for the set of functions from A to B. Thus the composition operator, \circ, may be regarded as a function:

$$
\begin{aligned}
\circ: \mathcal{F}(X, Y) \times \mathcal{F}(Y, Z) & \rightarrow \mathcal{F}(X, Y) \\
& \rightarrow g \circ f .
\end{aligned}
$$

Example 1.4. To illustrate consider the function (or matrix) F given by

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{a x_{1}+b x_{2}}{c x_{1}+d x_{2}}
$$

This can be regarded as a function $F: \mathfrak{R}^{2} \rightarrow \mathfrak{R}^{2}$ since it maps $\left(x_{l}, x_{2}\right) \rightarrow$
$\left(a x_{1}+b x_{2}, c x_{1}+d x_{2}\right) \in \mathfrak{R}^{2}$.

Now let

$$
F=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), H=\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)
$$

$F \circ H$ is represented by

$$
\binom{x_{1}}{x_{2}} \xrightarrow{F}\binom{a x_{1}+b x_{2}}{c x_{1}+d x_{2}} \xrightarrow{H}\binom{e\left(a x_{1}+b x_{2}\right)+f\left(c x_{1}+d x_{2}\right)}{g\left(a x_{1}+b x_{2}\right)+h\left(c x_{1}+d x_{2}\right)}
$$

Thus

$$
(H \circ F)\binom{x_{1}}{x_{2}}=\left(\frac{e a+f c \mid e b+f d}{g a+h c \mid g b+h d}\right)\binom{x_{1}}{x_{2}}
$$

or

$$
(H \circ F)\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right) \circ\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\frac{e a+f c \mid e b+f d}{g a+h c \mid g b+h d}\right)
$$

The identity E is the function

$$
\binom{x_{1}}{x_{2}}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{x_{1}}{x_{2}}
$$

Since this must be true for all x_{1}, x_{2}, it follows that $a=d=1$ and $c=b=0$.
Thus $E=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.
Suppose that the mapping $F^{-1}: \mathfrak{R}^{2} \rightarrow \mathfrak{R}^{2}$ is actually a matrix. Then it is certainly a function, and by Section 1.2.3, $F^{-1} \circ F$ must be equal to the identity function on \mathfrak{R}^{2}, which here we call E. To determine F^{-1}, proceed as follows:

Let $F^{-1}=\left(\begin{array}{ll}e & f \\ g & h\end{array}\right)$. We know $F^{-1} \circ F=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.
Thus

$$
\begin{array}{l|l}
e a+f c=1 & e b+f d=0 \\
g a+h c=0 & g b+h d=1
\end{array}
$$

If $a \neq 0$ and $b \neq 0$ then $e=-\frac{f d}{b}=\frac{1-f c}{a}$.
Now let $|F|=(a d-b c)$, where $|F|$ is called the determinant of F. Clearly if $|F| \neq 0$, then $f=-b \backslash|F|$. More generally, if $|F| \neq 0$ then we can solve the equations to obtain:

$$
F^{-1}=\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right),=\frac{1}{|F|}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

If $|F|=0$, then what we have called F^{-1} is not defined. This suggests that when $|F|=0$, the inverse F^{-1} cannot be represented by matrix, and in particular that

We have here defined a composition operation:

$$
\begin{aligned}
\circ: M(2) \times M(2) & \rightarrow M(2) \\
(H, F) & \rightarrow H \circ F .
\end{aligned}
$$

Suppose we compose E with F then

$$
E \circ F=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=F
$$

Finally for any $F \in M *(2)$ it is the case that there exists a unique matrix $F^{-1} \in$ $M(2)$ such that

$$
F^{-1} \circ F=E .
$$

Indeed if we compute the inverse $\left(F^{-1}\right)^{-1}$ of F^{-1} then we see that $\left(F^{-1}\right)^{-1}=$
$M *(2)$ is an example of what is called a group.
More generally a binary operation, \circ, on a set G is a function

$$
\begin{aligned}
\circ: G \times G & \rightarrow G, \\
(x, y) & \rightarrow x \circ y .
\end{aligned}
$$

Definition 1.1. A group G is a set G together with a binary operation, $\circ: G \times G \rightarrow$ G which

1. is associative: $(x \circ y) \circ z=x \circ(y \circ z)$ for all x, y, z in G;
2. has an identity $e: e \circ x=x \circ e=x \forall x \in G$;
3. has for each $x \in G$ an inverse $x^{-1} \in G$ such that $x \circ x^{-1}=x^{-1} \circ x=e$.

When G is a group with operation, o, write (G, \circ) to signify this.
Associativity simply means that the order of composition in a sequence of compositions is irrelevant. For example consider the integers, \mathcal{Z}, under addition. Clearly $a+(b+c)=(a+b)+c$, where the left hand side means add b to c, and then add a to this, while the right hand side is obtained by adding a to b, and then adding c to this. Under addition, the identity is that element $e \in \mathcal{Z}$ such that $a+e=a$. This is usually written 0 . Finally the additive inverse of an integer $a \in \mathcal{Z}$ is $(-a)$ since $a+(-a)=0$. Thus $(\mathcal{Z},+)$ is a group.

However consider the integers under multiplication, which we shall write as ".". Again we have associativity since

$$
a \cdot(b \cdot c)=(a \cdot b) \cdot c
$$

Clearly 1 is the identity since $1 . a=a$. However the inverse of a is that object

Lemma 1.1. If (G, \circ) is a group, then the identity e is unique and for each $x \in G$ the inverse x^{-1} is unique. By definition $e^{-1}=e$. Also $\left(x^{-1}\right)^{-1}=x$ for any $x \in G$.

Proof.

1. Suppose there exist two distinct identities, e, f. Then $e \circ x=f \circ x$ for some 348 x. Thus $(e \circ x) \circ x^{-1}=(f \circ x) \circ x^{-1}$. This is true because the composition operation

$$
\left((e \circ x), x^{-1}\right) \rightarrow(e \circ x) \circ x^{-1}
$$

gives a unique answer.
By associativity $(e \circ x) \circ x^{-1}=e \circ\left(x \circ x^{-1}\right)$, etc.
Thus $e \circ\left(x \circ x^{-1}\right)=f \circ\left(x \circ x^{-1}\right)$. But $x \circ x^{-1}=e$, say.
Since e is an identity, $e \circ e=f \circ e$ and so $e=f$. Since $e \circ e=e$ it must be
the case that $e^{-1}=e$.
2. In the same way suppose x has two distinct inverses, y, z, so $x \circ y=x \circ z=e$. Then

$$
\begin{aligned}
y \circ(c \circ y) & =y \circ(x \circ z) \\
(y \circ x) \circ y & =(y \circ x) \circ z \\
e \circ y & =e \circ z \\
y & =z .
\end{aligned}
$$

3. Finally consider the inverse of x^{-1}. Since $x \circ\left(x^{-1}\right)=e$ and by definition $\left(x^{-1}\right)^{-1} \circ\left(x^{-1}\right)=e$ by part (2), it must be the case that $\left(x^{-1}\right)-1=x$.
We can now construct some interesting groups.
Lemma 1.2. The set $M^{*}(2)$ of 2×2 non-singular matrices form a group under matrix composition, o.

Proof. We have already shown that there exists an identity matrix E in $M^{*}(2)$ Clearly $|E|=1$ and so E has inverse E.

As we saw in example 1.4 , when we solved $H \circ F=E$ we found that

$$
H=F^{-1}=\frac{1}{|F|}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

By Lemma 1.1, $\left(F^{-1}\right)^{-1}=F$ and so F^{-1} must have an inverse, i.e., $\left|F^{-1}\right| \neq 0,366$ and so F^{-1} is non-singular. Suppose now that the two matrices H, F belong to $M^{*}(2)$. Let

$$
F=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

and

$$
H=\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)
$$

As in Example 1.4, $|H \circ F|$

$$
\begin{aligned}
& =\left|\left(\begin{array}{l}
e a+f c e b+f d \\
g a+h c \\
g b+h d
\end{array}\right)\right|=(e a+f c)(g b+h d)-(g a+h c)(e b+f d) \\
& =(e h-g f)(a d-b c)=|H||F|
\end{aligned}
$$

Since both H and F are non-singular, $|H| \neq 0$ and $|F| \neq 0$ and so $|H \circ| \neq 0$. Thus $H \circ F$ belongs to $M *(2)$, and so matrix composition is a binary operation $M^{*}(2) \times M^{*}(2) \rightarrow M^{*}(2)$.

Finally the reader may like to verify that matrix composition on $M^{*}(2)$ is associative. That is to say if F, G, H are non-singular 2×2 matrices then

$$
H \circ(G \circ F)=(H \circ G) \circ F .
$$

As a consequence $\left(M^{*}(2), \circ\right)$ is a group.
Example 1.5. For a second example consider the addition operation on $M(2)$ defined by

$$
\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)+\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
a+e & f+b \\
g+c & h+d
\end{array}\right)
$$

Clearly the identity matrix is $\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$, and the inverse of F is

$$
-F=-\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
-a & -b \\
-c & -d
\end{array}\right)
$$

Thus $(M(2),+)$ is a group.
Finally consider those matrices which represent rotations in \mathfrak{R}^{2}.
If we rotate the point $(1,0)$ in the plane through an angle θ in the anticlockwise direction then the result is the point $(\cos \theta, \sin \theta)$, while the point $(0,1)$ is transformed to $(-\sin \theta, \cos \theta)$. As we shall see later, this rotation can be represented by the matrix

$$
\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)
$$

which we will call $e^{i^{\theta}}$.
Let Θ be the set of all matrices of this form, where θ can be any angle between 0 and 360°. If $e^{i^{\theta}}$ and $e^{i^{\theta}}$ are rotations by θ, ψ respectively, and we rotate by θ first and then by ψ, then the result should be identical to a rotation by $\psi+\theta$. To see this:

Fig. 1.3

$$
\begin{aligned}
& \left(\begin{array}{cc}
\cos \psi & -\sin \psi \\
-\sin \psi & \cos \psi
\end{array}\right),\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right) \\
& =\left(\frac{\cos \psi \cos \theta-\sin \psi \sin \theta \mid-\cos \psi \sin \theta-\sin \psi \cos \theta}{\sin \psi \cos \theta+\cos \psi \sin \theta \mid-\sin \psi \sin \theta+\cos \psi \cos \theta}\right) \\
& =\binom{\cos (\psi+\theta)-\sin (\psi+\theta)}{\sin (\psi+\theta) \cos (\psi+\theta)}=e^{i(\theta+\psi)}
\end{aligned}
$$

Note that $\left|e^{i \theta}\right|=\cos ^{2} \theta+\sin ^{2} \theta=1$. Thus

$$
\left(e^{i \theta}\right)^{-1}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)=\left(\begin{array}{cc}
\cos \theta & -\sin (-\theta) \\
\sin (-\theta) & \cos \theta)
\end{array}\right)=e^{i(-\theta)} .
$$

Hence the inverse to $e^{i \theta}$ is a rotation by $(-\theta)$, that is to say by θ but in the opposite direction. Clearly $E=e^{i \theta}$, a rotation through a zero angle. Thus (Θ, \circ) is 398 a group. Moreover Θ is a subset of $M^{*}(2)$, since each rotation has a non-singular matrix. Thus Θ is a subgroup of $M^{*}(2)$.
A subset Θ of a group (G, o) is a subgroup of G iff the composition operation, o, restricted to Θ is "closed", and Θ is a group in its own right. That is to say (i) if $x, y \in \Theta$ then $x \circ y \in \Theta$, (ii) the identity e belongs to Θ and (iii) for each x in Θ the inverse, x^{-1}, also belongs to Θ.

Definition 1.2. Let (X, \circ) and (Y, \cdot) be two sets with binary operations, \circ, \cdot, respectively. A function $f: X \rightarrow Y$ is called a morphism (with respect to (\circ, \cdot)) iff $f(x \circ y)=f(x) \cdot f(y)$, for all $x, y \in X$. If moreover f is bijective as a function, then it is called an isomorphism. If $(X, \circ),(Y, \cdot)$ are groups then f is called a homomorphism.

A binary operation on a set X is one form of mathematical structure that the set may possess. When an isomorphism exists between two sets X and Y then mathematically speaking their structures are identical.

For example let Rot be the set of all rotations in the plane. If $\operatorname{rot}(\theta)$ and $\operatorname{rot}(\psi)$ are rotations by θ, ψ respectively then we can combine them to give a rotation rot $(\psi,+\theta)$,i.e.,

$$
\operatorname{rot}(\psi) \circ \operatorname{rot}(\theta)=\operatorname{rot}(\psi+\theta)
$$

Here \circ means do one rotation then the other. To the rotation, $\operatorname{rot}(\theta)$ let f assign the 2×2 matrix, called $e^{i \theta}$ as above. Thus

$$
\begin{aligned}
f(\operatorname{rot}(\psi) \circ \operatorname{rot}(\theta) & =f(\operatorname{rot}(\psi+\theta)) \\
e^{i \psi} \circ e^{i \theta} & =e^{i(\psi+\theta)}
\end{aligned}
$$

Clearly the identity rotation is $\operatorname{rot}(0)$ which corresponds to the zero matrix $e^{i o}$ while the inverse rotation to $\operatorname{rot}(\theta)$ is $\operatorname{rot}(-\theta)$ corresponding to $e^{-i \theta}$. Thus f is a morphism.

Here we have a collection of geometric objects, called rotations, with their own structure and we have found another set of "mathematical" objects namely 2×2 matrices of a certain type, which has an identical structure.

Lemma 1.3. If $f:(X, \circ) \rightarrow(Y, \cdot)$ is a morphism between groups then
(1) $f\left(e_{X}\right)=e_{Y}$ where e_{X}, e_{Y} are the identities in X, Y.
(2) for each x in $X, f\left(x^{-1}\right)=[f(x)]^{-1}$.

Proof.

1. Since f is a morphism $f\left(x \circ e_{X}\right)=f(x) \cdot f\left(e_{X}\right)=f(x)$. By Lemma 1.2, e_{Y} is unique and so $f\left(e_{X}\right)=e_{Y}$.
2. $f\left(x \circ x^{-1}\right)=f(x) \cdot f\left(x^{-1}\right)=f\left(e_{X}\right)=e_{Y}$. By lemma 1.2, $[f(x)]^{-1}$ is unique and so $f\left(x^{-1}\right)=[f(x)]^{-1}$.

As an example, consider the determinant function $\operatorname{det}: M(2) \rightarrow \mathfrak{R}$.
From the proof of Lemma 1.3, we know that for any 2×2 matrices, H and F, it is the case that $|H \circ F|=|H||F|$. Thus det $:(M(2), \circ) \rightarrow(\Re, \cdot)$ is a morphism with respect to matrix composition, \circ, in $M(2)$ and multiplication, \cdot, in \Re.

Note also that if F is non-singular then $\operatorname{det}(F)=|F| \neq 0$, and so det $M^{*}(2) \rightarrow \mathfrak{R} \backslash\{0\}$.

It should be clear that $\mathfrak{R} \backslash\{0\}, \cdot)$ is a group.

Hence det $:\left(M^{*}(2), \circ\right) \rightarrow(\mathfrak{R} \backslash\{0\}, \cdot)$ is a homomorphism between these 441 two groups. This should indicate why those matrices in $M(2)$ which have zero 442 determinant are those without an inverse in $M(2)$.

From Example 1.4, the identity in $M^{*}(2)$ is E, while the multiplicative identity
Moreover $|F|^{-1}=\frac{1}{|F|}$ and so, by Lemma 1.3, $\left|F^{-1}\right|=\frac{1}{|F|}$. This is easy to check since

$$
\left|F^{-1}\right|=\left|\frac{1}{F}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)\right|=\frac{d a-b c}{|F|^{2}}=\frac{|F|}{|F|^{2}}=\frac{1}{|F|}
$$

However the determinant det : $M^{*}(2) \rightarrow \mathfrak{R} \backslash 0$ is not injective, since it is clearly

Example 1.6. It is clear that the real numbers form a group $(\Re,+)$ under addition $(\mathfrak{R}\{0\}, \cdot)$ under multiplication, as long as we exclude 0 .

Now let \mathcal{Z}_{2} be the numbers 0,1 and define "addition modulo 2 ," written + , on written \cdot, on \mathcal{Z}_{2}, by $0.0=0,0 \cdot 1=1 \cdot 0=0,1 \cdot 1=1$.

Under "addition modulo 2, " 0 is the identity, and 1 has inverse 1 . Associativity is clearly satisfied, and so $\mathcal{Z}_{2},+$) is a group. Under multiplication, 1 is the identity and inverse to itself, but 0 has no inverse. Thus $\mathcal{Z}, \cdot)$ is not a group. Note that $\left.\mathcal{Z}_{2} \backslash\{0\}, \cdot\right)$ is a group, namely the trivial group containing only one element. Let \mathcal{Z} be the integers, and consider the function

$$
f: Z \rightarrow Z_{2}
$$

defined by $f(x)=0$ if x is even, 1 if x is odd.
We see that this is a morphism $f:(Z,+) \rightarrow\left(Z_{2},+\right)$;

1. if x and y are both even then $f(x)=f(y)=0$; since $x+y$ is even, $f(x+y)=$ 0.
2. if x is even and y odd, $f(x)=0, f(y)=1$ and $f(x)+f(y)=1$. But $x+y$ is odd, so $f(x+y)=1$.
3. if x and y are both odd, then $f(x)=f(y)=1$, and so $f(x)+f(y)=0$. But $x+y$ is even, so $f(x+y)=0$.

Since $Z,+)$ and $\left(Z_{2},+\right)$ are both groups, f is a homomorphism. Thus $f(-a)=$ $f(a)$.

On the other hand consider

$$
f:(\mathcal{Z}, \cdot) \rightarrow\left(\mathcal{Z}_{2}, \cdot\right)
$$

1. if x and y are both even then $f(x)=f(y)=0$ and so $f(x) \cdot f(y)=0=$ $f(x y)$.
2. if x is even and y odd, then $f(x)=0, f(y)=1$ and $f(x) \cdot f(y)=0$. But $x y$ is even so $f(x y)=0$.

Given a field $(\mathcal{F},+, \cdot)$ we define a new object called \mathcal{F}^{n} where n is a positive
511
integer as follows. Any element $x \in \mathcal{F}^{n}$ is of the form $\left(\begin{array}{c}x_{1} \\ \cdot \\ x_{n}\end{array}\right)$ where x_{1}, \ldots, x_{n} all 512
belong to \mathcal{F}.
F1. If $a \in \mathcal{F}$, and $x \in \mathcal{F}^{n}$ define $\alpha x \in \mathcal{F}^{n}$ by

$$
\alpha\left(\begin{array}{c}
x_{1} \\
\cdot \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
\alpha x_{1} \\
\cdot \\
\alpha x_{n}
\end{array}\right) .
$$

Thus for each $x \in \mathcal{F}^{n}$ there is an inverse, $(-x)$, in \mathcal{F}^{n}.
Finally, since F is an additive group

$$
\begin{aligned}
x+(x+z) & =\left(\begin{array}{c}
x_{1} \\
\cdot \\
x_{n}
\end{array}\right)+\left(\begin{array}{c}
y_{1}+z_{1} \\
\cdot \\
y_{n}+z_{n}
\end{array}\right)=\binom{x_{1}+y_{1}}{x_{n}-y_{n}}+\left(\begin{array}{c}
z_{1} \\
\cdot \\
z_{n}
\end{array}\right) \\
& =(x+y)+z
\end{aligned}
$$

Thus $\mathcal{F}^{n}+$), is an abelian group, with zero $\underline{0}$.
The fact that it is $\mathrm{pd} \mathrm{b} l$ e to multiply an element $x \in \mathcal{F}^{n}$ by a scalar $a \in \mathcal{F} 532$ endows \mathcal{F}^{n} with further structure. To see this consider the example of \Re^{2}.

1. If $a \in \mathfrak{R}$ and both x, y belong to \mathfrak{R}^{2}, then

$$
\alpha\left[\binom{x_{1}}{x_{2}}+\binom{y_{1}}{y_{2}}\right]=\alpha\binom{x_{1}+y_{1}}{x_{2}+y_{2}}=\binom{\alpha x_{1}+\alpha y_{1}}{\alpha x_{2}+\alpha y_{2}}
$$

by F1. Thus $\alpha(x+y)=\alpha x+\alpha y$.
2.

$$
(\alpha+\beta)\binom{x_{1}}{x_{2}}\binom{(\alpha+\beta) x_{1}}{(\alpha+\beta) x_{2}}
$$

by F1

$$
=\binom{\alpha x_{1}+\beta x_{1}}{\alpha x_{2}+\beta x_{2}}=\binom{\alpha x_{1}}{\alpha x_{2}}+\binom{\beta x_{1}}{\beta x_{2}}
$$

by $\mathbf{F} 2$

$$
=\alpha\binom{x_{1}}{x_{2}}+\beta\binom{x_{1}}{x_{2}}
$$

by F1. Therefore, $(\alpha+\beta) x=\alpha x+\beta x$.

$$
(\alpha \beta)\binom{x_{1}}{x_{2}}=\binom{(\alpha \beta) x_{1}}{(\alpha \beta) x_{2}}
$$

by $\mathbf{F} 1=\alpha\binom{\beta x_{1}}{\beta x_{2}}$ by associativity and $\mathbf{F} 1$, and $=\alpha(\beta x)$ by $\mathbf{F} 1$. Thus $(\alpha \beta) x=$ $\alpha(\beta x)$
4.

$$
\binom{x_{1}}{x_{2}}=\binom{1 \cdot x_{1}}{1 \cdot x_{2}}=\binom{x_{1}}{x_{2}}
$$

Therefore $1(x)=x$.
These four properties characterise what is known as a vector space.
Finally, consider the operation of a matrix F on the set of elements in \mathfrak{R}^{2}. By
definition $F(x+y)$

$$
\begin{aligned}
& =\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left[\binom{x_{1}}{x_{2}}+\binom{y_{1}}{y_{2}}\right]=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x_{1}+y_{1}}{x_{2}+y_{2}} \\
& =\binom{a\left(x_{1}+y_{1}\right)+b\left(x_{2}+y_{2}\right)}{c\left(x_{1}+y_{1}\right)+d\left(x_{2}+y_{2}\right)}==\binom{a x_{1}+b x_{2}}{c x_{1}+d x_{2}}+\binom{a y_{1}+b y_{2}}{c y_{1}+d y_{2}}
\end{aligned}
$$

by F2

$$
=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x_{1}}{x_{2}}+\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{y_{1}}{y_{2}}==F(x)+F(y) .
$$

Hence $F:\left(\mathfrak{R}^{2},+\right) \rightarrow\left(\mathfrak{R}^{2},+\right)$ is a morphism from the abelian group $\left(\mathfrak{R}^{2},+\right)$ into itself.

By Lemma 1.3, we know that $F(\underline{0})=\underline{0}$, and for any element $4 x \in \mathfrak{R}^{2}$,

$$
F(-x)=F(-1(x))=-F(x)=-1 F(x) .
$$

A morphism between vector spaces is called a linear transformation. Vector spaces and linear transformations are discussed in Chapter 2.

1.4 Preferences and Choices

A binary relation P on X is a subset of $X \times X$; more simply P is called arelation on X. For example let $X \equiv \mathfrak{R}$ (the real line) and let P be " $>$ " meaning

1. it is never the case that $x>x$
2. it is never the case that $x>y$ and $y>x$
3. it is always the case that $x>y$ and $y>z$ implies $x>z$.

These properties can be considered more abstractly. A relation P on X is:

1. symmetric iff $x P y+y P x$
asymmetric iff $x P y \Rightarrow \operatorname{not}(y P x)$
antisymmetric iff $x P y$ and $y P x \Rightarrow x=y$
2. reflexive iff $(x P x) \forall x \in X$
irreflexive iff not $(x P x) \forall x \in X$

By transitivity of $R, z R x$. But $z R x$ and $x R z$ imply $x I z$, a contradiction. In the same way if $z P x$, then $z R x$, and again $x I z$. Thus I must be transitive.
Note that this lemma also implies that P, I and R combine transitively. For example, if $x R y$ and $y P z$ then $x P z$.
To show this, suppose, in contradiction, that not ($x P z$).
This is equivalent to $z R y$. If $x R y$, then by transitivity of R, we obtain $z R y$ and so it not $(y P z)$. Thus $x R y$ and $n o t(x P z) \Rightarrow \operatorname{not}(y P z)$. But $y P z$ and not $(y P z)$ cannot both hold. Thus $x R y$ and $y P z \Rightarrow x P z$. Clearly we also obtain $x I y$ and $y P z \Rightarrow x P z$ for example.
When P is a negatively transitive strict preference relation on X, then we call it a weak order on X. Let $O(X)$ be the set of weak orders on X. If P is a transtive strict preference relation on X, then we call it a strict partial order. Let $T(X)$ be the set of strict partial orders on X. By Lemma 1.7, $O(X) \subset T(X)$.
Finally call a preference relation acyclic if it is the case that for any finite 645 sequence x_{1}, \ldots, x_{r}, of points in X if $x_{j} P_{x_{j+1}}$ for $J=1, \ldots, r-1$ then it cannot 646 be the case that $x_{r}, P x_{l}$.
Let $A(X)$ be the set of acyclic strict preference relations on X. To see that
$T(x) \subset A(X)$, suppose that P is transitive, but cyclic, i.e., that there exists a finite

1.4.3 Choices

As we noted previously, if P is a strict preference relation on a set X, then a maximal

$$
\phi_{P}: X \rightarrow X \text { where } \phi_{P}(x)=\{y: y P x\} .
$$

We shall call d ϕp the preference correspondence of P. The choice of P on X is the

$$
C_{p}(Y)=\left\{x \in y: \phi_{P}(X) \cap Y=\Phi\right\} .
$$

This defines a choice correspondence $C_{p}: 2^{X} \rightarrow 2^{X}$ from 2^{X}, the set of all subsets of X, into itself.
An important question in social choice and welfare economics concerns the exis-

The set of equivalence classes in X under an equivalence relation, I, is written 706 X / I. Clearly if $u: X+\mathfrak{R}$ is a utility function then an equivalence class [x] is of 707 the form

$$
[x]=y \in X: u(x)=u(y),
$$

which we may also write as $u^{-1}[u(x)]$.
If X is a finite set, and P is representable by a utility function then

$$
C_{P}(X)=x \in X: u(x)=s
$$

where s is max $[u(y): y \in X]$, the maximum value of u on X.
Social choice theory is concerned with the existence of a choice under a social 714 preference relation P which in some sense aggregates individual preferences for all 715 members of a society $M=1, \ldots i, \ldots m$. Typically the social preference relation 716 cannot be representable by a "social" utility function. For example suppose a society consists of n individuals, each one of whom has a preference relation P_{i} on the feasible set X.

Define a social preference relation P on X by $x P y$ iff $x P_{i} y$ for all $i \in M$ (P is called the strict Pareto rule).

It is clear that if each P_{i} is transitive, then so must be P. As a result, P must be acyclic. If X is a finite set, then by Lemma 1.8, there exists a choice $C_{P}(X)$ on X.722

The same conclusion follows if we define $x Q y$ iff $x R_{j} y \forall j \in M$, and $x P_{i} y$ for some $i \in M$.

If we assume that each individual has negatively transitive preferences, then Q will be transitive, and will again have a choice. Q is called the weak Pareto rule. Note that a point x belongs to $C_{Q}(X)$ iff it is impossible to move to another point y which makes nobody "worse off, but makes some members of the society "better off. The set $C_{Q}(X)$ is called the Pareto set. Although the social preference relation Q has a choice, there is no social utility function which represents Q. To see this suppose the society consists of two individuals 1,2 with transitive preferences $x P_{1} y P_{1} z$ and $z P_{2} x P_{2} y$.

By the definition $x Q y$, since both individuals prefer xtoy. However conflict of preference between y and z, and between x and z gives $y I z$ and $x I z$, where I is the social indifference rule associated with Q. Consequently I is not transitive and there is no "social utility function" which represents Q. Moreover the elements of X cannot be partitioned into disjoint indifference equivalence classes.

To see the same phenomenon geometrically define a preference relation P on \mathfrak{R}^{2} by

$$
\left(x_{1}, x_{2}\right) P\left(y_{1}, Y_{2}\right) \Longleftrightarrow X_{1}>Y_{1} \wedge x_{2}>y_{2} .
$$

From Figure $1.5\left(x_{1}, x_{2}\right) P\left(y_{l}, y_{2}\right)$. However $\left(x_{1}, x_{2}\right) I\left(z_{1}, z_{2}\right)$ and $\left(y_{1}, y_{2}\right) I\left(z_{l}, z_{2}\right)$ Again there is no social utility function representing the preference relation Q. Intuitively it should be clear that when the feasible set is "bounded" in some way in \mathfrak{R}^{2}, then the preference relation Q has a choice. We shall show this more generally in a later chapter. (See Lemma 3.9. below.)

Fig. 1.5

Fig. 1.6

In Figure 1.5, we have represented the preference Q in \mathfrak{R}^{2} by drawing the set preferred to the point $\left(y_{l}, y_{2}\right)$, say, as a subset of \Re^{2}.

An alternative way to describe the preference is by the graph of ϕp. For example, 749 suppose X is the unit interval $[\mathrm{O}, 1]$ in \mathfrak{R}, and let the horizontal axis be the domainof ϕ_{p}, and the vertical axis be the co-domain of ϕ_{P}. In Figure 1.6, the preference Pis identical to the relation $>$ on the interval (so $y P x$ iff $y>x$). The graph of ϕp isthen the shaded set in the figure. Note that $y P x$ iff $x P^{-l} y$. Because P is irreflexive,the diagonal $e_{x}=\{(x, x): x \in X\}$ cannot belong to graph $\left(\phi_{P}\right)$ To find graph$\left(\phi_{P}^{-1}\right)$ we simply "reflect" graph (ϕp) in the diagonal.

The shaded set in Figure 1.7 represents graph $\left(\phi_{P}^{-1}\right)$. Because P is asymmetric,$\operatorname{graph}\left(\phi_{P}^{-1}\right)=\Phi$ (the empty set). This can be seen by superimposing Figures 1.6

To illustrate a transitive, but non-monotonic strict preference, consider Figure 1.8 which represents the preference $y P x$ iff $x<y<1-x$, for $x \leq \frac{1}{2}$, or $1-x<y<x$, for $x>\frac{1}{2}$. For example if $x=\frac{1}{4}$, then $\phi_{P}(x)$ is the interval $\left(\frac{1}{4}, \frac{3}{4}\right)$ namely all points between $\frac{1}{4}$, and $\frac{3}{4}$, excluding the end points.

It is obvious that P represents a utility function

Fig. 1.7

Fig. 1.8

Fig. 1.9

Fig. 1.10

$$
\begin{aligned}
u(x) & =x \text { if } x \leq \frac{1}{2} \\
u x & =1-x \text { if } \frac{1}{2}<x \leq 1
\end{aligned}
$$

Clearly the choice of P is $C_{P}(x)=\frac{1}{2}$. Such a most preferred point is often called a "bliss point" for the preference. Indeed a preference of this kind is usually called "Euclideann, since the preference is induced from the distance from the bliis point. In other words, $y P x$ iff $\left|y-\frac{1}{2}\right|<\left|x-\frac{1}{2}\right|$. Note again that this preference is transitive and of course acyclic. The fact that the P is asymmetric can be seen from noting that the shaded set in Figure 1.8 (graph ϕp) and the shaded set in Figure 1.9 (graph ϕ_{P}^{-1}) do not intersect.

Figure 1.10 represents a more complicated asymmetric preference. Here

$$
\begin{aligned}
\phi_{P}(x) & =\left(x, x+\frac{1}{2}\right) \text { if } x \leq \frac{1}{2} \\
& =\left(\frac{1}{2}, x\right) \cup\left(0, x-\frac{1}{2}\right) \text { if } x>\frac{1}{2} .
\end{aligned}
$$

Clearly there is a cycle, say $\frac{1}{4} P \frac{1}{8} P \frac{11}{16} P \frac{1}{4}$. Moreover the choice $C p(X)$ is empty
This example illustrates that when acyclicity fails, then it is possible for the choice to be empty.

To give an example where P is both acyclic on the interval, yet no choice exists, consider Figure 1.11. Define

$$
\phi_{P}(x)=\left(x, x+\frac{1}{2}\right) \text { if } x \leq \frac{1}{2} \text { and } \phi_{p}(x)=\left(\frac{1}{2}, x\right) \text { if } x>\frac{1}{2} .
$$

Fig. 1.11

$$
P \text { is still asymmetric, but we cannot construct a cycle. For example, if } \left.x=\frac{1}{4} \right\rvert\, 780
$$ then $y P x$ for $y \in\left(\frac{1}{4}, \frac{3}{4}\right)$ but if $z P y$ then $z>\frac{1}{4}$. Note however that $\phi P\left(\frac{1}{2}\right)=\left(\frac{1}{2}, 1\right)$ so $C_{P}(x)=\Phi$.

This example shows that Lemma 1.8 cannot be extended directly to the case that X is the interval. In Chapter 3 below we show that we have to impose "continuity" on P to obtain an analogous result to Lemma 1.8.

1.5 Social Choice and Arrow's Impossibility Theorem

The discussion following Lemma 1.8 showed that even the weak Pareto rule, Q, did not give rise to transitive indifference, and thus could not be represented by a "social utility function". However Q does give rise to transitive strict preference. We shall show that any rule that gives transitive strict preference must be "oligarchic" in the same way that Q is oligarchic. In other words any rule that gives transitive strict preference must be based on the Pareto (or unanimity) choice of some subset, say Θ of the society, M. Arrow's Theorem (1951) shows that if it is desired that indifference be transitive, then the rule must be "dictatorial", in the sense that it obeys the preference of a single individual.

1.5.1 Oligarchies and Filters

The literature on social choice theory is very extensive and technical, and this section will not attempt to address its many subtleties. The general idea to examine the possible rationality properties of a "social choice rule"

Here $S(X)$ stands for the set of strict preference relations on the set X and 801 $M=\{1, \ldots, i, \ldots\}$ is a society. Usually M is a finite set of cardinality m .802 Sometimes however M will be identified with the set of integers $\mathcal{Z} . S(X)^{M}$ is the set of strict preference profiles for this society. For example if $|M|=m$, then a profile $\pi=\left\{P_{1}, \ldots, P_{m},\right\}$ is a list of preferences for the members of the society. We use $A(X)^{M}, T(X)^{M}, O(X)^{M}$, for profiles whose individual preferences are acyclic, strict partial orders or weak orders, respectively. Social choice theory is based on binary comparisons. This means that if two profiles π^{1} and π^{2} agree on a pair of alternatives $\{x, y\}$, say, then the social preferences $\sigma\left(\pi^{l}\right)$ and $\sigma\left(\pi^{2}\right)$ also agree on $\{x, y\}$. A key idea is that of a decisive coalition. Say a subset $A \subset M$ is decisive under the rule σ iff for any profile $\pi=\left(P_{1}, \ldots, P_{m},\right)$ such that $x P_{i} y$ for all $i \in A$ then $x(\sigma(\pi)) y$ That is to say whenever A is decisive, and its members agree that x is preferred to y then the social preference chooses x over y. The set of decisive coalitions under the rule is written \mathcal{D}_{σ}, or more simply, \mathcal{D}. To illustrate this idea, suppose $M=\{1,2,3\}$ and \mathcal{D}_{σ}, comprises any coalition with at least two members. It is easy to construct a profile $\pi \in A(x)^{M}$ such that σ is not even acyclic. For example, choose a profile. π on the alternatives $\{x, y, z\}$ such that

$$
x P_{1} y P_{1} z, y P_{2} z P_{2} x, z P_{3} x P_{3} y .
$$

Since both 1 and 2 prefer y to z we must have $y \sigma(\pi) z$ But in the same way we find that $z \sigma(\pi) x$ and $x \sigma(\pi) y$, giving a social preference cycle on $\{x, y, z\}$.In general restricting the image of σ so that it lies in $A(X), T(X)$, and $O(X)$ imposes constraints on \mathcal{D}. We now examine these constraints.

Lemma 1.9. If $\sigma: T(X)^{M} \longrightarrow T(X)$, and M, A, B all belong to \mathcal{D}_{σ}, then $A \cap B \in$ \mathcal{D}_{σ}.

Outline of Proof. Partition M into the four sets $V_{1}=A \cap B, V_{2}=A \backslash B, V_{3}=$ $B \backslash A, V_{4}=M \backslash(A \cup B)$ and suppose that each individual has preferences on the alternatives $\{x, y, z\}$ as follows:
$i \in V_{l}: z P_{i} x P_{i} y$
$i \in V_{2}: x P_{i} y$, with preferences for z unspecified
$i \in V_{3}: z P_{i} x$, with preferences for y unspecified
$i \in V_{4}$: completely unspecified.
Now $A \backslash B=\{i \in A$, but $i \notin B\}$, so $V_{1} \cup V 2=A$. Since A is decisive and every individual in A prefers x to y we obtain $x \sigma(\pi) y$. In the same way $V_{1} \subset$ $V_{3}=B$, and B is decisive, so $z \sigma(\pi) x$ Since we require $\sigma(\pi)$ to be transitive, it is necessary that $z \sigma(\pi) y$. Since individual preferences are assumed to belong to $T(X)$, we require that $z P_{i} y$ for all $i \in V_{1}$. We have not however specified the preferences for the rest of the society. Thus $V 1=A \cap B$ must be decisive for $\{x, z\}$ in the sense that V_{1} can choose between x and z, independently of the rest of the society. But this must be true for every pair of alternatives. Thus $A \cap B \in D_{\sigma}$.
In general it could be possible for D_{σ} to be empty. However it is usual to assume 832
that σ satisfies the strict Panzto rule. That is to say for any x, y if $x P_{i} y$, for all $i \in M$ then $x \sigma(\pi) y$. This simply means that $M \in \mathcal{D}_{\sigma}$. Moreover, this implies that $\Phi i \in \mathcal{D}_{\sigma}$. To see this, suppose that $\Phi \in \mathcal{D}_{\sigma}$ and consider a profile with $x P_{i} y \forall i \in$ M. Since nobody prefers y to x, and the empty set is decisive, we obtain $y \sigma(\pi) x$. But by the Pareto rule, we have $x \sigma(\pi) y$. We assume however that $\sigma(r)$ is always a strict preference relation, and so $y \sigma(\pi) x$ cannot occur. Finally if $A \in \mathcal{D}_{\sigma}$ then any set B which contains A must also be decisive. Thus Lemma 1.9 can be interpreted in the following way.

Lemma 1.10. If $\sigma: T(x)^{M} \longrightarrow T(X)$ and σ satisfies the strict Pareto rule, then 84 \mathcal{D}_{σ} satisfies the following conditions:
DI. (monotonicity) $A \subset B$ and $A \in \mathcal{D}_{\sigma}$ implies $B \in \mathcal{D}_{\sigma}$.

D2. (identity) $A \in \mathcal{D}_{\sigma}$ and $\Phi \notin \mathcal{D}_{\sigma}$.
D3. (closed under intersection) $A, B \in \mathcal{D}_{\sigma}$ implies $A \cap B \in \mathcal{D}_{\sigma}$.
A collection \mathcal{D}. of subsets of M which satisfy $\mathbf{D 1}, \mathbf{D 2}$, and $\mathbf{D 3}$ is called a filter.
Note also that when M is finite, then \mathcal{D}_{σ}., must also be finite. By repeating 847 Lemma 1.9 for each pair of coalitions, we find that $\Theta=\cap A_{i}: A_{i} \in \mathcal{D}_{\sigma}$. must be non-empty and also decisive. This set Θ is usually called the oligarchy. In the case that σ is simply the strict Pareto rule, then the oligarchy is the whole society, M.

However, any rule that gives a transitive strict preference relation must be equivalent to the Pareto rule based on some oligarchy, possibly a strict subset of M.

For example, majority rule for the society $M=\{1,2,3\}$ defines the decisive coalitions $\{1,2\},\{1,3\},\{2,3\}$. These three coalitions contain no oligarchy. We can immediately infer that this rule cannot be transitive. In fact, as we have seen, it is not even acyclic. Below, we explore this further. If we require the rule always to satisfy the condition of negative transitivity then the oligarchy will consist of a single individual, in the case when M is finite.

Lemma 1.11. If $\sigma: T(x)^{M} \rightarrow O(X)$ and $M \in \mathcal{D}_{\sigma}$ and $A \subset M$ and $A \notin \mathcal{D}_{\sigma}$,then $M \backslash A \in \mathcal{D}_{\sigma}$

Proof. Since $A \notin \mathcal{D}_{\sigma}$, we can find a profile. π and a pair $\{x, y\}$ such that $y P_{i} x$ for all $i \in A$, yet not $(y \sigma(\pi) x)$. Let us write this latter condition as xRy , where R stands for weak social preference.

Suppose now there is an alternative z such that $x P_{i} z$ for all $i \in M \backslash A$, and that $y P_{i} z$ for all $i \in M$. By the Pareto condition $\left(M \in \mathcal{D}_{\sigma}\right)$ we obtain yPz (where P stands for $\sigma(\pi)$). By negative transitivity of $P, x R y$ and $y P z$ implies $x P z$ (see Lemma 1.7). However we have not specified the preferences of A on $\{x, z\}$. But we have shown that if the members of $M \backslash A$ prefer x to z, then so does the society. It then .follows that $M \backslash A$ must be decisive.

It follows from this lemma that if $\sigma: T(X)^{M} \rightarrow O(X)$ and $M \in \mathcal{D}_{\sigma}$, then 865 whenever $A \in \mathcal{D}_{\sigma}$ there is some proper subset B (such that $B \subset A$ yet $B \neq 866$ A) with $B \in \mathcal{D}_{\sigma}$. To see this consider any proper subset C of A with $C \notin \mathcal{D}_{\sigma} .{ }^{867}$
By Lemma 1.11, $M \backslash C \in \mathcal{D}_{\sigma}$. But since $O(X)$ belongs to $T(X)$, we can use theproperty D3 of Lemma 1.10 to infer that $A \cap(M \backslash C) \in \mathcal{D}_{\sigma}$. But $A \cap(M \backslash C)=869$$A \backslash C$, and since C is a proper subset of $A, A \backslash C \neq \Phi$. Hence $A \backslash C \in \mathcal{D}_{\sigma}$. In the 870case M has finite cardinality, we can repeat this argument to show that there mustbe some individual i such that $\{i\} \in \mathcal{D}_{\sigma}$. But then i is a dictator in the sense thatfor any x, y if.π is a profile with $x P_{i} y$ then $x \sigma(p i) y$.
873
Arrow's Impossibility Theorem. If a : $O(X)^{M} \rightarrow O(X)$ and $M \in \mathcal{D}_{\sigma}$ with $|M|$ 874
finite, then there is a dictator $\{i\}$, say, such that $\{i\} \in \mathcal{D}_{\sigma}$. 875
It is obvious that if \mathcal{D}_{σ}, is non-empty, then all the coalitions in \mathcal{D}_{σ}, must contain 876
the dictator $\{i\}$. In particular $\{i\}=\cap\left\{M_{i}: i \in \mathcal{D}_{\sigma}\right\}$ and $\{i\} \in \mathcal{D}_{\sigma}$. 877
A somewhat similar result holds when M is a "space" rather than a finite set. 878
In this case there need not be a dictator in M. However in this case, the filter \mathcal{D}_{σ} 879
defines an "invisible dictator". That is to say, we can imagine the coalitions in \mathcal{D}_{σ} 880
becoming smaller and smaller, so that they define the invisible dictator in the limit. 881
1.5.2 Acyclicity and The Collegium
As Lemma 1.8 demonstrated, if P is an acyclic preference relation on a finite set, 883
then the choice for P will be non-empty. Given Arrow's Theorem, it is therefore 884
useful to examine the properties of a social choice rule that are compatible with 885
acyclicity. To this end we introduce the notion of the Nakamura number for a rule, 886σ (Nakamura, 1979).
Definition 1.4. Let \mathcal{D} be a family of subsets of the finite set M. The collegium 888
$K(D)$ is the intersection

$$
\cap\left\{A_{i}: A_{i} \in \mathcal{D}\right\} .
$$

That is to say $K(\mathcal{D})$ is the largest set in M such that $K(\mathcal{D}) \subset A$ for all $A \in 2) . \mathcal{D}$
If $K(\mathcal{D})$ is empty then \mathcal{D} is said to be non-collegial. Otherwise \mathcal{D} is collegial.If σ 892
is a social choice rule, and \mathcal{D}_{σ}, its family of decisive coalitions, then $K(\sigma)=K\left(\mathcal{D}_{\sigma}\right)$ 893
is the collegium for σ. Again σ is called collegial or noncollegial depending on 894whether $K(\sigma)$ is non-empty or empty. The Nakamura number of a non-collegialfamily \mathcal{D} is written $k(\mathcal{D})$ and is the cardinality of the smallest non-collegial 896subfamily of \mathcal{D}. That is, there exists some subfamily \mathcal{D}^{\prime} of \mathcal{D} with $\left|\mathcal{D}^{\prime}\right|=k(\mathcal{D})$such that $K\left(\mathcal{D}^{\prime}\right)=\Phi$. Moreover if $\mathcal{D}^{\prime \prime}$ is a subfamily of \mathcal{D} with $\left|\mathcal{D}^{\prime \prime}\right| \leq k(\mathcal{D})-1$then $K\left(\mathcal{D}^{\prime \prime}\right) \neq \Phi$.
In the case \mathcal{D} is collegial define $k(\mathcal{D})=\infty$. For a social choice rule define $k(\sigma)=k\left(\mathcal{D}_{\supset}\right)$, where \mathcal{D}_{\supset} is the family of decisive coalitions for σ.Example 1.7. (i) To illustrate this definition, suppose \mathcal{D} consists of the fourcoalitions, $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ where $A_{1}=\{2,3,4\}, A_{2}=\{1,3,4\}, A_{3}=$$\{1,2,4,5\}$ and $A_{4}=\{1,2,3,5\}$. Of course \mathcal{D} will be monotonic, so supersetsof these coalitions will be decisive. It is evident that $A_{1} \cap A_{2} \cap A_{3}=\{4\}$ and 905882891904

```
\(K(\mathcal{D})=\Phi\). Thus \(k(\mathcal{D})=4\).
```

$K(\mathcal{D})=\Phi$. Thus $k(\mathcal{D})=4$.
so if $\mathcal{D}^{\prime}=\left\{A_{1}, A_{2}, A_{3}\right\}$ then $K \mathcal{D}^{\prime} \neq \Phi$. However $K\left(\mathcal{D}^{\prime} \cap A_{4}=\Phi\right.$ and so907

```
(ii) An especially interesting case is of a \(q\)-majority rule where each individual has 908 one vote, and any coalition with at least \(q\) voters (out of \(m\) ) is decisive. In this
case it is easy to show then that \(k(\sigma)=2+\left[\frac{q}{m-q}\right]\) where \(\left[\frac{q}{m-q}\right]\) is the greatest 910
integer strictly less than \(\frac{q}{m-q}\). In the case that \(m=4\) and \(q=3\), then we find911that \(\left[\frac{3}{1}\right]=2\), so \(k(\sigma)=4\).

On the other hand for all other simple majority rules where \(m=2 s+1\) or \(2 s\) and \(q=s+1\) (and \(s\) is integer) then
\[
\left[\frac{q}{m-q}\right]=\left[\frac{s+1}{s}\right] \text { or }\left[\frac{s+1}{s-1}\right] .
\]
depending on whether \(m\) is odd or even. In both cases \(\left[\frac{q}{m-q}\right]=1\). Thus \(k(\sigma)=\) 3 for any simple majority rule with \(m \neq 4\).
(iii) Finally, observe that for any simple majoritarian rule, if \(M_{1}, M_{2}\) both belong to \(\mathcal{D}\), then \(A_{1} \cap A_{2} \neq \Phi\). So in general, any non-collegial subfamily of \(\mathcal{D}\) must include at least three coalitions. Consequently any majoritarian rule, \(\sigma\), has \(k(\sigma) \geq 3\).
The Nakamura number allows us to construct social preference cycles.
Nakarnura Lemma. Suppose that \(\sigma\) is a non-collegial voting rule, with Nakamura923
number \(k(\sigma)=k\). Then there exists an acyclic profile \(\pi=\left(P_{1}, \ldots, P_{n},\right)\) for the ..... 924society \(M\), on a set \(X=\left(x_{l}, \ldots, x_{k}\right)\) of cardinality \(k\), such that \(\sigma(\pi)\) is cyclic on 925\(W\), and the choice of \(\sigma(\pi)\) is empty.926

Proof. We wish to construct a cycle by considering \(k\) different decisive coalitions,
\(A_{1}, \ldots, A_{k}\) and assigning preferences to the members of each coalition such that
\[
\begin{aligned}
& x_{i} P_{i} x_{2} \text { for all } i \in A_{1} \\
& \vdots \\
& x_{k-1} P_{i} x_{k} \text { for all } i \in A_{k}-1 \\
& x_{k} P_{i} x_{1} \text { for all } i \in A_{k}
\end{aligned}
\]

We now construct such a profile, \(\pi\). Let \(\mathcal{D}_{k}=\left\{A_{1}, \ldots, A_{k-l}\right\}\). By the definitionof the Nakamura number, this must be collegial. Hence there exists some individual\(k\), say, with \(k \in A_{l} \cap \ldots \cap A_{k}-l\). We can assign \(k\) the acyclic preference profile931 \(x_{1} P_{k} x_{2} P_{k} \ldots P_{k} x_{k}\).

In the same way, for each subfamily \(\mathcal{D}_{j}=\left\{A, \ldots, A j-1, A j+1, \ldots, A_{k}\right\}\) 93з there exists a collegium containing individual \(j\), to whom we assign the preference
\[
x_{j+1} P_{j} x_{j+2} \ldots x_{k} P_{j} x_{1} \ldots x_{j} P_{j} x_{j} .
\]

We may continue this process to assign acyclic preferences to each member of the various collegia of subfamilies of \(\mathcal{D}\),so as to give the required cyclic social preference.

Lemma 1.12. A necessary condition for a social choice rule a to be acyclic on the 936 finite set \(X\) of cardinality at least \(m=|M|\), for each acyclic profile \(\pi\) on \(X\), is that \(\sigma\) be collegial.

Proof. Proof. Suppose \(\sigma\) is not collegial. It is easy to show that the Nakamura number \(k(\sigma)\) will not exceed \(m\). By the Nakamura Theorem there is an acyclic profile \(\pi\) on a set \(X\) of cardinality \(m\), such that \(\sigma(\pi)\) is cyclic on \(X\). Thus acyclity implies that \(\sigma\) must be collegial.

Note that this lemma emphasizes the size of the set of alternatives. It is worth observing here that in the previous proofs of Arrow's Theorem, the cardinality of the set of alternatives was implicitly assumed to be at least 3 .

These techniques using the Nakamura number can be used to show that a simple social rule will be acyclic whenever it is collegial. Say a social choice rule is simple iff whenever \(x_{\sigma}(\pi) y\) for the profile \(\pi\), then \(x P_{i} y\) for all \(i\) in some coalition that is decisive for \(\sigma\).

Note that a social choice rule need not, in general, be simple. If \(\sigma\) is simple then all the information necessary to analyse the rule is contained in \(\mathcal{D} \sigma\).

Lemma 1.13. . Let \(\sigma\) be a simple choice rule on a finite set \(X\) :
(i) If \(\sigma\) is dictatorial, then \(\sigma(\pi) \subset O(X)\) for all \(\pi \in O(X)^{M}\)
(ii) If \(\sigma\) is oligarchic, then \(\sigma(\pi) \subset T(X)\) for all \(\pi \in T(X)^{M}\)
(iii) If \(\sigma\) is collegial, then \(\sigma(\pi) \subset A(X)\) for all \(\pi \in A(X)^{M}\).

Proof. (i) If \(i\) is a dictator, then \(x I_{i} y\) implies that \(x\) and \(y\) are socially indifferent. Because \(P_{i}\) belongs to \(O(X)\) so must \(\sigma(\pi)\).
(ii) In the same way, if \(\Theta\) is the oligarchy and \(x \sigma(\pi) y\) then \(x P_{i} y\) for all \(i\) in \(\Theta\). Thus \(x \sigma(\pi)\) must be transitive.
(iii) If there is a cycle \(x_{l} \sigma(\pi) \ldots, x_{k} \sigma(\pi) x_{l}\) then each of these social preferences must be supported by a decisive coalition. Since the collegium is nonempty, there is some individual, \(i\), say, who has such a cyclic preference. This contradicts the assumption that \(\pi \in A(x)^{M}\).

Another way of expressing part (iii) of this lemma is to introduce the idea of a prefilter. Say \(\mathcal{D}\) is a prefilter if and only if it satisfies Dl (monotonicity) and D2 (identity) introduced earlier, and also non-empty intersection \((\operatorname{soK}(\mathcal{D}) \neq \Phi)\). Clearly if \(\sigma\) is simple, and \(\mathcal{D} \sigma\), is a prefilter, then \(\sigma\) is acyclic and consistent with the Pareto rule.

In Chapter 3 we shall further develop the notion of social choice using the notion of the Nakamura number, in the situation where \(X\) has a geometric structure.
References ..... 963
The first version of the impossibility theorem can be found in: ..... 964
Arrow, K. J. (1951) Social Choice and Individual Values. Wiley: New York. ..... 965The ideas of the filter and Nakamura number are in:966
Kirman, A. P. and D. Sondermann (1972) "Arrow's Impossibility Theorem, Many Agents and ..... 967Invisible Dictators,"Journal of Economic Theory 5: 267-278.Nakamura, K. (1979) "The Vetoers in a Simple Game with Ordinal Preferences," International969
Journal of Game Theory 8: 55-61. ..... 970

\section*{Chapter 2 \\ Linear Spaces and Transformations}

\subsection*{2.1 Vector Spaces}

We showed in Section 1.3 that when \(\mathcal{F}\) was a field, the \(n\)-fold product set \(\mathcal{F}^{n}\) had an 4 additional operation defined on it, which was induced from addition in \(\mathcal{F}\), so that 5 \(\left(\mathcal{F}^{n},+\right)\) became an abelian group with zero \(\underline{0}\). Moreover we were able to define a \(\sigma\) product \(\cdot: \mathcal{F} \times \mathcal{F}^{n} \rightarrow \mathcal{F}^{n}\) which takes \((\alpha, x)\) to a new element of \(\mathcal{F}^{n}\) called \((\alpha x)\). 7 Elements of \(\mathcal{F}^{n}\) are known as vectors, and elements of \(\mathcal{F}\) as scalars. The properties 8 that we discovered in \(\mathcal{F}^{n}\) characterise a vector space. A vector space is also known 9 as a linear space.

Definition 2.1. A vector space \((V,+)\) is an abelian additive group with zero \(\underline{0}\), together with a field \((\mathcal{F},+, \cdot)\) with zero 0 and identity 1 . An element of \(V\) is called a vector and an element of \(\mathcal{F}\) a scalar. Moreover for any \(\alpha \in \mathcal{F}, v \in V\) there is a scalar multiplication \((\alpha, v) \rightarrow \alpha v \in V\) which satisfies the following properties:
\[
\text { V1. } \alpha\left(v_{1}+v_{2}\right)=\alpha v_{1}+\alpha v_{2}, \text { for any } \alpha \in \mathcal{F}, v_{1}, v_{2} \in V .
\]
\[
\text { V2. }(\alpha+\beta) v=\alpha v+\beta v, \quad \text { for any } \alpha, \beta \in \mathcal{F}, v \in V \text {. }
\]
\[
\text { V3. }(\alpha \beta) v=\alpha(\beta v), \quad \text { for any } \alpha, \beta \in \mathcal{F}, v \in V \text {. }
\]
\[
\text { V4. } 1 \cdot v=v, \quad \text { for } 1 \in \mathcal{F} \text {, and for any } v \in V \text {. }
\]

Call \(V\) a vector space over the field \(\mathcal{F}\). From the previous discussion the set \(\mathfrak{R}^{n}\) becomes an abelian group ( \(\Re^{n},+\) ) under addition. We shall frequently write \(x=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right)\) for a vector in \(\Re^{n}\), where \(x_{1}, \ldots, x_{n}\) are called the coordinates of \(x\).
Vector addition is then defined by \(x+y=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right)+\left(\begin{array}{c}y_{1} \\ \vdots \\ y_{n}\end{array}\right)=\left(\begin{array}{c}x_{1}+y_{1} \\ \vdots \\ x_{n}+y_{n}\end{array}\right)\).
A vector space over \(\mathrm{ff} \mathfrak{R}\) is called a real vector space.
9

Fig. 2.1


For example \(\left(\mathfrak{Z}_{2},+, \cdot\right)\) is a field and so \(\left(\mathfrak{Z}_{2}\right)^{n}\) is a vector space over the field \(\mathfrak{Z}_{2}\). It may not be possible to represent each vector in a vector space by a list of coordinates. For example, consider the set of all functions with domain \(X\) and image in \(\mathfrak{R}\). Call this set \(\mathfrak{R}^{X}\). If \(f, g \in \mathfrak{R}^{X}\), define \(f+g\) to be that function which maps \(x \in X\) to \(f(x)+g(x)\). Clearly there is a zero function \(\underline{0}\) defined by \(\underline{0}(x)=\underline{0}\), and each \(f\) has an inverse \((-f)\) defined by \((-f)(x)=-(f(x))\). Finally for \(\alpha \in\) \(\mathfrak{R}, f \in \mathfrak{R}^{X}\), define \(\alpha f: X \rightarrow \mathfrak{R}\) by \((\alpha f)(x)=\alpha(f(x))\). Thus \(\mathfrak{R}^{X}\) is a vector space over \(\mathfrak{R}\).

Definition 2.2. Let \((V,+)\) be a vector space over a field, \(\mathcal{F}\). A subset \(V^{\prime}\) of \(V\) is called a vector subspace of \(V\) if and only if
1. \(v_{1}, v_{2} \in V^{\prime} \Rightarrow v_{1}+v_{2} \in V^{\prime}\), and

Lemma 2.1. If \((V,+)\) is a vector space with zero \(\underline{0}\) and \(V^{\prime}\) is a vector subspace, then, for each \(v \in V^{\prime}\), the inverse \((-v) \in V^{\prime}\), and \(\underline{0} \in V^{\prime}\), so \(\left(V^{\prime},+\right)\) is a subgroup of \((V,+)\).

Proof. Suppose \(v \in V^{\prime}\). Since \(\mathcal{F}\) is a field, there is an identity 1 , with additive inverse -1 . But by \(\mathbf{V 2},(1-1) v=1 \cdot v+(-1) v=0 \cdot v\), since \(1-1=0\). Now \((1+0) v=1 \cdot v+0 \cdot v\), and so \(0 \cdot v=\underline{0}\). Thus \((-1) v=(-v)\). Since \(V^{\prime}\) is a vector subspace, \((-1) v \in V^{\prime}\), and so \((-v) \in V^{\prime}\). But then \(v+(-v)=\underline{0}\), and so \(0 \in V^{\prime}\).

From now on we shall simply write \(V\) for a vector space, and refer to the field only on occasion.

Definition 2.3. Let \(V^{\prime}=\left\{v_{1}, \ldots, v_{r}\right\}\) be a set of vectors in the vector space \(V\). A \({ }_{3}\) vector \(v\) is called a linear combination of the set \(V^{\prime}\) iff \(v\) can be written in the form
\[
v=\sum_{i=1}^{r} \lambda_{i} v_{i}
\]
where each \(\lambda_{i}, i=1, \ldots, r\) belongs to the field \(\mathcal{F}\). The span of \(V^{\prime}\), written 41 Span \(\left(V^{\prime}\right)\) is the set of vectors which are linear combinations of the set \(V^{\prime}\). If 42 \(V^{\prime \prime}=\operatorname{Span}\left(V^{\prime}\right)\), then \(V^{\prime}\) is said to span \(V^{\prime \prime}\).

For example, suppose \(V^{\prime}=\left\{\binom{1}{2}\binom{2}{1}\right\}\).
Since we can solve the equation
\[
\binom{x}{y}=\alpha\binom{1}{2}+\beta\binom{2}{1}
\]
for any \((x, y) \in \mathfrak{R}^{2}\), by setting \(\alpha=\frac{1}{3}(2 y-x)\) and \(\beta=\frac{1}{3}(2 x-y)\), it is clear that 47 \(V^{\prime}\) is a span for \(\mathfrak{R}^{2}\).

Lemma 2.2. If \(V^{\prime}\) is a finite set of vectors in the vector space, \(V\), then \(\operatorname{Span}\left(V^{\prime}\right)\) is 49 a vector subspace of \(V\).

Proof. We seek to show that for any \(\alpha, \beta \in \mathcal{F}\) and any \(u, w \in \operatorname{Span}\left(V^{\prime}\right)\), then 51 \(\alpha u+\beta w \in \operatorname{Span}\left(V^{\prime}\right)\). By definition, if \(V^{\prime}=\left\{v_{1}, \ldots, v_{r}\right\}\), then \(u=\sum_{i=1}^{r} \eta_{i} v_{i}{ }_{52}\) and \(w=\sum_{i=1}^{r} \mu_{i} v_{i}\), where \(\eta_{i}, \mu_{i} \in \mathcal{F}\) for \(i=1, \ldots, r\). But then \(\alpha u+\beta w=53\) \(\alpha \sum_{i=1}^{r} \eta_{i} v_{i}+\beta \sum_{i=1}^{r} \mu_{i} v_{i}=\sum_{i=1}^{r} \lambda_{i} v_{i}\), where \(\lambda_{i}=\alpha \eta_{i}+\beta \mu_{i} \in \mathcal{F}\), for 54 \(i=1, \ldots, r\). Thus \(\alpha u+\beta w \in \operatorname{Span}\left(V^{\prime}\right)\).

Note that, by this lemma, the zero vector \(\underline{0}\) belongs to \(\operatorname{Span}\left(V^{\prime}\right)\).
Definition 2.4. Let \(V^{\prime}=\left\{v_{1}, \ldots, v_{r}\right\}\) be a set of vectors in \(V . V^{\prime}\) is called a frame 56 iff \(\sum_{i=1}^{r} \alpha_{i} v_{i}=\underline{0}\) implies that \(\alpha_{i}=0\) for \(i=1, \ldots, r\). (Here each \(\alpha_{i}\) belongs to 57 the field \(\mathcal{F}\) ). In this case the set \(V^{\prime}\) is called a linearly independent set. If \(V^{\prime}\) is not 58 a frame, the vectors in \(V^{\prime}\) are said to be linearly dependent. Say a vector is linearly dependent on \(V^{\prime}=\left\{v_{1}, \ldots, v_{r}\right\}\) iff \(v \in \operatorname{Span}\left(V^{\prime}\right)\).

Note that if \(V^{\prime}\) is a frame, then
1. \(\underline{0} \notin V^{\prime}\) since \(\alpha \underline{0}=\underline{0}\) for every non-zero \(\alpha \in F\).
2. If \(v \in V^{\prime}\) then \((-v) \notin V^{\prime}\), otherwise \(1 \cdot v+1(-v)=\underline{0}\) would belong to \(V^{\prime}\), contradicting (1).
Lemma 2.3. \(1 . V^{\prime}\) is not a frame iff there is some vector \(v \in V^{\prime}\) which is linearly 65 dependent on \(V^{\prime}\{v\}\).
2. If \(V^{\prime}\) is a frame, then any subset of \(V^{\prime}\) is a frame.
3. If \(V^{\prime}\) spans \(V^{\prime \prime}\), but \(V^{\prime}\) is not a frame, then there exists some vector \(v \in V^{\prime}\) such 68 that \(V^{\prime \prime \prime}=V^{\prime}\{v\}\) spans \(V^{\prime \prime}\).

Proof. Let \(V^{\prime}=\left\{v_{1}, \ldots, v_{r}\right\}\) be the set of vectors in the vector space \(V\).
1. Suppose \(V^{\prime}\) is not a frame. Then there exists an equation \(\sum_{j=1}^{r} \alpha_{j} v_{j}=0\), where, for at least one \(k\), it is the case that \(\alpha_{k} \neq 0\). But then \(v_{k}=-\frac{1}{\alpha_{k}}\left(\sum_{j \neq k} \alpha_{j} v_{j}\right)\). 72 Let \(v_{k}=v\). Then \(v\) is linearly dependent on \(V^{\prime}\{v\}\). On the other hand suppose 73 that \(v_{1}\), say, is linearly dependent on \(\left\{v_{2}, \ldots, v_{r}\right\}\). Then \(v_{1}=\sum_{j=2}^{r} \alpha_{j} v_{j}\), and 74 so \(\underline{0}=-v_{1}+\sum_{j=2}^{r} \alpha_{j} v_{j}=\sum_{j=1}^{r} \alpha_{j} v_{j}\) where \(\alpha_{1}=-1\). Since \(\alpha_{1} \neq 0, V^{\prime}{ }_{75}\) cannot be a frame.
2. Suppose \(V^{\prime \prime}\) is a subset of \(V^{\prime}\), but that \(V^{\prime \prime}\) is not a frame. For convenience let 77 \(V^{\prime \prime}=\left\{v-1, \ldots, v_{k}\right\}\) where \(k \leq r\). Then there is a non-zero solution
\[
\underline{0} \neq \sum_{j=1}^{k} \alpha_{j} v_{j} .
\]

Since \(V^{\prime \prime}\) is a subset of \(V^{\prime}\), this implies that \(V^{\prime}\) cannot be a frame. Thus if \(V^{\prime}\) is 80 a frame, so is any subset \(V^{\prime \prime}\).
3. Suppose that \(V^{\prime}\) is not a frame, but that it spans \(V^{\prime \prime}\). By part (1), there exists a 82 vector \(v_{1}\), say, in \(V^{\prime}\) such that \(v_{1}\) belongs to Span \(\left(V^{\prime}\left\{v_{1}\right\}\right)\). 83 Thus \(v_{1}=\sum_{j=2}^{r} \alpha_{j} v_{j}\). Since \(V^{\prime}\) is a span for \(V^{\prime \prime}\), any vector \(v\) in \(V^{\prime \prime}\) can be written
\[
\begin{aligned}
v & =\sum_{j=1}^{r} \beta_{j} v_{j} \\
& =\beta_{1}\left(\sum_{j=2}^{r} \alpha_{j} v_{j}\right)+\sum_{j=2}^{r} \beta_{j} v_{j} .
\end{aligned}
\]

Thus \(v\) is a linear combination of \(V^{\prime}\left\{v_{1}\right\}\) and so \(V^{\prime \prime}=\operatorname{Span}\left(V^{\prime}\left\{v_{1}\right\}\right)\).
Let \(V^{\prime \prime \prime}=V^{\prime}\left\{v_{1}\right\}\) to complete the proof. Q. E. D.
Definition 2.5. A basis for a vector space \(V\) is a frame \(V^{\prime}\) which spans \(V\).
For example, we previously considered \(V^{\prime}=\left\{\binom{1}{2},\binom{2}{1}\right\}\) and showed that any vector in \(\mathfrak{R}^{2}\) could be written as
\[
\binom{x}{y}=\left(\frac{2 y-y}{3}\right)\binom{2}{1}=\lambda_{1}\binom{1}{2}+\lambda_{2}\binom{2}{1} .
\]

Thus \(V^{\prime}\) is a span for \(\mathfrak{R}^{2}\). Moreover if \((x, y)=(0, O)\) then \(\lambda_{1}=\lambda_{2}=0\) and so \(V^{\prime}\) is a frame. Hence \(V^{\prime}\) is a basis for \(\mathfrak{R}^{2}\). If \(V^{\prime}=\left\{v_{1}, \ldots, v_{n}\right\}\) is a basis for a vector space \(V\) then any vector \(v \in V\) can be written
\[
v=\sum_{j=1}^{n} \alpha_{j} v_{j}
\]
and the elements \(\left(\alpha_{1}, \ldots, \alpha_{n}\right)\) are known as the coordinates of the vector \(v\), with respect to the basis \(V^{\prime}\).

For example the natural basis for \(\mathfrak{R}^{n}\) is the set \(V^{\prime}=\left\{e_{1}, \ldots, e_{n}\right\}\) where \(e_{i}=(0, \ldots, 1, \ldots, 0\}\) with a 1 in the \(i^{\text {th }}\) position.

Lemma 2.4. \(\left\{e_{1}, \ldots, e_{n}\right\}\) is a basis for \(\mathfrak{R}^{n}\).
Proof. We can write any vector \(x\) in \(\mathfrak{R}^{n}\) as \(\left\{x_{1}, \ldots x_{n}\right\}\). Clearly
\[
x=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)=x_{1}\left(\begin{array}{l}
1 \\
0 \\
.
\end{array}\right)+\ldots x_{n}\left(\begin{array}{c}
0 \\
\vdots \\
1
\end{array}\right) .
\]

If \(x=0\) then \(x_{1}=\ldots=x_{n}=0\) and so \(\left\{e_{1}, \ldots, e_{n}\right\}\) is a frame, as well as a span, and thus a basis for \(\mathfrak{R}^{n}\).

However a single vector \(x\) will have different coordinates depending on the basis chosen. For example the vector \((x, y)\) has coordinates \((x, y)\) in the basis \(\left\{e_{1}, e_{2}\right\}\) but coordinates \(\left(\frac{2 y-x}{3}, \frac{2 x-y}{3}\right)\) with respect to the basis \(\left\{\binom{1}{2},\binom{2}{1}\right\}\).

Once the basis is chosen, the coordinates of any vector with respect to that basis are unique.

Lemma 2.5. Suppose \(V^{\prime}=\left\{v_{1}, \ldots, v_{n}\right\}\) is a basis for \(V\).
Let \(v=\sum_{i=1}^{n} \alpha_{i} v_{i}\). Then the coordinates \(\left(\alpha_{1}, \ldots, \alpha_{n}\right)\), with respect to the basis, are unique.

Proof. If the coordinates were not unique then it would be possible to write \(v=\) \(\sum_{i=1}^{n} \beta_{i} v_{i}=\sum_{i=1}^{n} \alpha_{i} v_{i}\) with \(\beta_{i} \neq \alpha_{i}\) for some \(i\).

But \(\underline{0}=v-v=\sum_{i=1}^{n} \alpha_{i} v_{i}-\sum_{i=1}^{n} \beta_{i} v_{i}=\sum_{i=1}^{n}\left(\alpha_{i}-\beta_{i}\right) v_{i}\).
Since \(V^{\prime}\) is a frame, \(\alpha_{i}-\beta_{i}=0\) for \(i=1, \ldots, n\). Thus \(\alpha_{i}=\beta_{i}\) for all \(i\), and so the coordinates are unique.

Note in particular that with respect to any basis \(\left\{v_{1}, \ldots, v_{n}\right\}\) for \(V\), the unique zero vector \(\underline{0}\) always has coordinates \((0, \ldots, 0)\).

Definition 2.6. A space \(V\) is finitely generated iff there exists a span \(V^{\prime}\), for \(V\), which has a finite number of elements.

Lemma 2.6. If \(V\) is a finitely generated vector space, then it has a basis with a finite number of elements.

Proof. Since \(V\) is finitely generated, there is a finite set \(V_{1}=\left\{v_{1}, \ldots, v_{n}\right\}\) which
spans \(V\). If \(V_{1}\) is a frame, then it is a basis. If \(V_{1}\) is linearly dependent, then by Lemma 2.3(3) there is a vector \(v \in V_{1}\), such that \(\operatorname{Span}\left(V_{2}\right)=V\), where \(V_{2}=\) \(V_{1}\{v\}\). Again if \(V_{2}\) is a frame, then it is a basis. If there were no subset \(V_{r}=\) \(\left\{v_{1}, \ldots, V_{n-r+1}\right\}\) of \(V_{1}\) which was a frame, then \(V_{1}\) would have to be the empty set, implying that \(V\) was an empty set. But this contradicts \(\underline{0} \in V . Q . E . D\).

Lemma 2.7. If \(V\) is a finitely generated vector space, and \(V_{1}\) is a frame, then there

Proof. Let \(V_{1}=\left\{v_{1}, \ldots, v_{r}\right\}\). If \(\operatorname{Span}\left(V_{1}\right)=V\) then \(V_{1}\) is a basis. So suppose that

If \(\alpha_{r+1}=0\), then the linear independence of \(V_{1}\) implies that \(\alpha_{i}=0\), for \(i=\)
\[
v_{r+1}=-\frac{1}{\alpha_{r+1}}\left(\sum_{i=1}^{r} \alpha_{i} v_{i}\right) .
\]
But this implies that \(v_{r+1}\) belongs to \(\operatorname{Span}\left(V_{1}\right)\) and therefore that \(V=\operatorname{Span}\left(V_{1}\right)\). Thus \(V_{2}\) is a frame. If \(V_{2}\) is a span for \(V\), then it is a basis. If \(V_{2}\) is not a span, reiterate this process. Since \(V\) is finitely generated, there must be some frame \(V_{n-r+1}=\) \(\left\{v_{1}, \ldots, v_{r}, v_{r+1}, \ldots, v_{n}\right\}\) which is a span, and thus a basis for \(V . Q . E . D\).
These two lemmas show that if \(V\) is a finitely generated vector space, and \(\left\{v_{1}, \ldots, v_{m}\right\}\) is a span then some subset \(\left\{v_{1}, \ldots, v_{n}\right\}\), with \(n \leq m\), is a basis. A basis is a minimal span.
On the other hand if \(X=\left\{v_{1}, \ldots, v_{r}\right\}\) is a frame, but not a span, then elements may be added to \(X\) in such a way as to preserve linear independence, until this "superset" of \(X\) becomes a basis. Consequently a basis is a maximal frame. These two results can be combined into one theorem.
Exchange Theorem. Suppose that \(V\) is a finitely generated vector space. Let 144 \(X=\left\{x_{1}, \ldots, x_{n}\right\}\) be a frame and \(Y=\left\{y_{1}, \ldots, y_{n}\right\}\) a span. Then there is some subset \(Y^{\prime}\) of \(Y\) such that \(X \cup Y^{\prime}\) is a basis for \(V\).
Proof. By induction, let \(X_{S}=\left\{x_{1}, \ldots, x_{s}\right\}\), for each \(s=1, \ldots, n\), and let \(X_{0}=\phi\).
We know already from Lemma 2.6 that there is some subset \(Y_{0}\) of \(Y\) such that \(X_{0} \cup Y_{0}\) is a basis for \(V\). Suppose for some \(s<m\), there is a subset \(Y_{s}\) of \(Y\) such that \(X_{s} \cup Y_{s}\) is a basis.
Let \(Y_{s}=\left\{y_{1}, \ldots, y_{t}\right\}\). Now \(x_{s+1} \notin \operatorname{Span}\left(X_{s} \cup Y_{s}\right)\) since \(X_{s} \cup Y_{s}\) is a basis. Thus \(x_{s+1}=\sum_{1}^{s} \alpha_{1} x_{1}+\sum_{1}^{t} \beta_{i} y_{i}\). But \(X_{s+1}=\left\{x_{1}, \ldots, x_{s+1}\right\}\) is a frame, since it is a subset of \(X\).
Thus at least one \(\beta_{j} \neq 0\). Let \(Y_{s+1}=Y_{s}\left\{y_{j}\right\}\), so \(Y_{j} \notin \operatorname{Span}\left(X_{s+1} \cup Y_{s+1}\right)\) and so \(X_{s+1} \cup Y_{s+1}=\left\{x_{1}, \ldots, x_{s+1}\right\} \cup\left\{y_{1}, \ldots, y_{j-1}, y_{j+1}, \ldots, y_{t}\right\}\) is a basis for \(V\).
Thus if there is some subset \(Y_{s}\) of \(Y\) such that \(X_{s} \cup Y_{s}\) is a basis, there is a subset \(Y_{s+1}\) of \(Y\) such that \(X_{s+1} \cup Y_{s+1}\) is a basis.
By induction, there is a subset \(Y_{m}=Y^{\prime}\) of \(Y\) such that \(X_{m} \cup Y_{m}=X \cup Y^{\prime}\) is a basis.
Corollary 2.8. If \(X=\left\{x_{1}, \ldots, x_{m}\right\}\) is a frame in a vector space \(V\), and \(Y=\) \(\left\{y_{1}, \ldots, y_{n}\right\}\) is a span for \(V\), then \(m \leq n\).
Lemma 2.9. If \(V\) is a finitely generated vector space, then any two bases have the same number of vectors, where this number is called the dimension of \(V\), and written \(\operatorname{dim}(V)\).
Proof. Let \(X, Y\) be two bases with \(m, n\) number of elements. Consider \(X\) as a frame and \(Y\) as a span. Thus \(m \leq n\). However \(Y\) is also a frame and \(X\) a span. Thus \(n \leq m\). Hence \(m=n . Q . E . D\).
If \(V^{\prime}\) is a vector subspace of a finitely generated vector space \(V\), then any basis for \(V^{\prime}\) can be extended to give a basis for \(V\). To see this, there must exist some finite set \(V^{\prime \prime}=\left\{v_{1}, \ldots, v_{r}\right\}\) of vectors all belonging to \(V^{\prime}\) such that \(\operatorname{Span}\left(V^{\prime \prime}\right)=V^{\prime}\). Otherwise \(V\) could not be finitely generated. As before eliminate members of \(V^{\prime \prime}\) until a frame is obtained. This gives a basis for \(V^{\prime}\). Clearly \(\operatorname{dim}\left(V^{\prime}\right) \leq \operatorname{dim}(V)\).



\[
\begin{aligned}
T(x) & =T\left(\sum_{j=1}^{n} x_{j} v_{j}\right) \\
& =\sum_{j=1}^{n} x_{j} T\left(v_{j}\right) .
\end{aligned}
\]

Since each \(T\left(v_{j}\right)\) lies in \(\mathfrak{R}^{m}\) we can write \(T\left(v_{j}\right)=\sum_{i=1}^{m} a_{i j} u_{i}\), where \(\left(a_{1 j}, a_{2 j}, \ldots, a_{m j}\right)\) are the coordinates of \(T\left(v_{j}\right)\) with respect to the basis \(U\) for \(\Re^{m}\).

Thus \(T(x)=\sum_{j=1}^{n} x_{j} \sum_{i=1}^{m} a_{i j} u_{i}=\sum_{i=1}^{m} y_{i} u_{i}\) where the \(i^{\text {th }}\) coordinate, \(y_{i}\), of \(T(x)\) is equal to \(\sum_{j=1}^{n} a_{i j} x_{j}\).

We obtain a set of linear equations:
\[
\begin{aligned}
& y_{1}=\mathrm{a}_{11} x_{1}+\mathrm{a}_{12} x_{2}+\ldots \mathrm{a}_{1 j} x_{j}+\ldots \mathrm{a}_{1 n} x_{n} \\
& \vdots \\
& \vdots \\
& y_{i}=\mathrm{a}_{i 1} x_{1}+\mathrm{a}_{i 2} x_{2}+\ldots \mathrm{a}_{i j} x_{j}+\ldots \mathrm{a}_{i n} x_{n} \\
& \vdots \\
& \vdots \\
& y_{m}=\mathrm{a}_{m 1} x_{1}+\mathrm{a}_{m 2} x_{2}+\ldots \mathrm{a}_{m j} x_{j}+\ldots \mathrm{a}_{m n} x_{n}
\end{aligned}
\]
\[
\begin{aligned}
& \text { row } i\left(\begin{array}{lll}
a_{11 \ldots} & a_{i j \ldots} & a_{1 n} \\
\vdots & & \\
a_{i 1} & a_{i j} & a_{i n} \\
\vdots & & \\
a_{m 1 \ldots} & a_{m j} \ldots & a_{m n}
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
\vdots \\
x_{j} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{l}
y_{1} \\
\vdots \\
y_{i} \\
\vdots \\
y_{m}
\end{array}\right) . \\
& j^{\text {th }} \text { column }
\end{aligned}
\]
or as \(M(T) x=y\), where \(M(T)\) is the \(n \times m\) array whose \(i^{t h}\) row is \(\left(a_{i 1}, \ldots, a_{i n}\right)\)

Note that the operation of \(M(T)\) on \(x\) is as follows: to obtain the \(i^{\text {th }}\) coordinate \(y_{i}\), take the \(i^{\text {th }}\) row vector \(\left(a_{11}, \ldots, a_{1 n}\right)\) and form the scalar product of this with the column vector \(\left(x_{1}, \ldots, x_{n}\right)\), where this scalar product is defined to be \(\sum_{j=1}^{n} a_{i j} x_{j}\).

The coefficients of \(T\left(v_{j}\right)\) w.r.t. the basis \(\left(u_{1}, \ldots, u_{m}\right)\) are \(\left(a_{1 j}, \ldots, a_{m j}\right)\). These turn up as the \(j^{t h}\) column of the matrix. Thus we could write the matrix as
\[
M(T)=\left(T\left(v_{1}\right) \ldots T\left(v_{j}\right) \ldots T\left(v_{n}\right)\right)
\]
where \(T\left(v_{j}\right)\) is the column of coordinates in \(\mathfrak{R}^{m}\). Suppose now that \(W=\)
Then to represent \(S\) as a matrix with respect to the two sets of bases, \(U\) and \(W\), for each \(i=1, \ldots, m\), we need to know \(\square\)
\(\qquad\)
\[
S\left(u_{i}\right)=\sum_{k=1}^{p} b_{k i} w_{k}
\]
\[
\begin{aligned}
(S \circ T)\left(\alpha v_{1}+\beta v_{2}\right) & =S\left[T\left(\alpha v_{1}+\beta v_{2}\right)\right] \\
& =S\left(\alpha T\left(v_{1}\right)+\beta T\left(v_{2}\right)\right) \text { since } T \text { is linear } \\
& =\alpha S\left(T\left(v_{1}\right)\right)+\beta S\left(T\left(v_{2}\right)\right) \text { since } S \text { is linear } \\
& =\alpha(S \circ T)\left(v_{1}\right)+\beta(S \circ T)\left(v_{2}\right) .
\end{aligned}
\]

Thus \(S \circ T\) is linear.
By the previous analysis, \((S \circ T)\) can be represented by an \((n \times p)\) matrix whose \(j^{\text {th }}\) column is \((S \circ T)\left(v_{j}\right)\). Thus
\[
\begin{aligned}
(S \circ T)\left(v_{j}\right) & =S\left(\sum_{i=1}^{m} a_{i j} u_{i}\right) \\
& =\sum_{i=1}^{m} a_{i j} S\left(u_{i}\right) \\
& =\sum_{i=1}^{m} a_{i j} \sum_{k=1}^{p} b_{k i} w_{k} \\
& =\sum_{k=1}^{p}\left(\sum_{i=1}^{m} a_{i j} b_{k i}\right) w_{k}
\end{aligned}
\]

Thus the \(k^{t h}\) entry in the \(j^{\text {th }}\) column of \(M(S \circ T)\) is \(\sum_{i=1}^{m} b_{k i} a_{i j}\).
Thus ( \(S \circ T\) ) can be represented by the matrix
\[
M(S \circ T)=k^{\text {th }} \text { row }\left(\begin{array}{c}
\leftarrow n \rightarrow \\
\cdots \sum_{i=1}^{m} b_{k i} a_{i j} \cdots \\
j^{\text {th }} \text { column }
\end{array}\right) p
\]

The \(j^{\text {th }}\) column in this matrix can be obtained more simply by operating the matrix \(M(S)\) on the \(j^{\text {th }}\) column vector \(T\left(v_{j}\right)\) in the matrix \(M(T)\).

Thus \(M(S \circ T)=\left(M(S)\left(T\left(v_{1}\right)\right) \ldots M(S)\left(T\left(v_{n}\right)\right)\right)=M(S) \circ M(T)\).
\[
\begin{aligned}
& k^{\text {th }} \text { row of p rows }\left(\begin{array}{ccc}
\mathrm{b}_{k 1 \ldots} & \mathrm{~b}_{k i \cdots} & \mathrm{~b}_{k m} \\
\leftarrow \mathrm{~m} \text { columns } \rightarrow
\end{array}\right)\left(\begin{array}{c}
\leftarrow n \rightarrow \\
\mathrm{a}_{i j} \\
\vdots \\
\mathrm{a}_{i j} \\
\vdots \\
\mathrm{a}_{m j} \\
\mathrm{j}^{\text {th }} \text { column }
\end{array}\right) \text { m rows } \\
& =M(S) \circ M(T) . \quad \text { Q.E.D. }
\end{aligned}
\]

Thus the "natural" method of matrix composition corresponds to the composition of linear transformations.

Now let \(L\left(\Re^{n}, \Re^{n}\right)\) stand for the set of linear transformations from \(\mathfrak{R}^{n}\) to \(\Re^{n}\). As we have shown, if \(S, \hat{T}\) belong to this set then \(S \circ T\) is also a linear transformation from \(\Re^{n}\) to \(\Re^{n}\). Thus composition of functions (o) is a binary operation \(L\left(\Re^{n}, \mathfrak{R}^{n}\right) \times L\left(\Re^{n}, \Re^{n}\right) \rightarrow L\left(\Re^{n}, \mathfrak{R}^{n}\right)\).

Let \(M: L\left(\Re^{n}, \Re^{n}\right) \rightarrow M(n, n)\) be the mapping which assigns to any linear

Now let o be the method of matrix composition which we have just defined. Thus
the mapping \(M\) satisfies
\[
M(S \circ T)=M(S) \circ M(T)
\]
for any two linear transformations, \(S\) and \(T\). Suppose now that we are given a linear transformation, \(T \in L\left(\mathfrak{R}^{n}, \mathfrak{R}^{n}\right)\). Clearly the matrix \(M(T)\) which represents \(T\) with respect to the two bases is unique, and so \(M\) is a function.

On the other hand suppose that \(T, S\) are both represented by the same matrix \(A=\left(a_{i j}\right)\).
By definition \(T\left(v_{j}\right)=S\left(v_{j}\right)=\sum_{i=1}^{m} a_{i j} u_{i}\) for each \(j=1, \ldots, n\).
But then \(T(x)=S(x)\) for any \(x \in \mathfrak{R}^{n}\), and so \(T=S\). Thus \(M\) is injective.
Moreover if \(A\) is any matrix, then it represents a linear transformation, and so \(M\) 261 is surjective. Thus we have a bijective morphism262
\(\qquad\)
\[
M:\left(L\left(\Re^{n}, \Re^{n}\right), \circ\right) \rightarrow(M(n, n), \circ) .
\]

As we saw in the case of \(2 \times 2\) matrices, the subset of non-singular matrices in \(M(n, n)\) forms a group. We repeat the procedure for the more general case.

\subsection*{2.2.2 The Dimension Theorem}

Let \(T: V \rightarrow U\) be a linear transformation between the vector spaces \(V, U\) of

\begin{abstract}
dimension \(n, m\) respectively over a field \(\mathcal{F}\). The transformation is characterised by
\end{abstract} two subspaces, of \(V\) and \(U\).
Definition 2.8. 1. the kernel of a transformation \(T: V \rightarrow U\) is the set \(\operatorname{Ker}(T)=\{x \in V: T(x)=\underline{0})\) in \(V\).
2. The image of the transformation is the set
\[
\operatorname{Im}(T)=\{\mathrm{y} \in U: \exists x \in V \text { s.t. } T(x)=y\} .
\]

Both these sets are vector subspaces of \(U, V\) respectively. To see this suppose

If \(u_{1}, u_{2} \in \mathfrak{I}(T)\) then there exists \(v_{1}, v_{2} \in V\) such that \(T\left(v_{1}\right)=u_{1}, T\left(v_{2}\right)=u_{2}\) But then
\[
\begin{aligned}
\alpha \mu_{1}+\beta \mu_{2} & =\alpha T\left(v_{1}\right)+\beta T\left(v_{2}\right) \\
& =T\left(\alpha v_{1}+\beta v_{2}\right) .
\end{aligned}
\]

Since \(V\) is a vector space, \(\alpha v_{1}+\beta v_{2} \in V\) and so \(\alpha u_{1}+\beta u_{2} \in \Im(T)\).
By the exchange theorem there exists a basis \(k_{1}, \ldots, k_{p}\) for \(\operatorname{Ker}(T)\), where \(p=\) \(\operatorname{dim} \operatorname{Ker}(T)\) and a basis \(u_{1}, \ldots, u_{s}\) for \(\Im(T)\) where \(s=\operatorname{dim}(\Im(T))\). Here \(p\) is called the kernel rank of \(T\), often written \(\operatorname{kr}(T)\), and \(s\) is the \(\operatorname{rank}\) of \(T\), or \(r k(T)\).

The Dimension Theorem. If \(T: V \rightarrow U\) is a linear transformation between vector spaces over a field \(\mathcal{F}\), where dimension \((V) \neq n\), then the dimension of the kernel and image of \(T\) satisfy the relation
\[
\operatorname{dim}(\mathfrak{J}(T))+\operatorname{dim}(\operatorname{Ker}(T))=n .
\]

Proof. Let \(\left\{u_{1}, \ldots, u_{s}\right\}\) be a basis for \(\mathfrak{J}(T)\) and for each \(i=1, \ldots, s\), let \(v_{i}\) be the vector in \(V^{n}\) such that \(T\left(v_{i}\right)=u_{i}\).

Let \(v\) be any vector in \(V\). Then
\[
\begin{aligned}
T(v) & =\sum_{i=1}^{s} \alpha_{i} u_{i}, \text { for } T(v) \in \Im(T) . \text { So } \\
T(v) & =\sum_{i=1}^{s} \alpha_{i} T\left(v_{i}\right) \\
& =T\left(\sum_{i=1}^{s} \alpha_{i} v_{i}\right), \text { and } \\
T\left(v-\sum_{i=1}^{s} \alpha_{i} v_{i}\right) & =\underline{0},
\end{aligned}
\]
the zero vector in \(U\), i.e., \(v-\sum_{i=1}^{s} \alpha_{i} v_{i} \in \operatorname{kernel} T\). Let \(\left\{k_{1}, \ldots, k_{p}\right\}\) be the basis for \(\operatorname{Ker}(T)\).

Then \(v-\sum_{i=1}^{s} \alpha_{i} v_{i}=\sum_{j=1}^{p} \beta_{j} k_{j}\), or \(v=\sum_{i=1}^{s} \alpha_{i} v_{i}+\sum_{j=1}^{p} \beta_{j} k_{j}\). Thus \(\left(v_{1}, \ldots, v_{s}, k_{1}, \ldots, k_{p}\right)\) is a span for \(V\).

Suppose we consider \(\sum_{i=1}^{s} \alpha_{i} v_{i}+\sum_{j=1}^{p} \beta_{j} k_{j}=\underline{0} .\left(^{*}\right)\)
Then, since \(T\left(k_{j}\right)=0\) for \(j=1, \ldots, p\),
\[
\begin{aligned}
T\left(\sum_{i=1}^{s} \alpha_{i} v_{i}+\sum_{j=1}^{p} \beta_{j} k_{j}\right) & =\sum_{i=1}^{s} \alpha_{i} T\left(v_{i}\right)+\sum_{j=1}^{p} \beta_{j} T\left(k_{j}\right) \\
& =\sum_{i=1}^{s} \alpha_{i} T\left(v_{i}\right)=\sum_{i=1}^{s} \alpha_{i} u_{i}=\underline{0} .
\end{aligned}
\]

Now \(\left\{u_{i}, \ldots, u_{s}\right\}\) is a basis for \(\mathfrak{J}(T)\), and hence these vectors are linearly independent. So \(\alpha_{i}=0, i=1, \ldots, s\). Therefore \((*)\) gives \(\sum_{j=1}^{p} \beta_{j} k_{j}=\underline{0}\).

However \(\left\{k_{1}, \ldots, k_{p}\right\}\) is a basis for \(\operatorname{Ker}(T)\) and therefore a frame, so \(\beta_{j}=0\) for \(j=1, \ldots, p\). Hence \(\left\{v_{1}, \ldots, v_{s}, k_{1}, \ldots, k_{p}\right\}\) is a frame, and therefore a basis for \(V\). By the exchange theorem the dimension of \(V\) is the unique number of vectors in a basis. Therefore \(s+p=n\). Q. E. D.

Note that this theorem is true for general vector spaces. We specialise now to vector spaces \(\Re^{n}\) and \(\Re^{m}\).

Suppose \(\left\{v_{1}, \ldots, v_{n}\right\}\) is a basis for \(\mathfrak{R}^{n}\). The coordinates of \(v_{j}\) with respect to this basis are \((0, \ldots, 1, \ldots, 0)\) with 1 in the \(j^{\text {th }}\) place. As we have noted the image of \(v_{j}\) under the transformation \(T\) can be represented by the \(j^{\text {th }}\) column \(\left(a_{i j}, \ldots, a_{m j}\right)\) in the matrix \(M(T)\), with respect to the original basis \(\left(e_{1}, \ldots, e_{m}\right)\), say, for \(\mathfrak{R}^{m}\). Call the \(n\) different column vectors of this matrix \(a_{1}, \ldots, a_{j}, \ldots, a_{n}\).

Then the equation \(M(T)(x)=y\) is identical to the equation \(\sum_{j=1}^{n} x_{j} a_{j}=y\) where \(x=\left(x_{1}, \ldots, x_{n}\right)\).

Clearly any vector \(y\) in the image of \(M(T)\) can be written as a linear combination of the columns \(A=\left\{a_{1}, \ldots, a_{n}\right\}\). Thus \(\operatorname{Span}(A)=\mathfrak{J}(M(T))\). Suppose now that \(A\) is not a frame. In this case \(a_{n}\), say, can be written as a linear combination of \(\left\{a_{1}, \ldots, a_{n-1}\right\}\), i.e., \(\sum_{j=1}^{n} k_{1 j} a_{j}=\underline{0}\) and \(k_{1 n} \neq 0\). Then the vector \(k_{1}=\) \(\left(k_{11}, \ldots, k_{1 n}\right)\) satisfies \(M(T)\left(k_{1}\right)=\underline{0}\). Thus \(k_{1}\) belongs to \(\operatorname{Ker}(M(T))\).

Eliminate \(a_{n}\), say, and proceed in this way. After \(p\) iterations we will have obtained \(p\) kernel vectors \(\left\{k-1, \ldots, k_{p}\right\}\) and the remaining column vectors \(\left\{a_{1}, \ldots, a_{n-p}\right\}\) will form a frame, and thus a basis for the image of \(M(T)\).

\[
M(\mathrm{Id})=I=\left(\begin{array}{ccc}
1 & \ldots & 0 \\
\vdots & & \vdots \\
0 & \ldots & 1
\end{array}\right)
\]

When \(T\) is an isomorphism with inverse \(T^{-1}\), then the representation \(M\left(T^{-1}\right)\) of \(T^{-1}\) is \([M(T)]^{-1}\). We now show how to compute the inverse matrix \([M(T)]^{-1}\) of an isomorphism.

\subsection*{2.2.3 The General Linear Group}

To compute the inverse of an \(n \times n\) matrix \(A\), we define, by induction, the determinant of \(A\). For a \(1 \times 1\) matrix \(\left(a_{11}\right)\) define \(\operatorname{det}\left(A_{11}\right)=a_{11}\), and for a \(2 \times 2\) matrix \(A=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)\) define det \(A=a_{11} a_{22}-a_{21} a_{12}\).

For an \(n \times n\) matrix \(A\) define the \((i, j)^{t h}\) cofactor to be the determinant of the \((n-1) \times(n-1)\) matrix \(A(i, j)\) obtained from \(A\) by removing the \(i^{\text {th }}\) row and \(j^{\text {th }}\) column, then multiplying by \((-1)^{i+j}\). Write this cofactor as \(A_{i j}\). For example in the \(3 \times 3\) matrix, the cofactor in the \((1,1)\) position is
\[
A_{11}=\operatorname{det}\left(\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right)=a_{22} a_{33}-a_{32} a_{23} .
\]

The \(n \times n\) matrix \(\left(A_{i j}\right)\) is called the cofactor matrix.
The determinant of the \(n \times n\) matrix \(A\) is then \(\sum_{j=1}^{n} a_{1 j} A_{1 j}\). The determinant is also often written as \(|A|\).

This procedure allows us to define the determinant of an \(n \times n\) matrix. For example if \(A=\left(a_{i j}\right)\) is a \(3 \times 3\) matrix, then
\[
\begin{aligned}
|A| & =a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right| \\
& =a_{11}\left(a_{22} a_{33}-a_{32} a_{23}\right)-a_{12}\left(a_{21} a_{33}-a_{31} a_{23}\right)+a_{13}\left(a_{21} a_{32}-a_{31} a_{22}\right) .
\end{aligned}
\]

An alternative way of defining the determinant is as follows. A permutation of \(n\) is a bijection \(s:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}\), with degree \(d(s)\) the number of exchanges needed to give the permutation.
Then \(|A|=\sum_{s}(-1)^{d(s)} \Pi_{i=1}^{n} a_{i s(i)}=a_{11} a_{22} a_{33} \ldots+\ldots\) where the summation is over all permutations. The two definitions are equivalent, and it can be shown that
\[
\begin{aligned}
|A| & =\sum_{j=1}^{n} a_{i j} A_{i j}(\text { for any } i=1, \ldots, n) \\
& =\sum_{i=1}^{n} a_{i j} A_{i j} \text { (for any } j=1, \ldots, n \text { ) while } \\
0 & =\sum_{i=1}^{n} a_{i j} A_{i k} \text { if } j \neq k \\
& =\sum_{j=1}^{n} a_{i j} A_{k j} \text { if } i \neq k
\end{aligned}
\]
\[
\text { Thus }\left(a_{i j}\right)\left(A_{j k}\right)^{t}=\left(\sum_{j=1}^{n} a_{i j} A_{k j}\right)
\]
\[
=\left(\begin{array}{ccc}
|A| & \ldots & 0 \\
\vdots & & \vdots \\
0 & \ldots & |A|
\end{array}\right)=|A| I .
\]

Here \(\left(A_{j k}\right)^{t}\) is the \(n \times n\) matrix obtained by transposing the rows and columns of \(\left(A_{j k}\right)\). Now the matrix \(A^{-1}\) satisfies \(A \circ A^{-1}=I\), and if \(A^{-1}\) exists then it is unique. Thus \(A^{-1}=\frac{1}{|A|}\left(A_{i j}\right)^{t}\).

Suppose that the matrix \(A\) is non-singular, so \(|A| \neq 0\). Then we can construct an inverse matrix \(A^{-1}\).

Moreover if \(A(x)=y\) then \(y=A^{-1}(x)\) which implies that \(A\) is both injective and surjective. Thus rank \((A)=n\) and the column vectors of \(A\) must be linearly independent.

As we have noted, however, if \(A\) is not injective, with \(\operatorname{Ker}(A) \neq\{0\}\), then rank \((A)<n\), and the column vectors of \(A\) must be linearly dependent. In this case the inverse \(A^{-1}\) is not a function and cannot therefore be represented by a matrix and so we would expect \(|A|\) to be zero.

Lemma 2.11. If \(A\) is an \(n \times n\) matrix with \(\operatorname{rank}(A)<n\) then \(|A|=0\).
Proof. Let \(A^{\prime}\) be the matrix obtained from \(A\) by adding a multiple \((\alpha)\) of the \(k^{\text {th }}\) column of \(A\) to the \(j^{\text {th }}\) column of \(A\). The \(j^{\text {th }}\) column of \(A^{\prime}\) is therefore \(a_{j}+\alpha a_{k}\), This operation leaves the \(j^{\text {th }}\) column of the cofactor matrix unchanged. Thus
\[
\begin{aligned}
\left|A^{\prime}\right| & =\sum_{i=1}^{n} a_{i j}^{\prime} A_{i j} \\
& =\sum_{i=1}^{n}\left(a_{i j}+\alpha a_{i k}\right) A_{i j} \\
& =\sum_{i=1}^{n} a_{i j} A_{i j}+\alpha \sum_{i=1}^{n} a_{i k} A_{i j} \\
& =|A|+0=|A| .
\end{aligned}
\]

Suppose now that the columns of \(A\) are linearly dependent, and that \(a_{j}=\)

By the above \(\left|A^{\prime}\right|=\sum_{i=1}^{n} a_{i j}^{\prime} A_{i j}=0=|A| . Q . E . D\).
Suppose now that \(A, B\) are two non-singular matrices \(\left(a_{i j}\right),\left(b_{k i}\right)\). The composition is then \(B \circ A=\left(\sum_{i=1}^{m} b_{k i} a_{i j}\right)\) with determinant
\[
|B \circ A|=\sum_{s}(-1)^{d(s)} \Pi_{k=1}^{n} \circ\left(\sum_{i=1}^{m} b_{k i} a_{i s(k)}\right) .
\]
\[
\sum_{s}(-1)^{d(s)} \Pi_{i=1}^{n} a_{i s(i)}\left(\sum_{s}(-1)^{d(s)} \Pi_{i=1}^{n} b_{s s(k)}=|B||A| \neq 0\right.
\]

Hence the composition \((B \circ A)\) has an inverse \((B \circ A)^{-1}\) given by \(A^{-1} \circ B^{-1}\).
Now let ( \(G L\left(\mathfrak{R}^{n}, \mathfrak{R}^{n}\right), \circ\) ) be the set of invertible linear transformations, with o composition of functions, and let \(M^{*}(n, n)\) be the set of non-singular \(n \times n\) matrices. Choice of bases \(\left\{v_{1}, \ldots, v_{n}\right\},\left\{u_{1}, \ldots, u_{n}\right\}\) for the domain and codomain defines a morphism
\[
M:\left(G L\left(\Re^{n}, \Re^{n}\right), \circ\right) \rightarrow\left(M^{*}(n, n), \circ\right) .
\]

Suppose now that \(T\) belongs to \(G L\left(\mathfrak{R}^{n}, \mathfrak{R}^{n}\right)\). As we have seen this is equivalent to \(|M(T)| \neq 0\), so the image of \(M\) is precisely \(M^{*}(n, n)\). Moreover if \(|M(T)| \neq 0\) then \(\left|M\left(T^{-1}\right)\right|=\frac{1}{|M(T)|}\) and \(M\left(T^{-1}\right)\) belongs to \(M^{*}(n, n)\). On the other hand if \(S, T \in G L\left(\Re^{n}, \Re^{n}\right)\) then \(S \circ T\) also has rank \(n\), and has inverse \(T^{-1} \circ S^{-1}\) with rank \(n\).

The matrix \(M(S \circ T)\) representing \(T \circ S\) has inverse
\[
\begin{aligned}
M\left(T^{-1} \circ S^{-1}\right) & =M\left(T^{-1}\right) \circ M\left(S^{-1}\right) \\
& =[M(T)]^{-1} \circ[M(S)]^{-1} .
\end{aligned}
\]

Thus \(M\) is an isomorphism between the two groups ( \(G L\left(\mathfrak{R}^{n}, \mathfrak{R}^{n}, \circ\right.\) ) and \(\left(M^{*}(n, n), \circ\right)\).

The group of invertible linear transformations is also called the general linear group.

\subsection*{2.2.4 Change of Basis}

Let \(L\left(\Re^{n}, \mathfrak{R}^{m}\right)\) stand for the set of linear transformations from \(\mathfrak{R}^{n}\) to \(\mathfrak{R}^{m}\), and let \(M(n, m)\) stand for the set of \(n \times m\) matrices. We have seen that the choice of bases for \(\mathfrak{R}^{n}, \mathfrak{R}^{m}\) defines a function.
\[
M: L\left(\Re^{n}, \Re^{m}\right) \rightarrow M(n, m)
\]
which take a linear transformation \(T\) to its representation \(M(T)\). We now examine 429
the relationship between two representations \(M_{1}(T), M_{2}(T)\) of a single linear 430
\(\begin{array}{lrl}\text { transformation. } & 43\end{array}\)
    Basis Change Theorem. Let \(\left\{v_{1}, \ldots, v_{n}\right\}\) and \(\left\{u_{1}, \ldots, u_{m}\right\}\) be bases for \(\mathfrak{R}^{n}, \mathfrak{R}^{m}{ }_{432}\)
respectively.
    Let \(T\) be a linear transformation which is represented by a matrix \(A=\left(a_{i j}\right)\) with 434
respect to these bases. If \(V^{\prime}=\left\{v_{1}^{\prime}, \ldots, v_{n}^{\prime}\right\}, U^{\prime}=\left\{u_{1}^{\prime}, \ldots, u_{m}^{\prime}\right\}\) are new bases for 435
\(\Re^{n}, \Re^{m}\) then \(T\) is represented by the matrix \(B=Q^{-1} \circ A \circ P\), where \(P, Q\) are \({ }_{436}\)
\begin{tabular}{l|l|l} 
respectively \((n \times n)\) and \((m \times m)\) invertible matrices. & 437
\end{tabular}
Proof. For each \(v_{k}^{\prime} \in V^{\prime}=\left\{v_{1}^{\prime}, \ldots, v_{n}^{\prime}\right\}\) let \(v_{k}^{\prime}=\sum_{i=1}^{n} b_{i k} v_{i}\) and \(b_{k}=438\)
\(\left(b_{1 k}^{\prime}, \ldots, b_{n k}\right)\).
    Let \(P=\left(b_{1}, \ldots, b_{n}\right)\) where the \(k^{\text {th }}\) column of \(P\) is the column of coordinates 440
of \(b_{k}\). With respect to the new basis \(V^{\prime}, v_{k}^{\prime}\) has coordinates \(e_{k}=(0, \ldots, 1, \ldots, 0) 441\)
\(\begin{array}{ll}\text { with a } 1 \text { in the } k^{\text {th }} \text { place. } & 442\end{array}\)
\(\begin{array}{ll}\text { But then } P\left(e_{k}\right)=b_{k} \text { the coordinates of } v_{k}^{\prime} \text { with respect to } V . & 443\end{array}\)
Thus \(P\) is the matrix that transforms coordinates with respect to \(V^{\prime}\) into 444
coordinates with respect to \(V\). Since \(V\) is a basis, the columns of \(P\) are linearly 445
\begin{tabular}{l|l} 
independent, and so rank \(P=n\), and \(P\) is invertible. & 446
\end{tabular}
    In the same way let \(u_{k}^{\prime}=\sum_{i=1}^{m} c_{i k} u_{i}, c_{k}=\left(c_{1 k}, \ldots, c_{m k}\right)\) and \(Q=\left(c_{1}, \ldots, c_{m}\right) 447\)
\(\begin{array}{ll}\text { the matrix with columns of these coordinates. } & 448\end{array}\)
Hence \(Q\) represents change of basis from \(U^{\prime}\) to \(U\). Since \(Q\) is an invertible \(m \times m 449\)
\(\begin{array}{ll}\text { matrix it has inverse } Q^{-1} \text { which represents change of basis from } U \text { to } U^{\prime} . & 450\end{array}\)
Thus we have the diagram
\[
\begin{aligned}
&\left\{v_{1}, \ldots, v_{n}\right\} \xrightarrow{A}\left\{u_{1}, \ldots, u_{m}\right\} \\
& P^{\uparrow} \quad Q^{-1} \downarrow \uparrow Q \\
&\left\{v_{1}^{\prime}, \ldots, v_{n}^{\prime}\right\} \xrightarrow{B}\left\{u_{1}^{\prime}, \ldots, u_{m}^{\prime}\right\}
\end{aligned}
\]
from which we see that the matrix \(B\), representing the linear transformation \(T\) \(\mathfrak{R}^{n} \rightarrow \mathfrak{R}^{m}\) with respect to the new bases is given by \(B=Q^{-1} \circ A \circ P . Q . E . D\).
Isomorphism Theorem. Any linear transformation \(T: \mathfrak{R}^{n} \rightarrow \mathfrak{R}^{m}\) of rank \(r\) can
\[
\left(\begin{array}{ll}
I_{r} & 0 \\
0 & 0
\end{array}\right) \text { where } I_{r}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \text { is the }(r \times r) \text { identity matrix. }
\]
In particular
1. if \(n<m\) and \(T\) is injective then there is an isomorphism \(S: \mathfrak{R}^{m} \rightarrow \mathfrak{R}^{m}\) such that \(S \circ T\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{n}, O, \ldots, 0\right)\) with \((n-m)\) zero entries, for any vector \(\left(x_{1}, \ldots, x_{n}\right)\) in \(\mathfrak{R}^{n}\)
2. if \(n \geq m\) and \(T\) is surjective then there are isomorphisms \(\mathfrak{R}: \mathfrak{R}^{n} \rightarrow \mathfrak{R}^{n}, S: 46\) \(\mathfrak{R}^{m} \rightarrow \mathfrak{R}^{m}\) such that \(S \circ T \circ R\left(x_{1}, \ldots, x-n\right)=\left(x_{1}, \ldots, x_{m}\right)\). If \(n=m\), then 462 \(S \circ T \circ R\) is the identity isomorphism.

Proof. Of necessity rank \((T)=r \leq \min (n, m)\). If \(r<n\), let \(p=n-r\) and choose 464 a basis \(k_{1}, \ldots, k_{p}\) for \(\operatorname{Ker}(T)\). Let \(V=\left\{v_{1}, \ldots, v_{n}\right\}\) be the original basis for \(\mathfrak{R}^{n}\). 465
By the exchange theorem there exists \(r=(n-p)\) different members \(\left\{v_{1}, \ldots, v_{r}\right\} 466\) say of \(V\) such that \(V^{\prime}=\left\{v_{1}, \ldots, v_{r}, k_{1}, \ldots, k_{p}\right\}\) is a basis for \(\mathfrak{R}^{n}\). 467

Choose \(V^{\prime}\) as the new basis for \(\Re^{n}\), and let \(P\) be the basis change matrix 468 whose columns are the column vectors in \(V^{\prime}\). As in the proof of the dimension 469 theorem the image of the vectors \(v_{1}, \ldots, v_{n-p}\) under \(T\) provide a basis for the 470 image of \(T\). Let \(U=\left\{u_{1}, \ldots, u_{m}\right\}\) be the original basis of \(\mathfrak{R}^{m}\). By the exchange 47 theorem there exists some subset \(U^{\prime}=\left\{u_{1}, \ldots, u_{m}\right\}\) of \(U\) such that \(U^{\prime \prime}=472\) \(\left\{T\left(v_{1}\right), \ldots, T\left(v_{r}\right), u_{1}, \ldots, u_{m-r}\right\}\) form a basis for \(\mathfrak{R}^{m}\). Note that \(T\left(v_{1}\right), \ldots T\left(v_{r}\right) 473\) are represented by the \(r\) linearly independent columns of the original matrix \(A{ }_{474}\) representing \(T\). Now let \(Q\) be the matrix whose columns are the members of \(U^{\prime \prime}\). 475 By the basis change theorem, \(B=Q^{-1} \circ A \circ P\), where \(B\) is the matrix representing \(T\) with respect to these new bases. Thus we obtain
\[
\left\{v_{1}, \ldots, v_{r}, k_{1} \ldots\right\} \xrightarrow{B}\left\{T\left(v_{1}\right) \ldots T\left(v_{r}\right), u_{1}, \ldots, u_{m-r}\right\} .
\]

With respect to these new bases, the matrix \(B\) representing \(T\) has the required form:
1. If \(n<m\) and \(T\) is injective then \(r=n\). Hence \(P\) is the identity matrix, and so \(B=Q^{-1} \circ A\).
But \(Q^{-1}\) is an \(m \times m\) invertible matrix, and thus represents an isomorphism \(\mathfrak{R}^{n} \rightarrow \Re^{n}\), while
\[
B\binom{x_{1}}{x_{n}}=\binom{I_{n}}{0}\binom{x_{1}}{x_{n}}=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n} \\
\vdots \\
0
\end{array}\right)
\]

Write a vector \(x=\sum_{i=1}^{n} x_{i} v_{i}\) as \(\left(x_{1}, \ldots, x_{n}\right)\), and let \(S\) be the linear transfor mation \(\mathfrak{R}^{m} \rightarrow \Re^{m}\) represented by the matrix \(Q^{-1}\). Then \(S \circ T\left(x_{1}, \ldots, x_{n}\right)=\) \(\left(x_{1}, \ldots, x_{n}, 0, \ldots, 0\right)\).
```

2. If $n \geq m$ and T is surjective then $\operatorname{rank}(T)=m$, and $\operatorname{dim} \operatorname{Ker}(T)=n-m$. Thus 489
$B=\left(I_{m} 0\right)=Q^{-1} \circ A \circ P$. Let S, R be the linear transformations represented 490
by Q^{-1} and P respectively.
Then $S \circ T \circ R\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{m}\right)$. If $n=m$ then $S \circ T \circ R$ is the
identity transformation. $Q . E . D$.
Suppose now that V, U are the two bases for $\mathfrak{R}^{n}, \mathfrak{R}^{m}$ as in the basis theorem. A
linear transformation $T: \mathfrak{R}^{n} \rightarrow \mathfrak{R}^{m}$ is represented by a matrix $M_{1}(T)$ with respect
to these bases. If V^{\prime}, U^{\prime} are two new bases, then T will be represented by the matrix
$M_{2}(T)$, and by the basis theorem
$M_{2}(T)=Q^{-1} \circ M_{1}(T) \circ P$
where Q, P are non-singular $(m \times m)$ and $(n \times n)$ matrices respectively. Since
$M_{1}(T)$ and $M_{2}(T)$ represent the same linear transformation, they are in some sense
equivalent. We show this more formally.
Say the two matrices $A, B \in M(n, m)$ are similar iff there exist non singular 502
square matrices $P \in M^{*}(n, n)$ and $Q \in M^{*}(m, m)$ such that $B=Q^{-1} \circ A \circ P$,
and in this case write $B \sim A$.
Lemma 2.12. The similarity relation (\sim) on $M(n, m)$ is an equivalence relation.
Proof. 1. To show that \sim is reflexive note that $A=I_{m}^{-1} \circ A \circ I_{n}$ where I_{m}, I_{n} are
Since $Q \in M^{*}(m, m)$ it has inverse $Q^{-1} \in M^{*}(m, m)$.
Moreover $\left(Q^{-1}\right)^{-1} \circ Q^{-1}=I_{m}$, and thus $Q=\left(Q^{-1}\right)^{-1}$. Thus

$$
\begin{aligned}
Q \circ B \circ P^{-1} & =\left(Q \circ Q^{-1}\right) \circ A \circ\left(P \circ P^{-1}\right) \\
& =A \\
& =\left(Q^{-1}\right)^{-1} \circ B \circ\left(P^{-1}\right) .
\end{aligned}
$$

Thus $A \sim B$.
3. To show \sim is transitive, we seek to show that $C \sim B \sim A$ implies $C \sim A$.
Suppose therefore that $C=R^{-1} \circ B \circ S$ and $B=Q^{-1} \circ A \circ P$,
where $R, Q \in M^{*}(m, m)$ and $S, P \in M^{*}(n, n)$. Then

```
\[
\begin{aligned}
C & \left.=R^{-1} \circ Q^{-1}\right) \circ A \circ P \circ S \\
& =(Q \circ R)^{-1} \circ A \circ(P \circ S) .
\end{aligned}
\]

Now \(\left(M^{*}(m, m), \circ\right),\left(M^{*}(n, n), \circ\right)\) are both groups and so \(Q \circ R \in\) \(M^{*}(m, m), P \circ S \in M^{*}(n, n)\). Thus \(C \sim A\) Q.E.D.

The isomorphism theorem shows that if there is a linear transformation \(T: \mathfrak{R}^{n} \rightarrow \mathfrak{R}^{m}\) of rank \(r\), then the \((n \times m)\) matrix \(M_{1}(T)\) which represents \(T\), with respect to some pair of the bases, is similar to an \(n \times m\) matrix
\[
B=\left(\begin{array}{ll}
I_{r} & 0 \\
0 & 0
\end{array}\right) \text { i.e., } M(T) \sim B .
\]

If \(S\) is a second linear transformation of rank \(r\) then \(M_{1}(S) \sim B\).
By lemma 2.12, \(M_{1}(S) \sim M_{1}(T)\).
Suppose now that \(U^{\prime}, V^{\prime}\) are a second pair of bases for \(\mathfrak{R}^{n}, \mathfrak{R}^{m}\) and let 524 \(M_{2}(S), M_{2}(T)\) represent \(S\) and \(T\). Clearly \(M_{2}(S) \sim M_{2}(T)\).

Thus if \(S, T\) are linear transformations \(\mathfrak{R}^{m} \rightarrow \mathfrak{R}^{n}\) we may say that \(S, T\) are525
equivalent iff for any choice of bases the matrices \(M(S), M(T)\) which represent 527 \(S, T\) are similar.

For any linear transformation \(T \in L\left(\mathfrak{R}^{n}, \mathfrak{R}^{m}\right)\) let \([T]\) be the equivalence class 529 \(\left\{S \in L\left(\Re^{n}, \mathfrak{R}^{m}\right): S \sim T\right\}\). Alternatively a linear transformation \(S\) belongs 530 to \([T\) ] iff rank \((S)=\operatorname{rank}(T)\). Consequently the equivalence relation partitions \(L\left(\mathfrak{R}^{n}, \mathfrak{R}^{m}\right)\) into a finite number of distinct equivalence classes where each class is classified by its rank, and the rank runs from 0 to \(\min (n, m)\).

\subsection*{2.2.5 Examples}

Example 2.1. To illustrate the use of these procedures in the solution of linear
\[
A=\left(\begin{array}{rrr}
1 & -1 & 2 \\
5 & 0 & 3 \\
-1 & -4 & 5 \\
3 & 2 & -1
\end{array}\right) \text { and } y_{1}=\left(\begin{array}{r}
-1 \\
1 \\
-1 \\
1
\end{array}\right), y_{2}=\left(\begin{array}{r}
0 \\
5 \\
-5 \\
5
\end{array}\right) \text {. }
\]

To find \(\mathfrak{\Im}(A)\), we first of all find \(\operatorname{Ker}(A)\). The equation \(A(x)=\underline{0}\) gives four equations
\[
\begin{aligned}
x_{1}-x_{2}+2 x_{3} & =0 \\
5 x_{1}+0+3 x_{3} & =0 \\
-x_{1}-4 x_{2}+5 x_{3} & =0 \\
3 x_{1}+2 x_{2}-x_{3} & =0
\end{aligned}
\]
with solution \(k=\left(x_{1}, x_{2}, x_{3}\right)=(-3,7,5)\).

Thus \(\operatorname{Ker}(A) \supset\left\{\lambda k \in \mathfrak{R}^{3}: \lambda \in \mathfrak{R}\right\}\). Hence \(\operatorname{dim} \mathfrak{J}(A) \leq 2\). Clearly the first
two columns \(\left(a_{1}, a_{2}\right)\) of \(A\) are linearly independent and so \(\operatorname{dim} \Im(A)=2\). However
\(y_{2}=a_{1}+a_{2}\).Thus particular solution to then \(y_{2}=a_{1}+a_{2}\). Thus a particular solution to the equation \(A(x)=y_{2}\) is \(x_{0}=(1,1,0)\).

The full set of solutions to the equation is
\[
x_{0}+\operatorname{Ker}(A)=\{(1,1,0)+\lambda(-3,7,5): \lambda \in \mathfrak{R}\} .
\]

To see whether \(y_{1} \in \Im(A)\) we need only attempt to solve the equation \(y_{1}=\alpha a_{1}+\) \(\beta a_{2}\). This gives
\[
\begin{aligned}
-1 & =\alpha-\beta \\
1 & =5 \alpha \\
-1 & =-\alpha-4 \beta \\
1 & =3 \alpha+2 \beta
\end{aligned}
\]

From the first two equations \(a=\frac{1}{5}, \beta=\frac{6}{5}\), which is incompatible with the fourth equation. Thus \(y_{1}\) cannot belong to \(\mathfrak{J}(A)\).
Example 2.2. Consider now an example of the case \(n>m\), where
\[
A=\left(\begin{array}{rrrrr}
2 & 1 & 1 & 1 & 1 \\
1 & 2 & -1 & 1 & 1
\end{array}\right): \mathfrak{R}^{5} \rightarrow \mathfrak{R}^{2}
\]

Obviously the first two columns are linearly independent and so \(\operatorname{dim} \Im(A) \geq 2\).
Let \(\left\{a_{i}: i=1, \ldots, 5\right\}\) be the five column vectors of the matrix and consider the equation
\[
\binom{2}{1}-\binom{1}{2}-\binom{1}{-1}=\binom{0}{0} .
\]

Thus \(k_{1}=(1,-1,-1,0, O)\) belongs to \(\operatorname{Ker}(A)\). On the other hand
\[
\binom{2}{1}+\binom{1}{2}-3\binom{1}{1}=\binom{0}{0} .
\]

Thus \(k_{2}=(1,1,0,-3,0)\) and \(k_{3}=(1,1,0,0,-3)\) both belong to \(\operatorname{Ker}(A)\).
Consequently the rank of \(A\) has its maximal value of 2 , while the kernel is threedimensional. Hence for any \(y \in \mathfrak{R}^{2}\) there is a set of solutions of the form \(x_{0}+\) Span \(\left\{k_{1}, k_{2}, k_{3}\right\}\) to the equation \(A(x)=y\).

Change the bases of \(\mathfrak{R}^{5}\) and \(\mathfrak{R}^{2}\) to
\(\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{r}1 \\ -1 \\ -1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{r}1 \\ 1 \\ 0 \\ -3 \\ 0\end{array}\right),\left(\begin{array}{r}1 \\ 1 \\ 0 \\ 0 \\ -3\end{array}\right)\)

Example 2.4. Let \(T: \mathfrak{R}^{3} \rightarrow \mathfrak{R}^{4}\) be the linear transformation represented by the matrix \(A\) of Example 2.1, with respect to the standard bases for \(\mathfrak{R}^{3}, \mathfrak{R}^{4}\). We seek to change the bases so as to represent \(T\) by a diagonal matrix
\[
B=\left(\begin{array}{cc}
I_{r} & \\
& 0
\end{array}\right) .
\]

By example 2.1, the kernel is spanned by \((-3,7,5)\), and so we choose a new basis
\[
e_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), e_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), k=\left(\begin{array}{r}
-3 \\
7 \\
5
\end{array}\right)
\]
with basis change matrix \(P=\left(e_{1}, e_{2}, k\right)\). Note that \(|P|=5\) and \(P\) is nonsingular. Thus \(\left\{e_{1}, e_{2}, k\right\}\) form a basis for \(\mathfrak{R}^{3}\). Now \(\Im(A)\) is spanned by the first two columns \(a_{1}, a_{2}\), of \(A\). Moreover \(A\left(e_{1}\right)=a_{1}\) and \(A\left(e_{2}\right)=a_{2}\). Thus choose
\[
a_{1}=\left(\begin{array}{r}
1 \\
5 \\
-1 \\
3
\end{array}\right), a_{2}=\left(\begin{array}{r}
-1 \\
0 \\
-4 \\
2
\end{array}\right), e_{3}^{\prime}=\left(\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right), e_{4}^{\prime}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
\]
as the new basis for \(\mathfrak{R}^{4}\). Let \(Q=\left(a_{1}, a_{2}, e_{3}^{\prime}, e_{4}^{\prime}\right)\) be the basis change matrix. The inverse \(Q^{-1}\) is computed in Example 2.3. Thus we have \((B)=Q^{-1} \circ A \circ P\).

To check that this is indeed the case we compute:
\[
\begin{aligned}
Q^{-1} \circ A \circ P=\left(\begin{array}{rrrr}
0 & \frac{1}{5} & 0 & 0 \\
-1 & \frac{1}{5} & 0 & 0 \\
-4 & 1 & 1 & 0 \\
2 & -1 & 0 & 1
\end{array}\right)\left(\begin{array}{rrr}
1 & 1 & 2 \\
5 & 0 & 3 \\
-1 & -4 & 5 \\
3 & 2 & -1
\end{array}\right) & \left(\begin{array}{rrr}
1 & 0 & -3 \\
0 & 1 & 7 \\
0 & 0 & 5
\end{array}\right) \\
& =\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
\]
as required.

\subsection*{2.3 Canonical Representation}

When considering a linear transformation \(T: \mathfrak{R}^{n} \rightarrow \mathfrak{R}^{n}\) it is frequently convenient 587 to change the basis of \(\Re^{n}\) to a new basis \(V=\left\{v_{1}, \ldots, v_{n}\right\}\) such that \(T\) is now represented by a matrix
\[
M_{2}(T)=P^{-1} \circ M_{1}(T) \circ P .
\]

In this case it is generally not possible to obtain \(M_{2}(T)\) in the form \(\left(\begin{array}{rr}I_{r} & 0 \\ 0 & 0\end{array}\right)\) as 59 before.

Under certain conditions however \(M_{2}(T)\) can be written in a diagonal form 593 \(\left(\begin{array}{ccc}\lambda_{1} & & 0 \\ & \cdot & \\ 0 & & \lambda_{n}\end{array}\right)\), where \(\lambda_{1}, \ldots, \lambda_{n}\) are known as the eigenvalues.

More explicitly, a vector \(x\) is called an eigenvector of the matrix \(A\) iff there is a 595 solution to the equation \(A(x)=\lambda x\) where \(\lambda\) is a real number. In this case, \(\lambda\) is called 596 the eigenvalue associated with the eigenvector \(x\). (Note that we assume \(x \neq 0\) ). \({ }_{597}\)

\subsection*{2.3.0.1 Eigenvectors and Eigenvalues}

Suppose that there are \(n\) linearly independent eigenvectors \(\left\{x_{1}, \ldots, x_{n}\right\}\) for \(A\), 599 where (for each \(i=1, \ldots, n) \lambda_{i}\) is the eigenvalue associated with \(x_{i}\). Clearly 600 the eigenvector \(x_{i}\) belongs to \(\operatorname{Ker}(A)\) iff \(\lambda_{i}=0\). If \(\operatorname{rank}(A)=r\) then there 601 would a subset \(\left\{x_{1}, \ldots, x_{r}\right\}\) of eigenvectors which form a basis for \(\Im(A)\), while 602 \(\left\{x_{1}, \ldots, x_{n}\right\}\) form a basis for \(\mathfrak{R}^{n}\). Now let \(Q\) be the \((n \times n)\) matrix representing a 603 basis change from the new basis to the original basis. That is to say the \(i^{\text {th }}\) column, 604 \begin{tabular}{l|l|l}
\(v_{i}\), of \(Q\) is the coordinate of \(x_{i}\) with respect to the original basis. & 605
\end{tabular}

After transforming, the original becomes
\[
Q^{-1} \circ A \circ P=\left(\begin{array}{rrr}
\lambda_{1} & \ldots & 0 \\
\vdots & \lambda_{r} & \vdots \\
0 & & 0
\end{array}\right)=\wedge,
\]
where \(\operatorname{rank} \wedge=\operatorname{rank} A=r\).
In general we can perform this diagonalisation only if there are enough eigenvectors, as the following lemma indicates.

Lemma 2.13. If \(A\) is an \(n \times n\) matrix, then there exists a non-singular matrix \(Q\), and a diagonal matrix \(\wedge\) such that \(\wedge=Q^{-1} A Q\) iff the eigenvectors of \(A\) form a 61 basis for \(\mathfrak{R}^{n}\).

Proof. 1. Suppose the eigenvectors form a basis, and let \(Q\) be the eigenvector
2. On the other hand if \(\wedge=Q^{-1} A Q\), where \(Q\) is non-singular then \(A Q=Q \wedge\). But \({ }_{618}\) this is equivalent to \(A\left(v_{1}\right)=\lambda_{i} v_{i}\) for \(i=1, \ldots, n\) where \(\lambda_{i}\) is the \(i^{\text {th }}\) diagonal 619 entry in \(\wedge\), and \(v_{i}\) is the \(i^{\text {th }}\) column of \(Q\).
Since \(Q\) is non-singular, the columns \(\left\{v_{1}, \ldots, v_{n}\right\}\) are linearly independent, and thus the eigenvectors form a basis for \(\mathfrak{R}^{n}\). Q.E.D.
622

If there are \(n\) distinct (real) eigenvalues then this gives a basis, and thus a 623 diagonalisation.

Lemma 2.14. If \(\left\{v_{1}, \ldots, v_{m}\right\}\) are eigenvectors corresponding to distinct eigenvalues \(\left\{\lambda_{1}, \ldots, \lambda_{m}\right\}\), of a linear transformation \(T: \mathfrak{R}^{n} \rightarrow \mathfrak{R}^{n}\), then \(\left\{v_{1}, \ldots, v_{m}\right\}\) are linearly independent.

Proof. Since \(v_{1}\) is assumed to be an eigenvector, it is non-zero, and thus \(\left\{v_{1}\right\}\) is a linearly independent set. Proceed by induction.

Suppose \(V_{k}=\left\{v_{1}, \ldots, v_{k}\right\}\), with \(k<m\), are linearly independent. Let \(v_{k+1}\) be
\[
v=\sum_{r=1}^{k+1} a_{r} v_{r}=\underline{0} .
\]

Then \(\underline{0}=T(v)=\sum_{r=1}^{k+1} a_{r} T\left(v_{r}\right)=\sum_{r=1}^{k+1} a_{r} \lambda_{r} v_{r}\).
If \(\lambda_{k+1}=0\), then \(\lambda_{i} \neq 0\) for \(i=1, \ldots, k\) and by the linear independence of \(V_{k}, a_{r} \lambda_{r}=0\), and thus \(a_{r}=0\) for \(r=1, \ldots, k\).

Suppose \(\lambda_{k+1} \neq 0\). Then
\[
\lambda_{k+1} v=\sum_{r=1}^{k+1} \lambda_{k+1} a_{r} v_{r}=\sum_{r=1}^{k+1} a_{r} \lambda_{r} v_{r}=\underline{0} .
\]

Thus \(\sum_{r=1}^{k}\left(\lambda_{k+1}-\lambda_{r}\right) a_{r} v_{r}=\underline{0}\).
By the linear independence of \(V_{k},\left(\lambda_{k+1}-\lambda_{r}\right) a_{r}=0\) for \(r=1, \ldots, k\).
But the eigenvalues are distinct and so \(a_{r}=0\), for \(r=1, \ldots, k\).
Thus \(a_{k+1} V_{k+1}=0\) and so \(a_{r}=0, r=1, \ldots, k+1\). Hence
\[
V_{k+1}=\left\{v_{1}, \ldots, v_{k+1}\right\}, k<m,
\]
is linearly independent.
By induction \(V_{m}\) is a linearly independent set. Q.E.D.
Having shown how the determination of the eigenvectors gives a diagonalisation we proceed to compute eigenvalues.

Consider again the equation \(A(x)=\lambda x\). This is equivalent to the equation \(A^{\prime}(x)=0\), where
\[
A^{\prime}=\left(\begin{array}{llll}
a_{11}-\lambda & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22}-\lambda & \\
\vdots & \vdots & \vdots & \vdots \\
a_{n 1} & & & a_{n n}-\lambda
\end{array}\right)
\]

For this equation to have a non zero solution it is necessary and sufficient that \(\left|A^{\prime}\right|=0\). Thus we obtain a polynomial equation (called the characteristic equation) of this equation are \(\lambda_{1}, \lambda_{2}\) then we obtain
\[
\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right)=\lambda^{2}-\lambda\left(\lambda_{1}+\lambda_{2}\right)+\lambda_{1} \lambda_{2} .
\]

Hence
\[
\begin{aligned}
\lambda_{1} \lambda_{2} & =\left(a_{11} a_{22}-a_{21} a_{22}\right)=|A| \\
\lambda_{1}+\lambda_{2} & =a_{11}+a_{22} .
\end{aligned}
\] case therefore
\[
\lambda_{1} \lambda_{2}=|A|, \lambda_{1}+\lambda_{2}=a_{11}+a_{22}=\operatorname{trace}(A) .
\]

In the \(3 \times 3\) case we find \(\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right)\left(\lambda-\lambda_{3}\right)=\lambda^{3}-\lambda^{2}\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right)+\)

The cofactor matrix of \(\wedge\) is then
\[
\left(\begin{array}{ccc}
\lambda_{2} \lambda_{3} & 0 & 0 \\
0 & \lambda_{1} \lambda_{3} & 0 \\
0 & 0 & \lambda_{1} \lambda_{2}
\end{array}\right) .
\]

Thus we see that the sum of the diagonal cofactors of \(A\) and \(\wedge\) are identical Moreover \(\operatorname{trace}(A)=\operatorname{trace}(\wedge)\) and \(|\wedge|=|A|\).

Now let \(\sim\) be the equivalence relation defined on \(L\left(\mathfrak{R}^{n}, \mathfrak{R}^{n}\right)\) by \(B \sim A\) iff there exist basis change matrices \(P, Q\) and a diagonal matrix \(\wedge\) such that
\[
\wedge=P^{-1} A P=Q^{-1} B Q
\]

On the set of matrices which can be diagonalised, \(\sim\) is an equivalence relation, and each class is characterised by \(n\) invariants, namely the trace, the determinant, and \((n-2)\) other numbers involving the cofactors.

\subsection*{2.3.1 Examples}

Example 2.5. Let
\[
A=\left(\begin{array}{rrr}
2 & 1 & -1 \\
0 & 1 & 1 \\
2 & 0 & -2
\end{array}\right)
\]
\[
\begin{aligned}
(2-\lambda)[(1-\lambda)(-2-\lambda)]-1(-2)-(-2(1-\lambda) & =-\lambda\left(\lambda^{2}-\lambda-2\right) \\
& =-\lambda(\lambda-2)(\lambda+1) \\
& =0 .
\end{aligned}
\]

Hence \(\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)=(0,2,-1)\). Note that \(\lambda_{1}+\lambda_{2}+\lambda_{3}=\operatorname{trace}(A)=1\) and
\[
\lambda_{2} \lambda_{3}=-2=A_{11}+A_{22}+A_{33} .
\]

Eigenvectors corresponding to these eigenvalues are
\[
x_{1}=\left(\begin{array}{r}
1 \\
-1 \\
1
\end{array}\right), x_{2}=\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right), x_{3}=\left(\begin{array}{r}
1 \\
-1 \\
2
\end{array}\right) .
\]

Let \(P\) be the basis change matrix given by these three column vectors. The inverse can be readily computed, to give \(P^{-1} A P=\)
\[
\left(\begin{array}{rrr}
1 & -1 & -1 \\
\frac{1}{3} & \frac{1}{3} & 0 \\
-\frac{2}{3} & \frac{1}{3} & 1
\end{array}\right)\left(\begin{array}{rrr}
2 & 1 & -1 \\
0 & 1 & 1 \\
2 & 0 & 2
\end{array}\right)\left(\begin{array}{rrr}
1 & 2 & 1 \\
-1 & 1 & -1 \\
1 & 1 & 2
\end{array}\right)=\left(\begin{array}{rrr}
0 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & -1
\end{array}\right) .
\]

Suppose we now compute \(A^{2}=A \circ A: \mathfrak{R}^{3} \rightarrow \mathfrak{R}^{3}\). This can easily be seen to be
\[
\left(\begin{array}{rrr}
2 & 3 & 1 \\
2 & 1 & -1 \\
0 & 2 & 2
\end{array}\right) .
\]

The characteristic function of \(A^{2}\) is \(\left(\lambda^{3}-5 \lambda^{2}+4 \lambda\right)\) with roots \(\mu_{1}=O, \mu_{2}=\)
In fact the eigenvectors of \(A^{2}\) are \(x_{1}, x_{2}, x_{3}\), the same as \(A\), but with eigenvalues \(\lambda_{1}^{2}, \lambda_{2}^{2}, \lambda_{3}^{2}\). In this case \(\Im(a)=\Im\left(A^{2}\right)\) is spanned by \(\left\{x_{2}, x_{3}\right\}\) and \(\operatorname{Ker}(A)=\operatorname{Ker}\left(A^{2}\right)\) has basis \(\left\{x_{1}\right\}\).

More generally consider a linear transformation \(A: \mathfrak{R}^{n} \rightarrow \mathfrak{R}^{n}\). Then if \(x\) is an 693 eigenvector with a non-zero eigenvalue \(\lambda, A^{2}(x)=A \circ A(x)=A[\lambda x]=\lambda A(x)=694\) \(\lambda^{2} x\), and so \(x \in \mathfrak{J}(A) \cap \mathfrak{J}\left(A^{2}\right)\).

If there exist \(n\) distinct real roots to the characteristic equation of \(A\), then a basis 696 consisting of eigenvectors can be found. Then \(A\) can be diagonalized, and \(\mathfrak{J}(A)={ }_{697}\) \(\mathfrak{s}\left(A^{2}\right), \operatorname{Ker}(A)=\operatorname{Ker}\left(A^{2}\right)\).

Example 2.6. Let
\[
A=\left(\begin{array}{rrr}
3 & -1 & -1 \\
1 & 3 & -7 \\
5 & -3 & 1
\end{array}\right)
\]

Then \(\operatorname{Ker}(A)\) has basis \(\{(1,2,1)\}\), and \(\Im(A)\) has basis \(\{(3,1,5),(-1,3,-3)\}\). 701 The eigenvalues of \(A\) are \(0,0,7\). Since we cannot find three linearly independent 702 eigenvectors, \(A\) cannot be diagonalised. Now
\[
A^{2}=\left(\begin{array}{rrr}
3 & -3 & 3 \\
-29 & 29 & -29 \\
17 & -17 & 17
\end{array}\right)
\]
\[
\left(\begin{array}{r}
3 \\
-29 \\
17
\end{array}\right)=-2\left(\begin{array}{l}
3 \\
1 \\
5
\end{array}\right)-9\left(\begin{array}{r}
-1 \\
3 \\
-3
\end{array}\right) \in \operatorname{Im}(A)
\]

Moreover \(\operatorname{Ker}\left(A^{2}\right)\) has basis \(\{(1,2,1),(1,-1,0)\}\) and so \(\operatorname{Ker}(A)\) is a subspace
This can be seen more generally. Suppose \(f: \mathfrak{R}^{n} \rightarrow \mathfrak{R}^{n}\) is linear, and \(x \in\) \(\operatorname{Ker}(f)\). Then \(f^{2}(x)=f(f(x))=\underline{0}\), and so \(x \in \operatorname{Ker}\left(f^{2}\right)\). Thus \(\operatorname{Ker}(f) \subset\) \(f^{2}(w)=v\). But \(f(w) \in \mathfrak{R}^{n}\) and so \(f(f(w))=v \in \mathfrak{J}(f)\). Thus \(\mathfrak{J}\left(f^{2}\right) \subset \mathfrak{J}(f)\).

\subsection*{2.3.2 Symmetric Matrices and Quadratic Forms}
Given two vectors \(x=\left(x_{1}, \ldots, x_{n}\right)\) and \(y=\left(y_{1}, \ldots, y_{n}\right)\) in \(\mathfrak{R}^{n}\), let \(\langle x, y\rangle=\)in \(\mathfrak{R}^{2}\). However the notations \((x, Y)\) or \(x \cdot y\) are often used for scalar product.)717An \(n \times n\) matrix \(A=\left(a_{i j}\right)\) may be regarded as a map \(A^{*}: \mathfrak{R}^{n} \times \mathfrak{R}^{n} \rightarrow \mathfrak{R}\), where718719
\(A^{*}(x, y)=\langle x, A(y)\rangle\).


\[
\begin{aligned}
A^{*}(x, x) & =\langle x, A(x)\rangle \\
& =\left\langle x, Q \wedge A^{t}(x)\right\rangle \\
& =\left\langle Q^{t}(x), \wedge Q^{t}(x)\right\rangle .
\end{aligned}
\]

Now \(Q^{t}(x)=\left(x_{1}^{\prime} \ldots, x_{n}^{\prime}\right)\) is the coordinate representation of the vector \(x\) with respect to the new basis \(\left\{z_{1}, \ldots, z_{n}\right\}\) for \(\mathfrak{R}^{n}\). Thus
\[
A^{*}(x, x)=\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)\left(\begin{array}{ccc}
\lambda_{1} & & \\
& \lambda_{r} & \\
& & 0
\end{array}\right)\left(\begin{array}{l}
x_{1}^{\prime} \\
\\
\\
\\
x_{n}^{\prime}
\end{array}\right)=\sum_{i=1}^{r} \lambda_{i}\left(x_{i}^{\prime}\right)^{2} .
\]

786 \(A^{*}\) is a vector subspace of \(\mathfrak{R}^{n}\) of dimension at least \(n-r\), where \(r=\operatorname{rank}(A)\). If the nullity of \(A^{*}\) is \(\{\underline{0}\}\) then call \(A^{*}\) non-degenerate. If all eigenvalues of \(A\) are strictly positive (so that \(A^{*}\) is non-degenerate) then \(A^{*}(x, x)>0\) for all non-zero \(x \in \mathfrak{R}^{n}\). In this case \(A^{*}\) is called positive definite. If all eigenvalues of \(A\) are nonnegative but some are zero, then \(A^{*}\) is called positive semi-definite, and in this case \(A^{*}(x, x)>0\), for all \(x\) in a subspace of dimension \(r\) in \(\mathfrak{R}^{n}\). Conversely if \(A^{*}\) is non-degenerate and all eigenvalues are strictly negative, then \(A^{*}\) is called negative definite. If the eigenvalues are non-positive, but some are zero, then \(A^{*}\) is called negative semi-definite.

The index of the quadratic form \(A^{*}\) is the maximal dimension of the subspace on which \(A^{*}\) is negative definite. Therefore index \(\left(A^{*}\right)\) is the number of strictly negative eigenvalues of \(A\).

When \(A\) has some eigenvalues which are strictly positive and some which are strictly negative, then we call \(A^{*}\) a saddle.

We have not as yet shown that a symmetric \(n \times n\) matrix has \(n\) real roots to its characteristic equation. We can show however that any (symmetric) quadratic form can be diagonalised.

Let \(A=\left(a_{i j}\right)\) and \(\langle x, A(x)\rangle=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{i} x_{j}\). If \(a_{i i}=0\) for all \(i=\) \(1, \ldots, n\) then it is possible to make a linear transformation of coordinates such that \(a_{i j} \neq 0\) for some \(j\). After relabelling coordinates we can take \(a_{11} \neq 0\). In this case the quadratic form can be written

Here each \(y_{i}\) is a linear combination of \(\left\{x_{1}, \ldots, x_{n}\right\}\). Thus the transformation \(x \rightarrow\) \(P(x)=y\) is non-singular and has inverse \(Q\) say.

Letting \(x=Q(y)\) we see the quadratic form becomes
\[
\begin{aligned}
\langle x, A(x)\rangle & =\langle Q(y), A \circ Q(y)\rangle \\
& =\left\langle y, Q^{t} A Q(y)\right\rangle \\
& =\langle y, D(y)\rangle,
\end{aligned}
\]
where \(D\) is a diagonal matrix with real diagonal entries \(\left(\alpha_{1}, \ldots, \alpha_{n}\right)\). Note that \(D=\)
\(Q^{t} A Q\) and so rank \((D)=\operatorname{rank}(A)=r\), say. Thus only \(r\) of the diagonal entries may be non zero. Since the symmetric matrix, \(A\), can be diagonalised, not only are all its eigenvalues real, but its eigenvectors form a basis for \(\mathfrak{R}^{n}\). Consequently \(\wedge=P^{-1} A P\) where \(P\) is the \(n \times n\) basis change matrix whose columns are these eigenvectors. Moreover, if \(\lambda\) is an eigenvalue with multiplicity \(r\) (i.e., \(\lambda\) occurs as a root of the characteristic equation \(r\) times) then the eigenspace, \(E_{\lambda}\), has dimension \(r\).

\subsection*{2.3.3 Examples}

Example 2.7. To give an illustration of this procedure consider a matrix
\[
A=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)
\]
representing the quadratic form \(x_{2}^{2}+2 x_{1} x_{3}\).
\[
\text { Let } P_{1}(x)=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3}
\end{array}\right)
\]
\[
P_{2}(z)=\left(\begin{array}{llr}
1 & 0 & 0 \\
0 & 1 & -\frac{1}{2} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3}
\end{array}\right)=\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right) .
\]

Then \(\langle x, A(x)\rangle=\langle y, D(y)\rangle\), where
\[
D=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & \frac{1}{2}
\end{array}\right)=\left(\begin{array}{ccc}
\alpha_{1} & 0 & 0 \\
0 & \alpha_{2} & 0 \\
0 & 0 & \alpha_{3}
\end{array}\right), \text { and } \mathrm{A}=P_{1}^{t} P_{2}^{t} D P_{2} P_{1}
\]

Consequently the matrix \(A\) can be diagonalised. \(A\) has characteristic equation 827 \((1-\lambda)\left(\lambda^{2}-1\right)\) with eigenvalues \(1,1,-1\).

Then normalized eigenvectors of \(A\) are
\[
\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \frac{1}{\sqrt{2}}\left(\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right),
\]
corresponding to the eigenvalues \(1,1,-1\).
Thus \(A^{*}\) is a non-degenerate saddle of index 1 . Let \(Q\) be the basis change matrix 832
\[
\frac{1}{\sqrt{2}}\left(\begin{array}{rrr}
1 & 0 & 1 \\
0 & 2 & 0 \\
1 & 0 & -1
\end{array}\right) .
\]

Then
\[
Q^{t} A Q=\frac{1}{2}\left(\begin{array}{rrr}
1 & 0 & 1 \\
0 & 2 & 0 \\
1 & 0 & -1
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{rrr}
1 & 0 & 1 \\
0 & 2 & 0 \\
1 & 0 & -1
\end{array}\right)=\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right) .
\]
\[
\left(x_{1}, x_{2}, x_{3}\right) A\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(x_{1}, x_{2}, x_{3}\right)\left(\begin{array}{l}
x_{3} \\
x_{2} \\
x_{1}
\end{array}\right)=x_{1} x_{3}+x_{2}^{2}
\]

We can also write this as
\[
\begin{array}{r}
\left(x_{1}, x_{2}, x_{3}\right) \frac{1}{2}\left(\begin{array}{rrr}
1 & 0 & 1 \\
0 & \sqrt{2} & 0 \\
1 & 0 & -1
\end{array}\right)\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)\left(\begin{array}{rrr}
1 & 0 & 1 \\
0 & \sqrt{2} & 0 \\
1 & 0 & -1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \\
=\frac{1}{2}\left(x_{1}+x_{3}, \sqrt{2 x_{2}}, x_{1}-x_{3}\right)\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)\left(\begin{array}{r}
x_{1}+x_{3} \\
\sqrt{2 x_{2}} \\
x_{1}-x_{3}
\end{array}\right)= \\
\frac{1}{2}\left(x_{1}+x_{3}\right)^{2}+2 x_{2}^{2}-\left(x_{1}-x_{3}\right)^{2} .
\end{array}
\]

Note that \(A\) is positive definite on the subspace \(\left.\left\{x_{1}, x_{2}, x_{3}\right) \in \mathfrak{R}^{3}:\left(x_{1}=x_{3}\right)\right\}\) spanned by the first two eigenvectors.

We can give a geometric interpretation of the behaviour of a matrix \(A\) with both positive and negative eigenvalues. For example
\(\quad A=\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)\)
has eigenvectors
\(z_{1}=\binom{1}{1} z_{2}=\binom{1}{-1}\)
\(3 z_{1}\) and \(z_{2}\) to \(-z_{2}\). The second operation can be regarded as a reflection of the vector
\(z_{2}\) in the line \(\{(x, y): x-y=0\}\), associated with the first eigenvalue. The first operation \(z_{1} \rightarrow 3 z_{1}\) is a translation of \(z_{1}\) to \(3 z_{1}\). Consider now any point \(x \in \mathbb{R}^{2}\). We can write \(x=\alpha z_{1}+\beta z_{2}\). Thus \(A(x)=3 \alpha z_{1}-\beta z_{2}\). In other words \(A\) may be decomposed into two operations: a translation in the direction \(z_{1}\), followed by a reflection about \(z_{1}\).


Fig. 2.2
2.4 Geometric Interpretation of a Linear Transformation854
More generally suppose \(A\) has real roots to the characteristic equation and has ..... 855
eigenvectors \(\left\{x_{1}, \ldots, x_{s}, z_{1}, \ldots z_{t}, k_{1}, \ldots k_{p}\right\}\). ..... 856
The first \(s\) vectors correspond to positive eigenvalues, the next \(t\) vectors to ..... 857
negative eigenvalues, and the final \(p\) vectors belong to the kernel, with zero ..... 858eigenvalues.
Then \(A\) may be described in the following way:8591. collapse the kernel vectors on to the image given by \(\left\{x_{1}, \ldots, x_{s}, z_{1}, \ldots, z_{t}\right\}\).861
2. translate each \(x_{i}\) to \(\lambda_{i} x_{i}\) ..... 862
3. reflect each \(z_{j}\) to \(-z_{j}\), and then translate to \(-\left|\mu_{j}\right| z_{j}\) (where \(\mu_{j}\) is the negative eigenvalue associated with \(z_{j}\) ).

These operations completely describe a symmetric matrix or a matrix, \(A\), which 865 is diagonalisable. When \(A\) is non-symmetric then it is possible for \(A\) to have 866 complex roots.

For example consider the matrix
\[
\left(\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) .
\]

As we have seen this corresponds to a rotation by \(\theta\) in an anticlockwise direction in the plane \(\Re^{2}\). To determine the eigenvalues, the characteristic equation is \((\cos \theta-\) \(\lambda)^{2}+\sin ^{2} \theta=\lambda^{2}-2 \lambda \cos \theta+\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=0\). But \(\cos ^{2} \theta+\sin ^{2} \theta=1\). Thus \(\lambda=2 \cos \frac{\theta \pm 2 \sqrt{\cos ^{2} \theta-1}}{2}=\cos \theta \pm i \sin \theta\).

More generally a \(2 \times 2\) matrix with complex roots may be regarded as a 874 transformation \(\lambda e^{i \theta}\) where \(\lambda\) corresponds to a translation by \(\lambda\) and \(e^{i \theta}\) corresponds to rotation by \(\theta\).

Example 2.8. Consider \(A=\left(\begin{array}{rr}2 & -2 \\ 2 & 2\end{array}\right)\) with trace \((A)=\operatorname{tr}(A)=4\) and \(|A|=8\).
As we have seen the characteristic equation for \(A\) is \(\lambda^{2}-(\) trace \(\left.A)\right)+|A|=0\) with roots \(\frac{\operatorname{trace}(A) \pm \sqrt{(\text { trace } A)^{2}-4|A|}}{2}\). Thus the roots are \(2 \pm \frac{1}{2} \sqrt{16-32}=2 \pm 2 i=\) \(2 \sqrt{2}\binom{x \cos 45-y \sin 45}{x \sin 45+y \cos 45}\).

Consequently \(A\) first sends \((x, y)\) by a translation to \((2 \sqrt{2} x, 2 \sqrt{2} y)\) and then rotates this vector through an angle \(45^{\circ}\).


Fig. 2.3

More abstractly if \(A\) is an \(n \times n\) matrix with two complex conjugate eigenvalues \((\cos \theta+i \sin \theta),(\cos \theta-i \sin \theta)\), then there exists a two dimensional eigenspace \(E^{\theta}\) such that \(A(x)=\lambda e^{i \theta}(x)\) for all \(x \in E_{\theta}\), where \(\lambda e^{i \theta}(x)\) means rotate \(x\) by \(\theta\) within \(E_{\theta}\) and then translate by \(\lambda\).

In some cases a linear transformation, \(A\), can be given a canonical form in terms of rotations, translations and reflections, together with a collapse onto the kernel What this means is that there exists a number of distinct eigenspaces
\[
\left\{E_{1}, \ldots, E_{p}, X_{1}, \ldots X_{s}, K\right\}
\]
where \(A\) maps
1. \(E_{j}\) to \(E_{j}\) by rotating any vector in \(E_{j}\) through an angle \(\theta_{j}\);
2. \(X_{j}\) to \(X_{j}\) by translating a vector \(x\) in \(X_{j}\) to \(\lambda_{j} x\), for some non-zero real number \(\lambda_{j}\);
3. the kernel \(K\) to \(\{0\}\).

In the case that the dimensions of these eigenspaces sum to \(n\), then the canonical
form of the matrix \(A\) is \(\left(\begin{array}{ccc}e^{i \theta} & 0 & 0 \\ 0 & \wedge & 0 \\ 0 & 0 & 0\end{array}\right)\) where \(e^{i \theta}\) consists of \(p\) different \(2 \times 2\) matrices,
and \(\wedge\) is a diagonal \(s \times s\) matrix, while 0 is an \((n-r) \times(n-r)\) zero matrix, where \(r=\operatorname{rank}(A)=2 p+s\).

However, even when all the roots of the characteristic equation are real, it need not be possible to obtain a diagonal, canonical form of the matrix.

To illustrate, in Example 2.6 it is easy to show that the eigenvalue \(\lambda=0\) occurs twice as a root of the characteristic equation for the non-symmetric matrix \(A\), even though the kernel is of dimension 1. The eigenvalue \(\lambda=7\) occurs once. Moreover the vector \((3,-29,17)\) clearly must be an eigenvector for \(\lambda=7\), and thus span the image of \(A^{2}\). However it is also clear that the vector \((3,-29,17)\) does not span the image of \(A\). Thus the eigenspace \(E_{7}\) does not provide a basis for the image of \(A\), and so the matrix \(A\) cannot be diagonalised.

However, as we have shown, for any symmetric matrix the dimensions of the eigenspaces sum to \(n\), and the matrix can be expressed in canonical, diagonal, form.

In Chapter 4 below we consider smooth functions and show that "locally" such a function can be analysed in terms of the canonical form of a particular symmetric matrix, known as the Hessian.

\section*{Chapter 3 \\ Topology and Convex Optimisation}

\subsection*{3.1 A Topological Space}

In the previous chapter we introduced the notion of the scalar product of two vectors in \(\mathfrak{R}^{n}\). More generally if a scalar product is defined on some space, then this permits the definition of a norm, or length, associated with a vector, and this in turn allows us to define the distance between two vectors. A distance function or metric may be defined on a space, \(X\), even when \(X\) admits no norm. For example let \(X\) be the surface of the earth. Clearly it is possible to say what is the shortest distance, \(d(x, y)\), between two points, \(x, y\), on the earth's surface, although it is not meaningful to talk of the "length" of a point on the surface. More general than the notion of a metric is that of a topology. Essentially a topology on a space is a mathematical notion for making more precise the idea of "nearness". The notion of topology can then be used to precisely define the property of continuity of a function between two topological spaces. Finally continuity of a preference gives proof of existence of a social choice and of an economic equilibrium in, a world that is bounded.

\subsection*{3.1.1 Scalar Product and Norms}

In \(\S 2.3\) we defined the Euclidean scalar product of two vectors
\[
x=\sum_{i=1}^{n} x_{i} e_{i}, \quad \text { and } \quad y=\sum_{i=1}^{n} y_{i} e_{i} \text { in } \Re^{n},
\]
where \(\left\{e_{1}, \ldots, e_{n}\right\}\) is the standard basis, to be
\[
\langle x, y\rangle=\sum_{i=1}^{n} x_{i} y_{i}
\]

More generally suppose that \(\left\{v_{1}, \ldots, v_{n}\right\}\) is a basis for \(\mathfrak{R}^{n}\), and \(\left(x_{1}, \ldots, x_{n}\right)\), \(\left(y_{1}, \ldots, y_{n}\right)\) are the coordinates of \(x, y\) with respect to this basis. Then
\[
\langle x, y\rangle=\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} y_{j}\left\langle v_{i}, v_{j}\right\rangle,
\]
where \(A=\left(a_{i j}\right)=\left\langle v_{i}, v_{j}\right\rangle_{i=1, \ldots, n ; j=1, \ldots, n}\). If we let \(v_{i}=\sum_{k=1}^{n} v_{i k} e_{k}\), then clearly \(\left\langle v_{i}, v_{i}\right\rangle=\sum_{k=1}^{n}\left(v_{i k}\right)^{2}>0\). Moreover \(\left\langle v_{i}, v_{j}\right\rangle\). Thus the matrix \(A\) is symmetric. Since \(A\) must be of rank \(n\), it can be diagonalized to give a matrix \(\wedge=Q^{t} A Q\), all of whose diagonal entries are positive. Here \(Q\) rep resents the orthogonal basis change matrix and \(Q^{t}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)\) gives the coordinates of \(x\) with respect to the basis of eigenvectors of \(A\). Hence
\[
\begin{aligned}
\langle x, y\rangle=\langle x, A(y)\rangle & =\left\langle x, Q \wedge Q^{t}(y)\right\rangle \\
& =\left\langle Q^{t}(x), \wedge Q^{t}(y)\right\rangle \\
& =\sum_{i=1}^{n} \lambda_{i} x_{i}^{\prime} y_{i}^{\prime}
\end{aligned}
\]

Thus a scalar product is a non-degenerate positive definite quadratic form. Note that the scalar product is bilinear since
\[
\left\langle x_{1}+x_{2}, y\right\rangle=\left\langle x_{1}, y\right\rangle+\left\langle x_{2}, y\right\rangle \text { and }\left\langle x, y_{1}+y_{2}\right\rangle=\left\langle x, y_{1}\right\rangle+\left\langle x, y_{2}\right\rangle,
\]
and symmetric since
\[
\langle x, y\rangle=\langle x, A(y)\rangle=\langle y, A(x)\rangle=\langle y, x .\rangle
\]

We shall call the scalar product given by \(\langle x, y\rangle=\sum_{i=1}^{n} x_{i} y_{i}\) the Euclidean scalar product.

We define the Euclidean norm, \(\left\|\|_{E}\right.\), by \(\| x \|_{E}=\sqrt{\langle x, x\rangle}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}\). Note that \(\|x\|_{E} \geq 0\) if and only if \(x=(0, \ldots, 0)\). Moreover, if \(a \in \mathfrak{R}\), then
\[
\|a x\|_{E}=\sqrt{\sum_{i=1}^{n} a^{2} x_{i}^{2}}=|a|\|x\|_{E} .
\]



Lemma 3.1. If \(x, y \in \mathfrak{R}^{n}\), then \(\|x+y\|_{E} \leq\|x\|_{E}+\|y\|_{E}\).
Proof. For convenience write \(\|x\|_{E}\) as \(\|x\|\). Now
\[
\|x+y\|^{2}=\langle x+y, x+y\rangle=\langle x, x\rangle+\langle x, y\rangle+\langle y, x\rangle+\langle y, y\rangle .
\]

But the scalar product is symmetric. Therefore
\[
\|x+y\|^{2}=\|x\|^{2}+\|y\|^{2}+2\langle x, y\rangle .
\]

Furthermore \((\|x\|+\|y\|)^{2}=\|x\|^{2}+\|y\|^{2}+2\|x\|\|y\|\). Thus \(\|x+y\| \leq\|x\|+\) \(\|y\| \operatorname{iff}\langle x, y\rangle \leq\|x\|\|y\|\). To show this note that \(\sum_{i<j}\left(x_{i} y_{j}-x_{j} y_{i}\right)^{2} \geq 0\). Thus \(\sum_{i<j}\left(x_{i}^{2} y_{j}^{2}+x_{j}^{2} y_{i}^{2}\right) \geq 2 \sum_{i<j} x_{i} y_{i} x_{j} y_{j}\). Add \(\sum_{i=1}^{n} x_{i}^{2} y_{i}^{2}\) to both sides. This gives \(\left(\sum_{i=1}^{n} x_{i}^{2}\right)\left(\sum_{i=1}^{n} y_{i}^{2}\right) \geq\left(\sum_{i=1}^{n} x_{i} y_{i}\right)^{2}\). Therefore \(\|x\|^{2}\|y\|^{2} \geq\langle x, y\rangle^{2}\) and so \(\frac{(x, y)}{\|x\|\|y\|} \leq 1\), or \(\|x+y\| \leq\|x\|+\|y\|\).

In this lemma we have shown that
\[
-1 \leq \frac{\langle x, y\rangle}{\|x\|\|y\|} \leq 1
\]

This ratio can be identified with \(\cos \theta\), where \(\theta\) is the angle between the two vectors \(x, y\). In the case of unit vectors, \(\langle x, y\rangle\) can be identified with the perpendicular projection of \(y\) onto \(x\) as in Figure 3.1.

Fig. 3.1


The property \(\|x+y\| \leq\|x\|+\|y\|\) is known as the triangle inequality,(see Figure 3.2).
Definition 3.1. Let \(X\) be a vector space over the field \(\mathfrak{R}\). A norm, \(\|\|\), on \(X\) is a mapping \(\|\|: X \rightarrow \Re\) which satisfies the following three properties:
N1. \(\|x\| \geq 0\) for all \(x \in X\), and \(\|x\|=0\) iff \(x=\underline{0}\).

N2. \(\|a x\|=|a|\|x\|\) for all \(x \in X\), and \(a \in \mathfrak{R}\).
N3. \(\|x+y\| \leq\|x\|+\|y\|\) for all \(x, y \in X\).

Fig. 3.2


There are many different norms on a vector space. For example if \(A\) is a non-
61
62

The Cartesian norm is \(\|x\|_{c}=\left\|\left(x_{1}, \ldots, x_{n}\right)\right\|_{c} \max \left\{\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right\}\).
Clearly \(\|x\|_{c} \geq 0\) and \(\|x\|_{c}=0\) iff \(x_{i}=0\) for all \(i=1, \ldots, n\). Moreover \(\|a x\|_{c}=\max \left\{\left|a x_{1}\right|, \ldots,\left|a x_{n}\right|\right\}=\max \left\{|a|+x_{1}|, \ldots,|a|| x_{n} \mid\right\}=|a|\left|x_{i}\right|\), for some 6 \(i\).

Thus \(\|a x\|_{c}=\left|\max \left\{\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right\}=|a|\|x\|_{c}\right.\).
Finally, \(\|x+y\|_{c}=\left|x_{i}+y_{i}\right|\) for some \(i \leq\left|x_{i}\right|+\left|y_{i}\right| \leq \max \left\{\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right\}+\) \(\max \left\{\left|y_{1}\right|, \ldots,\left|y_{n}\right|\right\}=\|x\|_{c}\|y\|_{c}\). Define the city block norm \(\|x\|_{B}\) to \(\|x\|_{B}=70\) \(\sum_{i=1}^{n}\left|x_{i}\right|\). Clearly \(\|x+y\|_{B}=\sum_{i=1}^{n}\left|x_{i}+y_{i}\right| \leq \sum_{i=1}^{n}\left(\left|x_{i}\right|+\left|y_{i}\right|\right)=\|x\|_{B}+71\) \(\|y\|_{B}\). If \(\|\|\) is a norm on the vector space \(X\), the distance function or metric \(d\) on 72 \(X\) induced by \(\|\|\) is the function \(d: X \times X \rightarrow \Re: d(x, y)=\| x-y \|\). Note \({ }_{73}\) that \(d(x, y) \geq\) for all \(x, y \in X\) and that \(d(x, y)=0\) iff \(x-y=0\), i.e., \(x=y\). 74 Moreover, \(d(x, y)+d(y, z)=\|x-y\|+\|y-z\| \geq\|(x-y)+(y-z)\|=75\) \(\|x-z\|=d(x, z)\). Hence \(d(x, z) \leq d(x, y)+d(y, z)\).

Definition 3.2. A metric on a set \(X\) is a function \(d: X \times X \rightarrow \mathfrak{R}\) such that
D1. \(d(x, y) \geq 0\) for all \(x, y \in X\) and \(d(x, y)=0\) iff \(x=y\)
D2. \(d(x, z) \leq d(x, y)+d(y, z)\) for all \(x, y, z \in X\).
Note that a metric \(d\) may be defined on a set \(X\) even when \(X\) is not a vector space. In particular \(d\) may be defined without reference to a particular norm. At the beginning of the chapter for example we mentioned that the surface of the earth \(S^{2}\), admits a metric \(d\), where the distance between two points \(x, y\) on the surface is measured along a great circle through \(x, y\). A second metric on \(S^{2}\) is obtained by defining \(d(x, y)\) to be the angle, \(\theta\), subtended at the centre of the earth by the two radii to \(x, y\) (see Figure 3.3).


Any set \(X\) which admits a metric, \(d\), we shall call metrisable, or a metric space. To draw attention to the metric, \(d\), we shall sometimes write \((X, d)\) for a metric space.

In a metric space \((X, d)\) the open ball at \(x\) of radius \(r\) in \(X\) is
\[
B_{d}(x, r)=\{y \in X: d(x, y)<r\},
\]
and the closed ball centre \(x\) of radius \(r\) is
\[
\operatorname{Clos} B_{d}(x, r)=\{y \in X: d(x, y) \leq r\} .
\]

The sphere of radius \(r\) at \(x\) is
\[
S_{d}(x, r)=\{y \in X: d(x, y)=r\} .
\]

In \(\Re^{n}\), the Euclidean sphere of radius \(r\) is therefore
\[
S(x, r)=\left\{y: \sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}=r_{i}^{2}\right\} .
\]

For convenience a sphere in \(\Re^{n}\) is often written as \(S^{n-1}\). Here the superfix is \(n-1\) because as we shall see the sphere in \(\mathfrak{R}^{n}\) is \((n-1)\)-dimensional, even though 9 it is not a vector space. If \((X, d)\) is a metric space, say a set \(V\) in \(X\) is \(d\)-open iff for any \(x \in V\) there is some radius \(r_{x}\) (dependent on \(x\) ) such that
\[
B_{d}\left(x, r_{x}\right) \subset V .
\]

Lemma 3.2. Let \(\Gamma_{d}\) be the family of all sets in \(X\) which are \(d\)-open. Then \(\Gamma_{d}\) satisfies the following properties:
T2. If \(U_{j} \in \Gamma_{d}\) for all \(j\) belonging to an index set \(J\) (which is possibly infinite), ..... 106then \(\cup_{j \in J} U_{j} \in \Gamma_{d}\).107
T3. Both \(X\) and the empty set, \(\Phi\), belong to \(\Gamma_{d}\). ..... 108
Proof. Clearly \(X\) and \(\Phi\) are \(d\)-open. If \(U\) and \(V \in \Gamma_{d}\), but \(U \cap V=\Phi\), then ..... 109
\(U \cap V\) is \(d\)-open. Suppose on the other hand that \(x \in U \cap V\). Since both \(U\) and ..... 110
\(V\) are open, there exist \(r_{1}, r_{2}\) such that \(B_{d}\left(x, r_{1}\right) \subset U\) and \(B_{d}\left(x_{1}, r_{2}\right) \subset V\). Let ..... 111
\(r=\min \left(r_{1}, r_{2}\right)\). By definition ..... 112
\[
B_{d}(x, r)=B_{d}\left(x, r_{1}\right) \cap B_{d}\left(x, r_{2}\right) \subset U \cap V
\]113
Thus there is an open ball, centre \(x\), of radius \(r\) contained in \(U \cap V\). ..... 114
Finally suppose \(x \in \cup_{j \in J} U_{j}=U\). Since \(x\) belongs to at least one \(U_{j}\), say ..... 115
\(U_{1}\), there is an open ball \(B=B\left(x, r_{1}\right)\) contained in \(U_{1}\). Since \(U_{1}\) is open so is \(U\).Q.E.D.Note that by \(\mathbf{T 1}\) the finite intersection of open sets is an open set, but infiniteintersection of open sets need not be open. To see this consider a set of the form116117
\[
I=(a, b)=\{x \in \mathfrak{R}: a<x<b\} .
\]
For any \(x \in I\) it is possible to find an \(\varepsilon\) such that \(a+\varepsilon<x<b-\varepsilon\). Hence the open ball \(B(x, \varepsilon)=\{y: x-\varepsilon<y<x+\varepsilon\}\) belongs to \(I\), and so \(I\) is open.
Now consider the family \(\left\{U_{r}: r=1, \ldots, \infty\right\}\) of sets of the form \(U_{r}=\left(-\frac{1}{r}, \frac{1}{r}\right)\).
Clearly the origin, 0 , belongs to each \(U_{r}\), and so \(0 \in \cap U_{r}=U\). Suppose that \(U\) is open. Since \(0 \in U\), there must be some open ball \(B(0, \varepsilon)\) belonging to \(U\). Let ro be an integer such that \(r_{0}>\frac{1}{\varepsilon}\), so \(\frac{1}{r_{0}}<\varepsilon\). But then \(U_{r_{0}}=\left(-\frac{1}{r_{0}}, \frac{1}{r_{0}}\right)\) is strictly contained in \((-\varepsilon, \varepsilon)\).
Therefore the ball \(B(0, \varepsilon)=\{y \in \mathfrak{R}:|y|<\varepsilon\}=(-\varepsilon, \varepsilon)\) is not contained in \(U_{r_{0}}\), and so cannot be contained in \(U\). Hence \(U\) is not open.

\subsection*{3.1.2 A Topology on a Set}
We may define a topology on a set \(X\) to be any collection of sets in \(X\) which satisfies the three properties \(\mathbf{T 1} \mathbf{1}^{\prime}, \mathbf{T 2}^{\prime}, \mathbf{T 3}^{\prime}\).
Definition 3.3. A topology \(\Gamma\) on a set \(X\) is a collection of sets in \(X\) which satisfies the following properties:
```

T1'. If }U,V\in\Gamma\mathrm{ then }U\capV\in\Gamma\mathrm{ .

```
T2 \({ }^{\prime}\). If \(J\) is any index set and \(U_{j} \in \Gamma\) for each \(j \in J\), then \(\cup_{j} U_{j} \in \Gamma\).
\(\mathbf{T 3}^{\prime}\). Both \(X\) and the empty set belong to \(\Gamma\).




Fig. 3.5
Fig. 3.6 The product Topology in \(\mathfrak{R}^{2}\).


Consider now the Cartesian norm on \(\mathfrak{R}^{n}\), where

A set \(U\) is open in the Cartesian topology \(\Gamma_{C}\) for \(\Re^{n}\) iff for every \(x \in U\) there exists some \(r>0\) such that the ball \(B_{C}(x, r) \subset U\).

Suppose now that \(U\) is an open set in the product topology \(\Gamma^{n}\) for \(\Re^{n}\). At any point \(x \in U\), there exist \(r_{1} \ldots r_{n}\) all \(>0\) such that215



Euclidean ball of radius \(r\) at \(x\)


City Block of radius \(r\) at \(x\)

Fig. 3.8
\[
B_{E}(x, r)=\left\{y \in \mathfrak{R}^{2}: \sum_{i=1}^{2}\left(y_{i}-x_{i}\right)^{2}<r^{2}\right\} \subset U .
\]

From Figure 3.9, it is obvious that the city block ball \(B_{B}(x, r)\) also belongs to \(B_{E}(x, r)\) and thus \(U\). Thus \(U\) is open in \(\Gamma_{B}\).

On the other hand the Cartesian ball \(B_{C}\left(x, \frac{r}{2}\right)\) belongs to \(B_{B}(x, r)\) and thus to \(U\). Hence \(U\) is open in \(\Gamma_{C}\).

Finally the Euclidean ball \(B_{E}\left(x, \frac{r}{2}\right)\) belongs to \(B_{C}\left(x, \frac{r}{2}\right)\). Hence if \(U\) is open in \(\Gamma_{C}\) it is open in \(\Gamma_{E}\).

Thus \(U\) open in \(\Gamma_{E} \Rightarrow U\) open in \(\Gamma_{B} \Rightarrow U\) open in \(\Gamma_{C} \Rightarrow U\) open in \(\Gamma_{E}\). Consequently all three topologies are identical in \(\mathfrak{R}^{2}\).

Fig. 3.9


Suppose that \(\Gamma_{1}\) and \(\Gamma_{2}\) are two topologies on a space \(X\). If any open set \(U\) in \(\Gamma_{1}\) is also an open set in \(\Gamma_{2}\) then say that \(\Gamma_{2}\) is as fine as \(\Gamma_{1}\) and write \(\Gamma_{1} \subset \Gamma_{2}\). If \(\Gamma_{1} \subset \Gamma_{2}\) and \(\Gamma_{2} \subset \Gamma_{1}\) then \(\Gamma_{1}\) and \(\Gamma_{2}\) are identical, and we write \(\Gamma_{1}=\Gamma_{2}\). If
\(\Gamma_{1} \subset \Gamma_{2}\) but \(\Gamma_{2}\) contains an open set that is not open in \(\Gamma_{1}\) then say \(\Gamma_{2}\) is finer than 250
\(\Gamma_{1}\). We also say \(\Gamma_{1}\) is coarser than \(\Gamma_{2}\).
    If \(d_{1}\) and \(d_{2}\) are two metrics on a space \(X\), then under some conditions the 252
topologies \(\Gamma_{1}\) and \(\Gamma_{2}\) induced by \(d_{1}\) and \(d_{2}\) are identical. Say the metrics \(d_{1}\) and
\(d_{2}\) are equivalent iff for each \(\varepsilon>0\) there exist \(\eta_{1}>0\) and \(\eta_{2}>0\) such that 254
\(d_{1}(x, y)<\eta_{1} \Rightarrow d_{2}(x, y)<\varepsilon\), and \(d_{2}(x, y)<\eta_{2} \Rightarrow 255\)
\(d_{1}(x, y)<\varepsilon\).
Another way of expressing this is that
\[
B_{1}\left(x, \eta_{1}\right) \subset B_{2}(x, \varepsilon), \text { and } B_{2}\left(x, \eta_{2}\right) \subset B_{2}(x, \varepsilon),
\]
where \(B_{i}(x, r)=\left\{y: d_{i}(x, y)<r\right\}\) for \(i=1\) or 2 .
Just as in Lemma 3.3, the Cartesian, Euclidean and city block metrics on \(\mathfrak{R}^{n}\) are 260 equivalent. We can use this to show that the induced topologies are identical.
We now show that equivalent metrics induce identical topologies.
If \(f: X \rightarrow \mathfrak{R}\) is a function, and \(V\) is a set in \(X\), define \(\sup (f, V)\), the supremum (from the Latin, supremus) of \(f\) on \(V\) to be the smallest number \(M \in \mathfrak{R}\) such that \(f(x) \leq M\) for all \(x \in V\).
Similarly define \(\inf (f, V)\), the infimum (again from the Latin, infimus) of \(f\) on \(V\) to be the largest number \(m \in \mathfrak{R}\) such that \(f(x) \geq m\) for all \(x \in V\).
Let \(d: X \times X \rightarrow \mathfrak{R}\) be a metric on \(X\). Consider a point, \(x\), in \(X\), and a subset of \(X\). Then define the distance from \(x\) to \(V\) to be \(d(x, V)=\inf (d(x,-), V)\), where \(d(x,-): V \rightarrow \mathfrak{R}\) is the function \(d(x,-)(y)=d(x, y)\).
Suppose now that \(U\) is an open set in the topology \(\Gamma_{1}\) induced by the metric \(d_{1}\) For any point \(x \in U\) there exists \(r>0\) such that \(B_{1}(x, r) \subset U\), where \(B_{1}(x, r)=\) \(\left\{y \in X: d_{1}(x, y)<R\right\}\). Since we assume the metrics \(d_{1}\) and \(d_{2}\) are equivalent there must exist \(s>0\), say, such that
\[
B_{2}(x, s) \subset B_{1}(x, r)
\]
where \(B_{2}(x, s)=\left\{y \in X: d_{2}(x, y)<s\right\}\). Indeed one may choose \(s=\) \(d_{2}\left(x, \overline{B_{1}(x, r)}\right)\) where \(\overline{B_{1}(x, r)}\) is the complement of \(B_{1}(x, r)\) in \(X\) (see Fig. 3.10) Clearly the set \(U\) must be open in \(\Gamma_{2}\) and so \(\Gamma_{2}\) is as fine as \(\Gamma_{1}\). In the same way, however, there exists \(t>0\) such that \(B_{1}(x, t) \subset B_{2}(x, s)\), where again one may choose \(t=d_{1}\left(x, \overline{B_{2}(x, s)}\right)\). Hence if \(U\) is open in \(\Gamma_{2}\) it is open in \(\Gamma_{1}\). Thus \(\Gamma_{1}\) is as fine as \(\Gamma_{2}\). As a consequence \(\Gamma_{1}\) and \(\Gamma_{2}\) are identical.
Thus we obtain the following lemma.
Lemma 3.4. The product topology, \(\Gamma^{n}\), Euclidean topology \(\Gamma_{E}\), Cartesian topology \(\Gamma_{C}\) and city block topology \(\Gamma_{B}\) are all identical on \(\mathfrak{R}^{n}\).
As a consequence we may use, as convenient, any one of these three metrics, or any other equivalent metric, on Rn knowing that topological results are unchanged.


Fig. 3.10

\subsection*{3.2 Continuity}

Suppose that \((X, \Gamma)\) and \((Y, \mathcal{S})\) are two topological spaces, and \(f: X \rightarrow Y\) is a function between \(X\) and \(Y\). Say that \(f\) is continuous (with respect to the topologies \(\Gamma\) and \(\mathcal{S}\) ) iff for any set \(U\) in \(\mathcal{S}\) (i.e., \(U\) is \(\mathcal{S}\)-open) the set \(f^{-1}(U)=\{x \in X\) \(f(x) \in U\}\) is \(\Gamma\)-open.

This definition can be given an alternative form in the case when \(X\) and \(Y\) are metric spaces, with metrics \(d_{1}, d_{2}\), say.

Consider a point \(x_{0}\) in the domain of \(f\). For any \(\varepsilon>0\), the ball
\[
B_{2}\left(f\left(x_{0}\right), \varepsilon\right)=\left\{y \in Y: d_{2}\left(f\left(x_{0}\right), y\right)<\varepsilon\right\}
\]
is open. For continuity, we require that the inverse image of this ball is open. That
is to say there exists some \(\delta\), such that the ball
\[
B_{1}\left(x_{0}, \delta\right)=\left\{x \in X: d_{1}\left(x_{0}, x\right)<\delta\right\}
\]
belongs to \(f^{-1}\left(B_{2}\left(f\left(x_{0}\right), \varepsilon\right)\right)\). Thus \(x \in B_{1}\left(x_{0}, \delta\right) \Rightarrow f(x) \in B_{2}\left(f\left(x_{0}\right), \varepsilon\right)\).
Therefore say \(f\) is continuous at \(x_{0} \in X\) iff for any \(\varepsilon>0, \exists \delta>0\) such that
\[
f\left(B_{1}\left(x_{0}, \delta\right)\right) \subset B_{2}\left(f\left(x_{0}\right), \varepsilon\right)
\]

In the case that \(X\) and \(Y\) have norms \(\left\|\|_{X}\right.\) and \(\| \|_{Y}\), then we may say that \(f\) is continuous at \(x_{0}\) iff for any \(\varepsilon>0, \exists \delta>0\) such that
\[
\left\|x-x_{0}\right\|_{x}<\delta \Rightarrow\left\|f(x)-f\left(x_{0}\right)\right\|_{y}<\varepsilon
\]

Then \(f\) is continuous on \(X\) iff \(f\) is continuous at every point \(x\) in its domain.
If \(X, Y\) are vector spaces then we may check the continuity of a function \(f\) \(X \rightarrow Y\) by using the metric or norm form of the definition.

For example suppose \(f: \mathfrak{R} \rightarrow \mathfrak{R}\) has the graph given in Figure 3.11. Clearly 3
\(f\) is not continuous. To see this formally let \(f\left(x_{0}\right)=y_{0}\) and choose \(\varepsilon\) such that \(\left|y_{1}-y_{0}\right|>\varepsilon\). If \(x \in\left(x_{0}-\delta, x_{0}\right)\) then \(f(x) \in\left(y_{0}-\varepsilon, y_{0}\right)\). Thus there exists no \(\delta>0\) such that
\[
x \in\left(x_{0}-\delta, x_{0}+\delta\right) \Rightarrow f(x) \in\left(y_{0}-\varepsilon, y_{0}+\varepsilon\right) .
\]

Hence \(f\) is not continuous at \(x_{0}\).


Fig. 3.11

We can give an alternative definition of continuity. A sequence of points in a space \(X\) is a collection of points \(\left\{x_{k}: k \in \mathcal{Z}\right\}\), indexed by the positive integers \(\mathcal{Z}\). The sequence is written \(\left(x_{k}\right)\). The sequence \(\left(x_{k}\right)\) in the metric space, \(X\), has a limit, \(x\), iff \(\forall \varepsilon>0 \exists k_{0} \in \mathcal{Z}\) such that \(k>k_{0}\) implies \(\left\|x_{k}-x\right\| x<\varepsilon_{1}\).

In this case write \(x_{k} \rightarrow x\) as \(k \rightarrow \infty\), or \(\operatorname{Lim}_{k \rightarrow \infty} x_{k}=x\).
Note that \(x\) is then an accumulation point of the sequence \(\left\{x_{1}, \ldots\right\}\).
More generally \(\left(x_{n}\right) \rightarrow x\) iff for any open set \(G\) containing \(x\), all but a finite number of points in the sequence \(\left(x_{k}\right)\) belong to \(G\).

Thus say \(f\) is continuous at \(x_{0}\) iff
\[
x_{k} \rightarrow x_{0} \text { implies } f\left(x_{k}\right) \rightarrow f\left(x_{0}\right) .
\]

Example 3.1. Consider the function \(f: \mathfrak{R}+\mathfrak{R}\) given by
\[
f: x \rightarrow\left\{\begin{array}{l}
x \sin \frac{1}{x} \text { if } x \neq 0 \\
0 \text { if } x=0
\end{array}\right.
\]

Now \(x \sin =\frac{1}{x}=\frac{\sin y}{y}\) where \(y=\frac{1}{x}\). Consider a sequence \(\left(x_{k}\right)\) where \(\operatorname{Lim}_{k \rightarrow \infty} x_{k}=0\). We shall write this limit as \(x \rightarrow 0 . \operatorname{Lim}_{x \rightarrow 0} x \sin \frac{1}{x} \frac{\sin y}{y}=0\)

\footnotetext{
since \(|\sin y|\) is bounded above by 1 , and \(\operatorname{Lim}_{y \rightarrow \infty} \frac{1}{y}=0\). Thus \(\operatorname{Lim}_{x \rightarrow 0} f(x)=0\). 329
But \(f(0)=0\), and so \(x_{k} \rightarrow 0\) implies \(f\left(x_{k}\right) \rightarrow 0\). Hence \(f\) is continuous at 0 . On \({ }_{330}\) the other hand suppose \(g(x)=\sin \frac{1}{x}\). Clearly \(g(x)\) has no limit as \(x \rightarrow 0\). To see 331 this observe that for any sequence \(\left(x_{k}\right) \rightarrow 0\) it is impossible to find a neighborhood \(G\) of some point \(y \in[-1,1]\) such that \(g\left(x_{k}\right) \in G\) whenever \(k>k_{o}\).332

Any linear function between finite-dimensional vector spaces is continuous. Thus 334 the set of continuous functions contains the set of linear functions, when the domain 335 is finite-dimensional. To see this suppose that \(f: V \rightarrow W\) is a linear transformation between normed vector spaces. (Note that \(V\) and \(W\) may be infinite-dimensional.) Let \(\left\|\|_{v}\right.\) and \(\| \|_{w}\), be the norms on \(V, W\) respectively. Say that \(f\) is bounded iff \(\exists B>0\) such that \(\|f(x)\|_{w} \leq B\|x\|_{v}\) for all \(x \in V\). Suppose now that
\[
\left\|f(x)-f\left(x_{0}\right)\right\|_{w}<\varepsilon .
\]

Now
\[
\left\|f(x)-f\left(x_{0}\right)\right\|_{w}=\left\|f\left(x-x_{0}\right)\right\|_{w} \leq B\left\|x-x_{0}\right\|_{v},
\]
since \(f\) is linear and bounded. Choose \(\delta=\frac{\varepsilon}{B}\). Then
\[
\left\|x-x_{0}\right\|_{v}<\delta \Rightarrow\left\|f(x)-f\left(x_{0}\right)\right\|_{w} \leq B\left\|x-x_{0}\right\|_{v} .
\]

Thus if \(f\) is linear and bounded it is continuous.
Lemma 3.5. Any linear transformation \(f: V \rightarrow W\) is bounded and thus continuous if \(V\) is finite-dimensional (of dimension \(n\) ).

Proof. Use the Cartesian norm \(\left\|\|_{c}\right.\), on \(V\), and let \(\| \|_{w}\) be the norm on \(W\). Let \(e_{1} \ldots e_{n}\) be a basis for \(V\)
\[
\begin{aligned}
\|x\|_{c} & =\sup \left\{\left|x_{i}\right|: i=1, \ldots, n\right\}, \text { and } \\
e & =\sup _{n}\left\{\left\|f\left(e_{i}\right)\right\|_{w}: i=1, \ldots, n\right\} .
\end{aligned}
\]

Now \(f(x)=\sum_{i=1} x_{i} f\left(e_{i}\right)\). Thus \(\|f(x)\|_{w} \leq \sum_{i}^{n}\left\|f\left(x_{i} e_{i}\right)\right\|_{w}\), by the triangle

Hence \(L\left(\mathfrak{R}^{n}, \mathfrak{R}^{m}\right)\) is a vector space over \(\mathfrak{R}\). Since \(\mathfrak{R}^{n}\) is finite dimensional,
}
\[
\|f\|=\sup _{x \in \mathfrak{R}^{n}}\left\{\frac{\|f(x)\|}{\|x\|}:\|x\| \neq 0\right\} .
\]

Since \(f\) is bounded this is defined. Moreover \(\|\|=0\) only if \(f\) is the zero function By definition \(\|f\|\) is the real number such that \(\|f\| \leq B\) for all \(B\) such that \(\|f(x)\| \leq B\|x\|\). In particular \(\|f(x)\| \leq\|f\|\|x\|\). If \(f, g \in L\left(\Re^{n}, \mathfrak{R}^{m}\right)\), then\(\|(f+g)(x)\|=\|f(x)+g(x)\|] \leq\|f(x)\|+\|g(x)\| \leq\|f\|\|x\|+\|g\|\|x\|=\) \((\|f\|+\|g\|)\|x\|\). Thus \(\|f+g\| \leq\|f\|+\|g\|\).

Hence \|\| on \(L\left(\Re^{n}, \mathfrak{R}^{m}\right)\) satisfies the triangle inequality, and so \(L\left(\Re^{n}, \mathfrak{R}^{m}\right)\) is a normed vector space. This in turn implies that \(L\left(\mathfrak{R}^{n}, \mathfrak{R}^{m}\right)\) has a metric and thus a topology. It is often useful to use the metrics
\[
\begin{aligned}
& d_{1}(f, g)=\sup \left\{\|f(x)-g(x)\|: x \in \mathfrak{R}^{n}\right\}, \text { or } \\
& d_{2}(f, g)=\sup \left\{\left|f_{i}(x)-g_{( }(x)\right|: i=1, \ldots, m, x \in \mathfrak{R}^{n}\right\}
\end{aligned}
\]
where \(f=\left(f_{1}, \ldots, f_{m}\right), g=\left(g_{1}, \ldots, g_{m}\right)\). We write \(\mathcal{L}^{1}\left(\mathfrak{R}^{n}, \mathfrak{R}^{m}\right)\) and \(\mathcal{L}^{2}\left(\Re^{n}, \mathfrak{R}^{m}\right)\) for the set \(\mathcal{L}\left(\mathfrak{R}^{n}, \mathfrak{R}^{m}\right)\) with the topologies induced by \(d_{1}\) and \(d_{2}\) respectively. Clearly these two topologies are identical.

Alternatively, choose bases for \(\mathfrak{R}^{n}\) and \(\mathfrak{R}^{m}\) and consider the matrix representation function
\[
M:\left(L\left(\Re^{n}, \Re^{m}\right),+\right) \rightarrow(M(n, m),+) .
\]

On the right hand side we add matrices element by element under the rule \(\left(a_{i j}\right)+\) \(\left(b_{i j}\right)=\left(a_{i j}+b_{i j}\right)\). With this operation \(M(n, m)\) is also a vector space. Clearly we is the elementary matrix with 1 in the \(i^{\text {th }}\) column and \(j^{t h}\) row.

Thus \(M(n, m)\) is a vector space of dimension \(n m\). Since \(M\) is a bijection, \(L\left(\Re^{n}, \Re^{m}\right)\) is also of dimension \(n m\).

A norm on \(M(n, m)\) is given by
\[
\|A\|=\sup \left\{\left|a_{i j}\right|: i=1, \ldots, n ; j=1, \ldots, m\right\}
\]
where \(A=\left(a_{i j}\right)\).
This in turn defines a metric and thus a topology on \(M(n, m)\). Finally this defines 386 a topology on \(L\left(\Re^{n}, \Re^{m}\right)\) as follows. For any open set \(U\) in \(M(n, m)\), let \(V=\) \(M^{-1}(U)\) and call \(V\) open. The base for the topology on \(L\left(\Re^{n}, \mathfrak{R}^{m}\right)\) then consists387
of all sets of this form. One can show that the topology induced on \(L\left(\mathfrak{R}^{n}, \mathfrak{R}^{m}\right)\) in this way is independent of the choice of bases. We call this the induced topology on \(L\left(\Re^{n}, \Re^{m}\right)\) and write \(L\left(\Re^{n}, \mathfrak{R}^{m}\right)\) for this topological space. If we consider the norm topology on \(M(n, m)\) and the induced topology \(L\left(\mathfrak{R}^{n}, \mathfrak{R}^{m}\right)\) then the representation map is continuous. Moreover the two topologies induced by the metrics \(d_{1}\) and \(d_{2}\) on \(L\left(\Re^{n}, \Re^{m}\right)\) are identical to the induced topology \(L\left(\Re^{n}, \mathfrak{R}^{m}\right)\). Thus M is also continuous when these metric topologies are used for its domain. (Exercise 3.3 at the end of the book is devoted to this obsemation.)



Lemma 3.9. If \(X\) is a compact topological space and \(P\) is an acyclic and lower demi-continuous preference on \(X\), then there exists a choice \(Z\) of \(P\) in \(X\).

Proof. Suppose on the contrary that there is no choice. Thus for all \(x \in X\) there exists some \(y \in X\) such that \(y P x\). Thus \(x \in \phi_{P}^{-1}(y)\). Hence \(U=\left\{\phi_{P}^{-1}(y): y \in\right.\) \(X\}\) is a cover for \(X\). Moreover for each \(y \in X, \phi_{P}^{-1}(y)\) open. Since \(X\) is compact, there exists a finite subcover of \(U\). That is to say there exists a finite set \(A\) in \(X\) such that \(U^{\prime}=\left\{\phi_{P}^{-1}(y): y \in A\right\}\) is a cover for \(X\). In particular this implies that for each \(x \in A\), there is some \(y \in A\) such that \(x \in P_{P}^{-1}(y)\), or that \(y P x\). But then \(C_{P}(A)=\left\{x \in A: \phi_{P}(x)=\phi\right\}=\phi\). Now \(P\) is acyclic on \(X\), and thus acyclic on \(A\). Hence, by the acyclicity of \(P\) and Lemma 1.8, \(C_{P}(A) \neq \Phi\). By the contradiction \(U=\left\{\phi_{P}^{-1}(y): y \in X\right\}\) cannot be a cover. That is to say there is some \(f \in X\) such that \(f \in \phi_{P}^{-1}(y)\) for no \(y \in X\). But then \(y P \bar{x}\) for no \(y \in X\), and \(\bar{x} \in C_{P}(X)\), or \(\bar{x}\) is the choice on \(X\).

This lemma can be used to show that a continuous function \(f: X \rightarrow \mathfrak{R}\) from a compact topological space \(X\) into the reals attains its bounds. Remember that we defined the supremum and infimum of \(f\) on a set \(Y\) to be
1. \(\sup (f, Y)=M\) such that \(f(x) \leq M\) for all \(x \in Y\) and if \(f(x)<M^{\prime}\) for all \(x \in Y\) then \(M^{\prime} \geq M\)
2. \(\inf (f, Y)=m\) such that \(f(x) \geq m\) for all \(x \in Y\) and if \(f(x) \geq m^{\prime}\) for all \(x \in Y\) then \(m \geq m^{\prime}\).

Say \(f\) attains its upper bound on \(Y\) iff there is some \(x_{s}\), in \(Y\) such that \(f\left(x_{s}\right)=\) \(\sup (f, Y)\). Similarly say \(f\) attains its lower bound on \(Y\) iff there is some \(x_{i}\) in \(Y\) such that \(f\left(x_{i}\right)=\inf (f, Y)\).

Given the function \(f: X \rightarrow \Re\), define a preference \(P\) on \(X \times X\) by \(x P y\) iff \(f(x)>f(y)\). Clearly \(P\) is acyclic, since \(>\) on \(\mathfrak{R}\) is acyclic. Moreover for any \(x \in X\),
\[
\phi_{P}^{-1}(x)=\{y: f(y)<f(x)\}
\]
is open, when \(f\) is continuous.
To see this let \(U=(-\infty, f(x))\). Clearly \(U\) is an open set in \(\Re\). Moreover \(f(y)\) belongs to the open interval \((\infty, f(x))\) iff \(y \in \phi_{P}^{-1}(x)\). But \(f\) is continuous, and so \(f^{-1}(U)\) is open in \(X\). Since \(y \in f^{-1}(U)\) iff \(y \in \phi_{P}^{-1}(x), \phi_{P}^{-1}(x)\) is open for any \(x \in X\).

Weierstrass Theorem. Let \((X, \Gamma)\) be a topological space and \(f: X \rightarrow \mathfrak{R}\) a continuous real-valued function. If \(Y\) is a compact subset of \(X\), then f attains its bounds on \(Y\).

Proof. As above, for each \(x \in Y\), define \(U_{x}=(-\infty, f(x))\). Then \(\phi_{P}^{-1}(x)=\) \(\{y \in Y: f(y)<f(x))=f^{-1}\left(U_{x}\right) \cap Y\) is an open set in the induced topology then \(f(Y)>f(\bar{x})\) for no \(y \in Y\). Hence \(f(y)<f(\bar{x})\) for all \(y \in Y\). Thus \(f(Z)=\sup (f, Y)\).

In the same way let \(Q\) be the relation on \(X\) given by \(x Q y\) iff \(f(x)<f(y)\). Then there is a choice \(\overline{\bar{x}} \in Y\) such that \(f(y)<f(\overline{\bar{x}})\) for no \(y \in Y\). Hence \(f(y) \geq f(\overline{\bar{x}})\) for all \(y \in Y\), and so \(f(\overline{\bar{x}})=\inf (f, Y)\). Thus \(f\) attains its bounds on \(Y\).

We can develop this result further.
Lemma 3.10. If \(f:(X, \Gamma)+(Z, \mathcal{S})\) is a continuous function between topological spaces, and \(Y\) is a compact subset of \(X\), then
\[
f(Y)=\{f(y) \in Z: y \in Y\}
\]

Proof. Let \(\left\{W_{\alpha}\right\}\) be an open cover for \(f(Y)\). Then each member \(W_{\alpha}\) of this cover may be expressed in the form \(W_{\alpha}=U_{\alpha} \cap f(Y)\) where \(U_{\alpha}\) is an open set in 2. For each a, let \(V_{\alpha}=f^{-1}\left(U_{\alpha}\right) \cap Y\). Now each \(V\), is open in the induced topology on \(Y\). Moreover, for each \(y \in Y\), there exists some \(W_{\alpha}\) such that \(f(y) \in W_{\alpha}\). Thus \(\left\{V_{\alpha}\right\}\) is an open cover for \(Y\). Since \(Y\) is compact, \(\left\{V_{\alpha}\right\}\) has a finite subcoyer \(\left\{V_{\alpha}: \alpha \in J\right\}\), and so \(\left\{f\left(V_{\alpha}\right): \alpha \in J\right\}\) is a finite subcover of \(\left\{W_{\alpha}\right\}\). Thus \(f(Y)\) is compact.

Now a real-valued continuous function \(f\) is bounded on a compact set, \(Y\) (by the Weierstrass Theorem). So \(f(Y)\) will be contained in \([f(\overline{\bar{x}}), f(\bar{x})]\) say, for some \(\overline{\bar{x}} \in Y\). Since \(f(Y)\) must also be compact, this suggests that a closed set of the form \([a, b]\) must be compact.

For a set \(Y \subset \mathfrak{R}\) define \(\sup (Y)=\sup (i d, Y)\), the supremum of \(Y\), and \(\inf (Y)=\) \(\inf (\mathrm{id}, Y)\), the infimum of \(Y\). Here \(i d: \mathfrak{R}+\mathfrak{R}\) is the identity on \(\mathfrak{R}\). The set \(Y \subset\) \(\mathfrak{R}\) is bounded above (or below) iff its supremum (or infimum) is finite. The set is bounded iff it is both bounded above and below. Thus a set of the form \([a, b]\), say with \(-\infty<a<b<+\infty\) is bounded.

Heine Borel Theorem. A closed bounded interval, \([a, b]\), of the real line is compact.

Sketch of Proof. Consider a family \(C=\left\{[a, q],\left[d_{j}, b\right]: i \in I, j \in J\right\}\) of subsets of \([a, b]\) with the finite intersection property. Suppose that neither \(I\) nor \(J\) is empty. Let \(d=\sup \left(\left\{d_{j}: j \in J\right\}\right)\) and suppose that for some \(k \in I, c_{k}<d\). Then there exists \(i \in I\) and \(j \in J\) such that \([a, G] \cap\left[d_{j}, b\right]=\Phi\), contradicting the finite intersection property. Thus \(c_{i} \geq d\), and so \(\left[a, c_{i}\right] \cap[d, b] \neq \Phi\), for all \(i \in I\). Hence the family \(C\) has non empty intersection. By Lemma 3.8, \([a, b]\) is compact.
Definition 3.6. A topological space \((X, \Gamma)\) is called Hausdorff iff any two distinct points \(x, y \in X\) have \(\Gamma\)-open neighbourhoods \(U_{x}, U_{y}\) such that \(U_{x} \cap U_{y}=\Phi\).
Lemma 3.11. If \((X, d)\) is a metric space then \(\left(X, \Gamma_{d}\right)\) is Hausdorff, where rd is the topology on \(X\) induced by the metric \(d\).

Proof. For two points \(x \neq y\), let \(\varepsilon=d(x, y) \neq 0\). Define \(U_{x}=B\left(x, \frac{\varepsilon}{3}\right)\) and \(U_{x}=B\left(y, \frac{\varepsilon}{3}\right)\).
Clearly, by the triangle inequality, \(B\left(x, \frac{\varepsilon}{3}\right) \cap B\left(y, \frac{\varepsilon}{3}\right)=\Phi\). Otherwise there \(d(x, y)<d(x, z)+d(z, y)=\frac{2 \varepsilon}{3}\). By contradiction the open balls of radius \(\frac{\varepsilon}{3}\) do not intersect. Thus ( \(x, \Gamma_{d}\) ) is Hausdorff.
A Hausdorff topological space is therefore a natural generalisation of a metric space.
Lemma 3.12. If \((X, \Gamma)\) is a Hausdorff topological space, then any compact subset \(Y\) of \(X\) is closed.
Proof. We seek to show that \(X \backslash Y\) is open, by showing that for any \(x \in X \backslash Y\), there exists a neighbourhood \(G\) of \(x\) and an open set \(H\) containing \(Y\) such that \(G \cap H=\Phi\). Let \(x \in X \backslash Y\), and consider any \(y \in Y\). Since \(X\) is Hausdorff, there exists a neighbourhood \(V(y)\) of \(y\) and a neighbourhood \(U(y)\), say, of \(x\) such that \(V(y) \cap U(y)=\Phi\). Since the family \(\{V(y): y \in Y\}\) is an open cover of \(Y\), and \(Y\) is compact, there exists a finite subcover \(\{V(y): y \in A\}\), where \(A\) is a finite subset of \(Y\).
Let \(H=\cup_{y \in V}(y)\) and \(G=\cap_{y \in A} U(y)\).
Suppose that \(G \cap H \neq \Phi\). Then this implies there exists \(y \in A\) such that \(V(y) \cap U(y)\) is non-empty. Thus \(G \cap H=\Phi\). Since \(A\) is finite, \(G\) is open. Moreover \(Y\) is contained in \(H\). Thus \(X \backslash Y\) is open and \(Y\) is closed.
Lemma 3.13. If \((X, \Gamma)\) is a compact topological space and \(Y\) is a closed subset so \(X\), then \(Y\) is compact.
Proof. Let \(\left\{U_{\alpha}\right\}\) be an open cover for \(Y\), where each \(U_{\alpha} \subset X\). Then \(\left\{V_{\alpha}=U_{\alpha} \cap Y\right\}\) is also an open cover for \(Y\).
Since \(X \backslash Y\) is open, \(\{X \backslash Y\} \cup\left\{V_{\alpha}\right\}\) is an open cover for \(X\).
Since \(X\) is compact there is a finite subcover, and since each \(V_{\alpha} \subset Y, X \backslash Y\) must be a member of this subcover. Hence the subcover is of the form \(\{X \backslash Y\} \cup\left\{V_{j}\right.\) \(j \in J\}\). But then \(\left\{V_{j}: j \in J\right\}\) is a finite subcover of \(\left\{V_{\alpha}\right\}\) for \(Y\). Hence \(Y\) is compact.
Tychonoff's Theorem. If \((X, \Gamma)\) and \((Y, \mathcal{S})\) are two compact topological spaces
Proof. To see this we need only consider a cover for \(X \times Y\) of the form \(\left\{U_{\alpha} \times V_{\beta}\right\}\) for \(\left\{U_{\alpha}\right\}\) an open cover for \(X\) and \(\left\{V_{\beta}\right\}\) an open cover for \(Y\). Since both \(X\) and \(Y\) are compact, both \(\left\{U_{\alpha}\right\}\) and \(\left\{V_{\alpha}\right\}\) have finite subcovers \(\left\{U_{j}\right\}_{j \in J}\) and \(\left\{V_{k}\right\}_{k \in K}\), and so \(\left\{U_{j} \times V_{k}:(j, k) \in J \times K\right\}\) is a finite subcover for \(X \times Y\).
As a corollary of this theorem, let \(I_{k}=\left[a_{k}, b_{k}\right]\) for \(k=1, \ldots, n\) be aexists some finite number \(K(y)\) such that \(\|x-y\|<K(y)\) for all \(x \in Y\). Here \(\|\|\) is

Lemma 3.14. If \(Y\) is a closed bounded subset of \(\Re^{n}\) then \(Y\) is compact.
Proof. By the above, there is a closed cube \(I^{n}\) such that \(Y \subset I^{n}\). But \(I^{n}\) is compact by Tychonoff's Theorem. Since \(Y\) is a closed subset of \(I^{n}, Y\) is compact, by Lemma 3.13.

In \(\Re^{n}\) a compact set \(Y\) is one that is both closed and bounded. To see this note that \(\Re^{n}\) is certainly a metric space, and therefore Hausdorff. By Lemma3.12, if \(Y\) is compact, then it must be closed. To see that it must be bounded, consider the unbounded closed interval \(A=[0, \infty)\) in \(\Re\), and an open cover \(\left\{U_{k}\right\rangle=\) \((k-2, k) ; k=1, \ldots, \infty\}\). Clearly \(((-1, l),(0,2),(1,3), \ldots)\) cover \([0, \infty)\). A finite subcover must be bounded above by \(K\), say, and so the point \(K\) does not belong to the subcover. Hence \([0, \infty)\) is non-compact.
Lemma 3.15. A compact subset \(Y\) of \(\mathfrak{R}\) contains its bounds.
Proof. Let \(s=\sup (\mathrm{id}, Y)\) and \(i=\inf (\mathrm{id}, Y)\) be the supremum and infimum of \(Y\). Here id \(: \Re \rightarrow \Re\) is the identity function. By the discussion above, \(Y\) must be bounded, and so \(i\) and \(s\) must be finite. We seek to show that \(Y\) contains these bounds, i.e, that \(i \in Y\) and \(s \in Y\). Suppose for example that \(s \notin Y\). By Lemma 3.12, \(Y\) must be closed and hence \(R \backslash Y\) must be open. But then there exists a neighbourhood ( \(s-\varepsilon, s+\varepsilon\) ) of s in \(\mathfrak{R} \backslash Y\), and so \(s-\frac{\varepsilon}{2} \notin Y\). But this implies that \(y \leq s-\frac{\varepsilon}{2}\) for all \(y \in Y\), which contradicts the assumption that \(s=\sup (\mathrm{id}, Y)\). Hence \(s \in Y\). A similar argument shows that \(i \in Y\). Thus \(Y=\left[i, y_{1}\right] U, \ldots, U\left[y_{r}, s\right]\) say, and so \(Y\) contains its bounds.
Lemma 3.16. Let \((X, \Gamma)\) be a topological space and \(f: X \rightarrow \Re\) a continuous
\[
f\left(x_{0}\right) \leq f(y) \leq f\left(x_{1}\right) \text { for all } y \in Y .
\]

Note that \(f(Y)\) must be bounded, and so \(f\left(x_{0}\right)\) and \(f\left(x_{1}\right)\) must be finite.
We have here obtained a second proof of the Weierstrass Theorem that a

Lemma 3.17. Suppose \(Y\) is a subset of a metric space \((X, d)\) and \(x \in X\). Then the function \(f_{x}: Y \rightarrow \mathfrak{R}\) given by \(f_{x}(y)=d(x, y)\) is continuous.


Fig. 3.12

Lemma 3.18. If \(Y\) is a compact subset of a compact metric space \(X\) and \(x \in X\), then there exists a point \(y_{+} 0 \in Y\) such that \(d(x, Y)=d\left(x, y_{0}\right)<\infty\).

Proof. By Lemma3.17, the function \(d(x,-): Y \rightarrow \Re\) is continuous. By Lemma 3.16, this function attains its lower and upper bounds on \(Y\). Thus there exists \(y_{0} \in Y\) such that \(d\left(x, y_{0}\right)=\inf (d(x,-), Y)=d(x, Y)\), where \(d\left(x, y_{0}\right)\) is finite.

The point \(y_{0}\) in \(Y\) such that \(d\left(x, y_{0}\right)=d(x, Y)\) is the nearest point in \(Y\) to \(x\).
Note of course that if \(x \in Y\) then \(d(x, Y)=0\).
More importantly, when \(Y\) is compact \(d(x, Y)=0\) if and only if \(x \in Y\). To see this necessity, suppose that \(d(x, Y)=0\). Then by Lemma 3.18, there exists \(y_{0} \in Y\) such that \(d\left(x, y_{0}\right)=0\). By the definition of a metric \(d\left(x, y_{0}\right)=0\) iff \(x=y_{0}\) and so \(x \in Y\). The point \(y \in Y\) that is nearest to \(x\) is dependent on the metric of course, and may also not be unique.

\subsection*{3.4 Convexity}

\subsection*{3.4.1 A Convex Set}

If \(x, y\) are two points in a vector space, \(X\), then the \(\operatorname{arc},[x, y]\), is the set \(\{z \in X\)
combination of \(x\) and \(y\). If \(Y\) is a subset of \(X\), then the convex hull, \(\operatorname{con}(Y)\), of \(Y\) is
the smallest set in \(X\) that contains, for every pair of points \(x, y\) in \(Y\), the \(\operatorname{arc}[x, y]\). 572
The set \(Y\) is called convex iff \(\operatorname{con}(Y)=Y\). The set \(Y\) is strictly convex iff for any
\(x, y \in Y\) the combination \(\lambda x+(1-X) y\), for \(\lambda \in(0,1)\), belongs to the interior of \(Y\) s.

Note that if \(Y\) is a vector subspace of the real vector space \(X\) then \(Y\) must be convex. For then if \(x, y \in Y\) both \(\lambda,(1-\lambda) \in \mathfrak{R}\) and so \(\lambda x+(1-X) y \in Y\).

Definition 3.7. Let \(Y\) be a real vector space, or a convex subset of a real vector space, and let \(f: Y \rightarrow \mathfrak{R}\) be a function. Then \(f\) is said to be
1. convex iff \(f(\lambda x+(1-\lambda) Y) \leq \lambda f(x)+(1-X) f(Y)\)
2. concave iff \(f(\lambda x+(1-\lambda) Y) \geq \lambda f(x)+(1-X) f(Y)\)
3. quasi-concave iff \(f(\lambda x+(1-\lambda) y) \geq \min [f(x), f(y)]\) for any \(x, y \in Y\) and
any \(\lambda \in[O, l]\)
Suppose now that \(f: Y \rightarrow \mathfrak{R}\) and consider the preference \(P \subset Y \times Y\) induced by \(f\). For notational convenience from now on we regard \(P\) as a correspondence \(P: Y \rightarrow Y\). That is define \(P\) by
\[
P(x)=\{y \in Y: f(y)>f(x)\} .
\]

If \(f\) is quasi-concave then when \(y_{1}, y_{2}, \in P(x)\),
\[
f\left(\lambda y_{1}+(1-\lambda) y_{2}\right) \geq \min \left[f\left(y_{1}\right), f\left(y_{2}\right)\right]>f(x) .
\]

Hence \(\lambda y_{1}+(1-\lambda) y_{2} \in P(x)\). Thus for all \(x \in Y, P(x)\) is convex.
We shall call a preference correspondence \(P: Y \rightarrow Y\) convex when \(Y\) is convex and \(P\) is such that \(P(x)\) is convex for all \(x \in Y\).

When a function \(f: Y \rightarrow \mathfrak{R}\) is quasi-concave then the strict preference correspondence \(P\) defined by \(f\) is convex. Note also that the weak preference \(R: Y \rightarrow Y\) given by
\[
R(x)=\{y \in Y: f(y) \geq f(x)\}
\]
will also be convex.
If \(f: Y \rightarrow \mathfrak{R}\) is a concave function then it is quasi-concave. To see this consider \(x, y \in Y\), and suppose that \(f(x) \leq f(y)\). By concavity,
\[
\begin{aligned}
f(\lambda x+(1-\lambda) y) & \geq \lambda f(x)+(1-\lambda) f(y) \\
& \geq \lambda f(x)+(1-\lambda) f(x) \\
& \geq \min [f(x), f(y)] .
\end{aligned}
\]

Thus \(f\) is quasi-concave. Note however that a quasi-concave function need be neither convex nor concave. However if \(f\) is a linear function then it is convex
concave and quasi-concave. There is a partial order \(>\) on \(\mathfrak{R}^{n}\) given by \(x>y\) iff 602 \(x_{i}>y_{i}\) where \(x=\left(x_{1}, \ldots, x_{n}\right), y=\left(y_{1}, \ldots, y_{n}\right)\). A function \(f: \mathfrak{R}^{n} \rightarrow \mathfrak{R}{ }_{603}\) is weakly monotonically increasing iff \(f(x)>f(y)\) for any \(x, y \in \Re^{n}\) such that 604 \(x>y\). A function \(f: \mathfrak{R}^{n} \rightarrow \mathfrak{R}\) has decreasing returns to scale iff \(f\) is weakly 605 monotonically increasing and concave. A very standard assumption in economic 606 theory is that feasible production of an output has decreasing returns to scale of 607 inputs, and that consumers' utility or preference has decreasing returns to scale in 608 consumption. We shall return to this point below.

Fig. 3.13 (i)


Fig. 3.13 (ii)



Fig. 3.13 (iii)


Fig. 3.13 (iv)

\subsection*{3.4.2 Examples}

Example 3.2. (i) Consider the set \(X_{1}=\left\{\left(x_{1}, x_{2}\right) \in \mathfrak{R}^{2}: x_{2} \geq x_{1}\right\}\). Clearly if 611 \(x_{2} \geq x_{1}\) and \(x_{2}^{\prime} \geq x_{1}^{\prime}\) then \(\lambda x_{2}+(1-A) x_{2}^{\prime} \geq \lambda x_{1}(1-\lambda) x_{1}^{\prime}\), for \(\lambda \in[0,1]\). 612 Thus \(\lambda\left(x_{1}, x_{2}\right)+(1-A)\left(x_{1}^{\prime}, x_{2}^{\prime}\right)=\lambda x_{1}+(1-\lambda) x_{1}^{\prime}, \lambda x_{2}+(1-\lambda) x_{2}^{\prime} \in X_{1}\).
Hence \(X_{1}\) is convex.
On the other hand consider the set \(X_{2}=\left\{\left(x_{1}, x_{2}\right) \in \mathfrak{R}^{2}: x_{2} \geq x_{1}^{2}\right\} . \quad{ }_{615}\)
As Figure 3.13(i) indicates, this is a strictly convex set. However the set 616 \(X_{3}=\left\{\left(x_{1}, x_{2}\right) \in \mathfrak{R}^{2}:\left|x_{2}\right| \geq x_{1}^{2}\right\}\) is not convex. To see this suppose \(x_{2}<0\). 617

Fig. 3.13 (v)


Then \(\left(x_{1}, x_{2}\right) \in X_{3}\) implies that \(x_{2} \leq-x_{1}^{2}\). But then \(-x_{2} \geq x_{1}^{2}\). Clearly \(\left(x_{1}, 0\right)\) belongs to the convex combination of \(\left(x_{1}, x_{2}\right)\) and \(\left(x_{1},-x_{2}\right)\) yet \(\left(x_{1}, O\right) \notin X_{3}\)
(ii) Consider now the set \(X_{4}=\left\{\left(x_{1}, x_{2}\right): x_{2}>x_{1}^{3}\right\}\). AS Figure 3.13(ii) shows it is possible to choose \(\left(x_{1}, x_{2}\right)\) and \(\left(x_{1}^{\prime}, x_{2}^{\prime}\right)\) with \(x_{1}<0\), so that the convex combination of ( \(x_{1}, x_{2}\) ) and ( \(x_{1}, x_{2}\) ) does not belong to \(X_{4}\). However \(X_{5}=\) \(\left\{\left(x_{1}, x_{2}\right) \in \mathfrak{R}^{2}: x_{2} \geq x_{1}^{3}\right.\) and \(\left.x_{1} \geq 0\right\}\) and \(X_{6}=\left\{\left(x_{1}, x_{2}\right) \in \mathfrak{R}^{2}: x_{2} \leq x_{1}^{3}\right.\) and \(\left.x_{1} \leq 0\right\}\) are both convex sets.
(iii) Now consider the set \(X_{7}=\left\{\left(x_{1}, x_{2}\right) \in \mathfrak{R}^{2}: x_{1} x_{2} \geq 1\right\}\). From Figure \(=3.13\) (iii) it is clear that the restriction of the set \(X_{7}\) to the positive quadrant \(\mathfrak{R}_{+}^{2}=\left\{\left(x_{1}, x_{2}\right) \in \mathfrak{R}^{2}: x_{1} \leq 0\right.\) and \(\left.x+2 \leq 0\right\}\) is strictly convex, as is the restriction of \(x_{7}\) to the negative quadrant \(\mathfrak{R}=\left\{\left(x_{1}, x_{2}\right) \in \mathfrak{R}^{2}: x_{1} \leq\right.\) and \(\left.x_{2} \leq 0\right\}\). However if \(\left(x_{1}, x_{2}\right) \in X_{7} \cap \mathfrak{R}_{+}^{2}\) then \(\left(-x_{1},-x_{2}\right) \in X_{7} \cap \mathfrak{R}_{-}^{2}\). Clearly the origin \((0,0)\) belongs to the convex hull of \(\left(x_{1}, x_{2}\right)\) and \(\left(-x_{1},-x_{2}\right)\), yet does not belong to \(X_{7}\). Thus \(X_{7}\) is not convex.
Finally a set of the form
\[
X_{8}\left\{\left(x_{1}, x_{2}\right) \in \mathfrak{R}_{+}^{2}: x_{2} \leq x_{1}^{\alpha} \text { for } \alpha \in(0,1)\right\} .
\]
is also convex. See Figure 3.13(iv).
Example 3.3. (i) Consider the set \(B=\left\{\left(x_{1}, x_{2}\right) \in \mathfrak{R}^{2}:\left(x_{l}-a_{1}\right)^{2}+\left(x_{2}-a_{2} .\right)^{2} \leq\right.\) \(\left.r^{2}\right\}\). See Figure 3.13(v). This is the closed ball centered on \(\left(a_{1}, a_{2}\right)=a\), of radius \(r\). Suppose that \(x, y \in B\) and \(a=\lambda x+(1-\lambda) y\) for \(\lambda \in[0,1]\).

Let \(\|\|\) stand for the Euclidean norm. Then \(x, y\) both satisfy \(\| x-a \| \leq r\), \(\|y-a\| \leq r\). But \(\left\|a-a^{\prime}\right\| \leq \lambda\|x-a\|+(1-\lambda)\|y-a\|\). Thus \(\|z-a\| \leq r\) and so \(z \in B\). Hence \(B\) is convex. Moreover \(B\) is a closed and bounded subset of \(\mathfrak{R}^{2}\) and is thus compact. For a general norm on \(\mathfrak{R}^{n}\), the closed ball \(B=\{x \in\) \(\left.\mathfrak{R}^{n}:\|x-a\| \leq r\right\}\) will be compact and convex. In particular, if the Euclidean norm is used, then \(B\) is strictly convex.
(ii) In the next section we define the hyperplane \(H(\rho, \alpha)\) normal to a vector \(\rho\) in 644 \(\mathfrak{R}^{n}\) to be \(\left\{x \in \mathfrak{R}^{n}:\langle p, x\rangle=\alpha\right\}\) where \(\alpha\) is some real number. Suppose that
\(x, y \in H(\rho, x)\).
\[
\text { Now } \begin{aligned}
\langle\rho, \lambda x+(1-\lambda) y\rangle & =\langle\lambda(\rho, x)+(1-\lambda)(\rho, y)\rangle \\
& =\alpha, \text { whenever } \lambda \in[0,1]
\end{aligned}
\]

Thus \(H(\rho, \alpha)\) is a convex set. We also define the closed half-space \(H_{+}(\rho, \alpha)\) by \(H_{+}(\rho, \alpha)=\left\{x \in \mathfrak{R}^{n}:\langle p, x\rangle \geq \alpha\right\}\). Clearly if \(x, y \in H_{+}(p, \alpha)\) then \(\langle\rho, \lambda x+(1-\) \(X) y\rangle=\left(X\langle\rho, x\rangle+(1-\lambda)\langle\rho, y\rangle \geq \alpha\right.\) and so \(H_{+}(\rho, \alpha)\) is also convex.

Notice that if \(B\) is the compact convex ball in \(\mathfrak{R}^{n}\) then there exists some \(\rho \in \mathfrak{R}^{n}\) and some \(a \in \mathfrak{R}\) such that \(B \subset H_{+}(\rho, \alpha)\).
If \(A\) and \(B\) are two convex sets in \(\mathfrak{R}^{n}\) then \(A \cap B\) must also be a convex set, while
\(A \cup B\) need not be. For example the union of two disjoint convex sets will not be convex.

We have called a function \(f: Y \rightarrow \mathfrak{R}\) convex on \(Y\) iff \(f(\lambda x+(1-\lambda) y) \leq\) \(\lambda f(x)+(1-\lambda) f(y)\) for \(x, y \in Y\).

Clearly this is equivalent to the requirement that the set \(F=\{(z, x) \in \Re \times Y\) \(\geq f(x)\}\) is convex. (See Figure 3.14.)
\(F\) is a convex set

Fig. 3.14

To see this suppose \(\left(z_{1}, x_{1}\right)\) and \(\left(z_{2}, z_{2}\right) \in F\).
Then \(\lambda\left(z_{1}, x_{1}\right)+(1-\lambda)\left(z_{2}, x_{2}\right) \in F\) iff \(\lambda z_{2}+(1-\lambda) z_{2} \geq f\left(\lambda x_{1}+(1-\lambda) x_{2}\right)\). But \(\left(f\left(x_{1}\right), x_{1}\right)\) and \(\left(f\left(x_{2}\right), x_{2}\right) \in F\), and so \(\lambda z_{1}+(1-\lambda) z_{2} \geq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right) \geq\) \(f\left(\lambda x_{1}+(1-\lambda) x_{2}\right)\) for \(\lambda \in[0,1]\).

In the same way \(f\) is concave on \(Y\) iff \(G=\{(z, x) \in \mathfrak{R} \times Y: z \leq f(x)\}\) is convex. If \(f: Y \rightarrow \mathfrak{R}\) is concave then the function \((-f): Y \rightarrow \mathfrak{R}\), given by \((-f)(x)=-f(x)\), is convex and vice versa.

To see this note that if \(z \geq f(x)\) then \(-z \geq-f(x)\), and so
\(G=\{(z, x) \in \mathfrak{R} \times Y: z \leq f(x)\}\) is convex implies that
\(F=\{(z, x) \in \mathfrak{R} \times Y: z \geq(-f)(x)\}\) is convex.

Finally \(f\) is quasi-concave on \(Y\) iff, for all \(z \in \mathfrak{R}\), the set \(G(z)=\{x \in Y: z \leq\)
\(f(x)\}\) is convex.
\(\quad\) Notice that \(G(x)\) is the image of \(G\) under the projection mapping \(p_{z}: \Re \times Y \rightarrow\)
\(Y:(z, x) \rightarrow x\). Since the image of a convex set under a projection is convex, clearly
\(G(z)\) is convex for any \(z\) whenever \(G\) is convex. As we know already this means that \begin{tabular}{|l|l|l}
\hline a concave function is quasi-concave. We now apply these observations. & 674
\end{tabular}

Example 3.4. (i) Let \(f: \mathfrak{R} \rightarrow \mathfrak{R}\) by \(x \rightarrow x^{2}\).
As example 3.2(i) showed, the set \(F=\left\{(x, z) \in \mathfrak{R} \times \mathfrak{R}: z \geq f(x)=x^{2}\right\} 676\) is convex. Hence \(f\) is convex.
(ii) Now let \(f: \mathfrak{R} \rightarrow \mathfrak{R}\) by \(x \rightarrow x^{3}\). Example 3.2(ii) showed that the set \(F=678\) \(\left\{(x, z) \in \mathfrak{R}+\times \mathfrak{R}: z \geq f(x)=x^{3}\right\}\) is convex and so f is convex on the 679 convex set \(\mathfrak{R}_{+}=\{x \in \mathfrak{R}: x \geq 0\}\).

On the other hand \(F=\left\{(x, z) \in \mathfrak{R}_{-} \times \mathfrak{R}: z \leq f(x)=x^{3}\right\}\) is convex 680 and so \(f\) is concave on the convex set \(\mathfrak{R}_{-}=\{x \in \mathfrak{R}: x \leq 0\}\). 682
(iii) Let \(f: \mathfrak{R} \rightarrow \mathfrak{R}\) by \(x \rightarrow \frac{1}{x}\). By example 3.2(iii) the set \(F=\{(x, z) \in 683\) \(\left.\Re_{+} \times \Re: z \geq f(x)=\frac{1}{x}\right\}\) is convex, and so \(f\) is convex on \(\Re_{+}\)and concave 684 on \(\mathfrak{R}_{-}\).
(iv) Let \(f(x)=x^{\alpha}\) where \(0<\alpha<1\). Then \(F=\left\{(x, z) \in \mathfrak{R}_{+} \times \mathfrak{R}: z \leq\right.\) \(\left.f(x)=x^{\alpha}\right\}\) is convex, and so \(f\) is concave.
(v) Consider the exponential function exp : \(\mathfrak{R} \rightarrow \mathfrak{R}: x \rightarrow e^{x}\). Figure 3.15(i) 688 demonstrates that the exponential function is convex. Another'way of showing this is to note that \(e^{x}>f(x)\) for any geometric function \(f: x \rightarrow x^{r}\) for \(r>1\), for any \(x \in \mathfrak{R}_{+}\).

Since the geometric functions are convex, so is \(e^{x}\). On the other hand as Figure 3.15(ii) shows the function \(\log _{e}: \mathfrak{R}_{+} \rightarrow \mathfrak{R}\), inverse to exp , is concave.
(vi) Consider now \(f: \mathfrak{R} \rightarrow \mathfrak{R}:(x, y) \rightarrow x y\). Just as in example 3.2(iii) the set 695 \(\left.\left\{(x, y) \in \mathfrak{R}_{+}^{2}: x y \geq t\right\}=\mathfrak{R}_{+}^{2} \cap f^{-1}[t, \infty)\right\}\) is convex and so \(f\) is a quasiconcave function on \(\mathfrak{R}_{+}^{2}\). Similarly \(f\) is quasi-concave on \(\mathfrak{R}_{-}^{2}\). However \(f\) is not quasi-concave on \(\mathfrak{R}^{2}\).
(vii) Let \(f: \Re^{2} \rightarrow \Re:\left(x_{1}, x_{2}\right) \rightarrow r^{2}-\left(x_{1}-a_{1}\right)^{2}-\left(x_{2}-a_{2}\right)^{2}\) Since the function \(g(x)=x^{2}\) is convex, \((-g)(x)=-x^{2}\) is concave, and so clearly \(f\) is a concave function. Moreover it is obvious that \(f\) has a supremum in \(\mathfrak{R}^{2}\) at the point \(\left(x_{1}, x_{2}\right)=\left(a_{1}, a_{2}\right)\). On the other hand the functions in examples 3.4 (iv) to (vi) are monotonically increasing

\subsection*{3.4.3 Separation Properties of Convex Sets}

Let \(X\) be a vector space of dimension \(n\) with a scalar product \(\langle\),\(\rangle . Define H(\rho, \alpha)=\)

Fig. 3.15

distance from the origin. To see this suppose that \(x=\lambda \rho\) belongs to \(H(\rho, \alpha)\). Then \(\left.\left\langle\rho,\langle\lambda \rho\rangle=\lambda\|\rho\|^{2}=\alpha\right.\). Thus \(\lambda=\frac{\alpha}{\|\rho\|^{2}}\). Hence the length of \(x\) is \(\left.\|x\|=\right| A \right\rvert\,\|\rho\|=\)

Clearly if \(y=\lambda \rho+y_{0}\) belongs to \(H(\rho, \alpha)\) then \(\langle\rho, y\rangle=\left\langle\rho, \lambda \rho+y_{0}\right\rangle=\) \(\alpha+\left\langle\rho, y_{0}\right\rangle\) and so \(\left\langle\rho, y_{0}\right\rangle=0\).

Thus any vector \(y\) in \(H(\rho, \alpha)\) can be written in the form \(y=\lambda \rho+y_{0}\) where \(y_{0}\) is orthogonal to \(\rho\). Since there exist \((n-1)\) linearly independent vectors \(y_{1}, \ldots, y_{n-1}\), all orthogonal to \(\rho\), any vector \(y \in H(\rho, \alpha)\) can be written in the form
\[
y=\lambda \rho+\sum_{i=1}^{n-1} a_{i} y_{i}
\]

Thus \(H(\rho, \alpha)=\lambda_{\rho}+\{\rho\}\) has the form of an \((n-1)\)-dimensional vector subspace 719
displaced a distance \(\frac{|\alpha|}{\|\rho\|}\) along the vector \(\rho\). Clearly if \(\rho_{1}\) and \(\rho_{2}\) are colinear vectors (i.e., \(\rho_{2}=a \rho_{1}\) for some \(a \in \mathfrak{R}\) ) then \(\left\{\rho^{\perp}\right\}=\left\{\left(\rho_{2}\right)^{\perp}\right\}\).

Suppose that \(\frac{\alpha_{1} \rho_{1}}{\|\rho\|^{2}}=\frac{\alpha_{2} \rho_{2}}{\|\rho\|^{2}}\), then both \(H\left(\rho_{1}, \alpha_{1}\right)\) and \(H\left(\rho_{2}, \alpha_{2}\right)\) contain the same 722 point and are thus identical. Thus \(H\left(\frac{\rho_{1}}{\left\|\rho_{2}\right\|}, \frac{\alpha_{1}}{\left\|\rho_{1}\right\|}\right)\).

The hyperplane \(H(\rho, \alpha)\) separates \(X\) into two closed half-spaces:
\[
H_{+}(\rho, \alpha)=\{x \in X:\langle\rho, x\rangle \geq \alpha\}, \text { and } H_{-}(\rho, \alpha)=\{\langle\rho, x\rangle \leq \alpha\} .
\]

We shall also write
\[
H_{+}^{0}(\rho, \alpha)=\{x \in X:\langle\rho, x\rangle>\alpha\}, \text { and } H_{-}^{0}(\rho, \alpha)=\{x \in X:\langle\rho, x\rangle<\alpha\}
\]
for the open half-spaces formed by taking the interiors of \(H_{+}(\rho, \alpha)\) and \(H_{-}(\rho, \alpha)\)

Lemma 3.19. Let \(Y\) be a non-empty compact convex subset of a finite dimensional \(H(\rho, \alpha)\) through a point \(y_{0} \in Y\) such that
\[
\langle\rho, x\rangle<\alpha=\left\langle\rho, y_{0}\right\rangle \leq\langle\rho, y\rangle \text { for all } y \in Y .
\]

Proof. As in Lemma 3.17 let \(f_{x}: Y \rightarrow \mathfrak{R}\) be the function \(f_{x}=(y)=\|x-y\|\), where \(\|\|\) is the norm induced from the scalar product \(\langle\),\(\rangle in X\).

By Lemma 3.18 there exists a point \(y_{0} \in Y\) such that \(\left\|x-y_{0}\right\|=\inf \left(f_{x}, Y\right)=\) \(d(x, Y)\). Thus \(\left\|x-y_{0}\right\| \leq\|x-y\|\) for all \(y \in Y\). Now define \(\rho=y_{0}-x\) and \(\alpha=\left\langle\rho, y_{0}\right\rangle\). Then
\[
\langle\rho, x\rangle=\left\langle\rho, y_{0}\right\rangle-\left\langle\rho,\left(y_{0}-x\right)\right\rangle=\left\langle\rho, y_{0}\right\rangle-\|\rho\|^{2}<\left\langle\rho, y_{0}\right\rangle
\]

Suppose now that there is a point \(y \in Y\) such that \(\left\langle\rho, y_{0}\right\rangle>\langle\rho, y\rangle\). By convexity, \(w=\lambda_{y}+(1-\lambda) y_{0} \in Y\), where \(X\) belongs to the interval \((0,1)\). But
\[
\begin{aligned}
\left\|x-y_{0}\right\|^{2}-\|x-w\|^{2} & =\left\|x-y_{0}\right\|^{2}-\left\|x-\lambda y-y_{0}+\lambda y_{0}\right\|^{2} \\
& =2 \lambda\left\langle\rho,\left(y_{0}-y\right)\right\rangle-\lambda^{2}\left\|y-y_{0}\right\|^{2} .
\end{aligned}
\]

Now \(\left\langle\rho, y_{0}\right\rangle>\langle\rho, y\rangle\) and so, for sufficiently small \(\lambda\), the right hand side is positive. Thus there exists a point \(w\) in \(Y\), close to yo, such that \(\left\|x-y_{0}\right\|>\|x-w\|\) . But this contradicts the assumption that \(y_{0}\) is the nearest point in \(Y\) to \(x\). Thus \(\langle\rho, y\rangle \leq\left\langle\rho, y_{0}\right\rangle\) for all \(y \in Y\). Hence \(\langle\rho, x\rangle<\alpha=\left\langle\rho, y_{0}\right\rangle \leq\langle\rho, y\rangle\) for all \(y \in Y\).

Note that the point yo belongs to the hyperplane \(H(\rho, \alpha)\), the set \(Y\) belongs to the closed half-space \(H_{+}\langle\rho, \alpha\rangle\), while the point \(x\) belongs to the open halfspace
\[
H_{-}^{0}(\rho, \alpha)=\{z \in X:\langle\rho, z\rangle<\alpha\} .
\]
Fig. 3.16

Thus the hyperplane separates the point \(x\) from the compact convex set \(Y\) (see
While convexity is necessary for the proof of this theorem, the compactness

\begin{abstract}
requirement may be weakened to \(Y\) being closed. Suppose however that \(Y\) is an
\end{abstract}748
open set. Then it is possible to choose a point \(x\) outside \(Y\), which is, nonetheless, an 749
accumulation point of \(Y\) such that \(d(x, Y)=0\).
On the other hand if \(Y\) is compact but not convex, then a situation such as Figure 3.17 is possible. Clearly no hyperplane separates \(x\) from \(Y\).

Fig. 3.17


If \(A\) and \(B\) are two sets, and \(H(\rho, \alpha)=H\) is a hyperplane such that \(A \subseteq\) \(H_{-}(\rho, \alpha)\) and \(B \subseteq H_{+}(\rho, \alpha)\) then say that \(H\) weakly separates \(A\) and \(B\). If \(H\) is such that \(A \subset H_{-}(\rho, \alpha)\) and \(B \subset H_{+}(\rho, \alpha)\) then say \(H\) strongly separates \(A\) and \(B\). Note in the latter case that it is necessary that \(A \cap B=\Phi\).

In Lemma 3.19 we found a hyperplane \(H(\rho, \alpha)\) such that \(\langle\rho, x\rangle<\alpha\). Clearly it is possible to find \(\alpha_{-}<\alpha\) such that \(\langle\rho, x\rangle<\alpha_{-}\).
\(Y\) Thus the hyperplane \(H\left(\rho, \alpha_{-}\right)\)strongly separates \(x\) from the compact convex set \({ }_{760}^{759}\)


Fig. 3.18 (i). Weak
separation


Fig. 3.18 (ii). Strong separation


Let \(f_{i}=\left(f_{i 1}, \ldots, f_{\text {in }}\right) \in \mathfrak{R}^{n}\) be the final allocation to individual \(i\), for \(i=798\) \(1, \ldots, m\). Suppose there exists a price vector \(p=\left(p_{1}, \ldots, p_{n}\right)\) with the property \((*) x P_{i} f_{i}+\Rightarrow\langle p, x\rangle>\left\langle p, e_{i}\right\rangle\). Then this would imply that \(f_{i} \in B_{i}(p) \Rightarrow \epsilon\) \(D_{i}(p)\). If property \((*)\) holds at some price vector \(p\), for each \(f\), then \(f_{i} \in D_{i}(p)\) for each \(i\).

To show existence of such a price vector, let
\[
\pi_{i} P_{i}\left(f_{i}\right)-e_{i} \in \mathfrak{R}^{n} .
\]
Here as before \(P_{i}\left(f_{i}\right)=\left\{x \in \Re^{n}: x P_{i} f_{i}\right\}\). Suppose that there exists a
hyperplane \(H(p, 0)\) strongly separating 0 from \(\pi_{i}\). In this case \(0<\left\langle p, x-e_{i}\right\rangle\)
806
for all \(x \in P_{i}\left(f_{i}\right)\). But this is equivalent to \(\langle p, x\rangle>\left\langle p, e_{i}\right\rangle\) for all \(x \in P_{i}\left(f_{i}\right)\). 807
Let \(\pi=\operatorname{Con}\left[\cup_{i \in N} \pi_{i}\right]\) be convex hull of the sets \(\pi_{i}, i \in M\). Clearly if \(\underline{0} \notin \pi\) and 808
there is a hyperplane \(H(p, 0)\) strongly separating \(\underline{0}\) from \(\pi\), then \(p\) is a price vector 809
which supports the final allocation \(f_{1}, \ldots, f_{n}\).

\subsection*{3.5 Optimisation on Convex Sets}

A key notion underlying economic theory is that of the maximisation of an objective function subject to one or a number of constraints. The most elementary case of such a problem is the one addressed by the Weierstrass Theorem: if \(f: X \rightarrow \mathfrak{R}\) is a continuous function, and \(Y\) is a compact constraint set then there exists some point \(\bar{y}\) such that \(f(\bar{y})=\sup (f, Y)\). Here \(\bar{y}\) is a maximum point of \(f\) on \(Y\).

Using the Separating Hyperplane Theorem we can extend this analysis to the optimisation of a convex preference correspondence on a compact convex constraint set.

\subsection*{3.5.1 Optimisation of a Convex Preference Correspondence}

Suppose that \(Y\) is a compact, convex constraint set in \(\Re^{n}\) and \(P: \Re \rightarrow \Re^{n}\) is a 82 preference correspondence which is convex (i.e., \(P(x)\) is convex for all \(x \in \mathfrak{R}^{n}\) ). A choice for \(P\) on \(Y\) is a point \(\bar{y} \in Y\) such that \(P(\bar{y}) \cap Y=\Phi\).

We shall say that \(P\) is non-satiated in \(\mathfrak{R}^{n}\) iff for no \(y \in \mathfrak{R}^{n}\) is it the case 824 that \(P(y)=\Phi\). A sufficient condition to ensure non-satiation for example is the assumption of monotonicity, i.e., \(x>y\) (where as before this means \(x_{i}>y_{i}\), for each of the coordinates \(\left.x_{i}, y_{i}, i=1, \ldots, n\right)\) implies.that \(x \in P(y)\).

Say that \(P\) is locally non-satiated in \(\Re^{n}\) iff for each \(y \in \Re^{n}\) and any neighbourhood \(U_{y}\) of \(y\) in \(\mathfrak{R}^{n}\), then \(P(y) \cap U_{y} \neq \Phi\).

Clearly monotonicity implies local non-satiation implies non-satiation.
Suppose that \(y\) belongs to the interior of the compact constraint set \(Y\). Then there is a neighbourhood \(U_{y}\) of \(y\) within \(Y\). Consequently \(P(y) \cap U_{y} \neq \Phi\) and so \(y\) cannot be a choice from \(Y\). On the other hand, since \(Y\) is compact it is closed, and so if \(y\) belongs to the boundary \(\delta Y\) of \(Y\), it belongs to \(Y\) itself. By definition if \(y \in \delta Y\) then any neighbourhood \(U_{y}\) of \(y\) intersects \(\mathfrak{R}^{n} \backslash Y\). Thus when \(P(y) \subset \mathfrak{R}^{n} \backslash Y, y\) will be a choice from \(Y\). Alternatively if \(y\) is a choice of \(P\) from \(Y\), then \(y\) must belong to the boundary of \(P\).

Lemma 3.20. Let \(Y\) be a compact, convex constraint set in \(\mathfrak{R}^{n}\) and let \(P: \mathfrak{R}^{n} \rightarrow\) \(\mathfrak{R}^{n}\) be a preference correspondence which is locally non-satiated, and is such that, for all \(x \in \mathfrak{R}^{n}, P(x)\) is open and convex. Then \(\bar{y}\) is a choice of \(P\) from \(Y\) iff there
is a hyperplane \(H(p, \alpha)\) through \(\bar{y}\) in \(Y\) which separates \(Y\) from \(P(\bar{y})\) in the sense that
\[
\langle p, y\rangle \leq \alpha=\langle p, \bar{y}\rangle<\langle p, x\rangle \text { for all } y \in Y \text { and all } x \in P(\bar{y}) .
\]

Proof. Suppose that the hyperplane \(H(p, \alpha)\) contains \(\bar{y}\) and separates \(Y\) from \(P(\bar{y})\)
in the above sense. Clearly \(\bar{y}\) must belong to the boundary of \(Y\). Moreover \(\langle p, y\rangle<\)

On the other hand suppose that \(\bar{y}\) is a choice. Then \(P(\bar{y}) \cap Y=\Phi\).
Moreover the local non-satiation property, \(P(\bar{y}) \cap U_{\bar{y}} \neq \Phi\) for \(U_{\bar{y}}\) a neighbor
\[
\langle p, y\rangle \leq \alpha=\langle p, \bar{y}\rangle \leq\langle p, x\rangle
\]
for all \(y \in Y\), all \(x \in P(\bar{y})\). But \(P(\bar{y})\) is open, and so the last inequality can be
Note that if either the constraint set, \(Y\), or the correspondence \(P\) is such that 855 \(P(y)\) is strictly convex, for all \(y \in \Re^{n}\), then the choice \(\bar{y}\) is unique.

If \(f: \Re^{n} \rightarrow \Re\) is a concave or quasi-concave function then application of 857 this lemma to the preference correspondence \(P: \mathfrak{R}^{n} \rightarrow \mathfrak{R}\), where \(P(x)=\{y \in\) 858 \(\left.\Re^{n}: f(y)>f(x)\right\}\), characterises the maximum point \(\bar{y}\) of \(f\) on \(Y\). Here \(\bar{y}\) is a 859 maximum point of \(f\) on \(Y\) if \(f(\mathfrak{R})=\sup (f, Y)\). Note that local non-satiation of \(P\) requires that for any point \(x\) in \(\Re^{n}\), and any neighbourhood \(U_{x}\) of \(x\) in \(X_{n}\), there exists \(y \in U_{x}\) such that \(f(y)>f(x)\).

The vector \(p=\left(p_{1}, \ldots, p_{n}\right)\) which characterises the hyperplane \(H(p, \alpha)\) iscalled in economic applications the vector of shadow prices. The reason for this will become clear in the following example.

Example 3.6. As an example suppose that optimal use of \((n-1)\) different inputs \(\left(x_{1}, \ldots, x_{n-1}\right)\) gives rise to an output \(y\), say, where \(y=y\left(x_{1}, \ldots, x_{n-1}\right)\). Any \(n\) vector \(\left(x_{1}, \ldots, x_{n-1}, x_{n}\right)\) is feasible as long as \(x_{n} \leq y\left(x_{1}, \ldots, x_{n-1}\right)\). Here \(x_{n}\) is the output. Write \(g\left(x_{1}, \ldots, x_{n-1}, x_{n}\right)=y\left(x_{1}, \ldots, x_{n-1}\right)-x_{n}\). Then a vector \(x=\left(x_{1}, \ldots, x_{n-1}, x_{n}\right)\) is feasible iff \(g(x) \geq 0\).

Suppose now that \(y=y\left(x_{1}, \ldots, x_{n-1}\right)\) is a concave function in \(x_{1}, \ldots, x_{n-1}\). 87 Then clearly the set \(G=\left\{x \in \mathfrak{R}^{n}: g(x) \geq 0\right\}\) is a convex set. Now let 872 \(\pi\left(x_{1}, \ldots, x_{n-1}, x_{n}\right)=-\sum p_{i} x_{i}+p_{n} x_{n}\) be the profit function of the producer, when prices for inputs and outputs are given exogenously by \(\left(-p_{1}, \ldots,-p_{n-1}, p_{n}\right)\). Again let \(P: \mathfrak{R}^{n}+\mathfrak{R}^{n}\) be the preference correspondence \(P(x)=\left\{z \in \mathfrak{R}^{n}: \pi(z)>\right.\) \(\pi(x)\}\). Since for each \(x, P(x)\) is convex, and locally non-satiated, there is a choice \(\bar{x}\) and a hyperplane \(H(\rho, \alpha)\) separating \(P(\bar{x})\) from \(G\).

Indeed it is clear from the construction that \(P(\bar{x}) \subset H_{+}^{0}(\rho, \alpha)\) and \(G \subset\) \(H_{-}(\rho, \alpha)\).

Moreover the hyperplane \(H(\rho, \alpha)\) must coincide with the set of points \(\left\{x \in \mathfrak{R}^{n}\right.\) \(\pi(x)=\pi(\bar{x})\}\). Thus the hyperplane \(H(\rho, \alpha)\) has the form


Fig. 3.19
\[
\left\{x \in \mathfrak{R}^{n}:\langle p, x\rangle=\pi(\bar{x})\right\}
\]
while the distance of the hyperplane from the origin is \(\frac{\pi(\bar{x})}{\|p\|}=\frac{\pi(\bar{x})}{\sqrt{\sum p_{i}^{2}}}\). Thus the \({ }_{88}\) intercept gives the profit measured in units of output, while the distance from the origin of the profit hyperplane gives the profit in terms of a normalized price vector \((\|p\|)\).

Figure 3.19 illustrates the situation with one input \((x+1)\) and one output \(\left(x_{2}\right)\). Precisely the same analysis can be performed when optimal production is characterised by a general production function \(F: \mathfrak{R}^{n}+\mathfrak{R}\).

Here \(x_{1}, \ldots, x_{m}\) are inputs, with prices \(-p_{1}, \ldots,-p_{m}\) and \(x_{m+1}, \ldots, x_{n}\) are outputs with prices \(p_{m+1}, \ldots, p_{n}\). Let \(p=\left(-p_{1}, \ldots,-p_{m},-p_{m+1}, \ldots, p_{n}\right) \in \mathfrak{R}^{n}\).

Define \(F\) so that a vector \(x \in \mathfrak{R}^{n}\) is feasible iff \(F(x) \geq 0\). Note that we also need to restrict all inputs and outputs to be non-negative. Therefore define
\[
\mathfrak{R}_{+}^{n}=\left\{x: x_{i} \geq 0 \text { for } i=1, \ldots, n\right\} .
\]

Assume that the feasible set (or production set)
\[
G=\left\{x \in \mathfrak{R}_{+}^{n}: F(x) \geq 0\right\} \text { is convex. }
\]

As before let \(P: \mathfrak{R}^{n} \rightarrow \mathfrak{R}^{n}\) where \(P(x)=\left\{z \in \mathfrak{R}^{n}: \pi(z)>\pi(x)\right\}\). Then the point \(\bar{x}\) is a choice of \(P\) from \(G\) iff \(P\) maximises the profit function
\[
\pi(x)=\sum_{j=1}^{n-m} p_{m+j} x_{m+j}-\sum_{j=1}^{m} p_{j} x_{j}
\]

By the previous example \(\bar{x}\) is a choice iff the hyperplane \(H(p, \pi(\bar{x}))\) separates \(P(\bar{x})\) and \(G:\) i.e., \(P(\bar{x}) \subset H_{+}^{0}(p, \pi(\bar{x}))\) and \(G \subset H_{-}(p, \pi(\bar{x}))\).

In the next chapter we shall use this optimality condition to characterise the 903 choice \(\bar{m}\) more fully in the case when \(F\) is "smooth".

Example 3.7. Consider now the case of a consumer maximising a preference 905 correspondence \(P: \mathfrak{R}^{n} \rightarrow \mathfrak{R}^{n}\) subject to a budget constraint \(B(p)\) which is 906 dependent on a set of exogeneous prices \(p_{1}, \ldots, p_{n}\).

For example the consumer may hold an initial set of endowments \(\left(e_{1}, \ldots, e_{n}\right)\)
\[
I=\sum_{i=1}^{n} p_{i} e_{i}=\langle p, e\rangle
\]

The budget set is then
\[
B(p)=\left\{x \in \mathfrak{R}_{+}^{n}:\langle p, x\rangle \leq I\right\} .
\]
where for convenience we assume the consumer only buys a non-negative amount of each commodity. Suppose that \(P\) is monotonic, and \(P(x)\) is open, convex for 914 all \(x \in \mathfrak{R}^{n}\). As before \(\bar{x}\) is a choice from \(B(p)\) iff there is a hyperplane \(H(\rho, \alpha)\) separating \(P(\bar{x})\) from \(B(p)\).


Fig. 3.20

Under these conditions the choice must belong to the upper boundary of \(B(p) 917\) and so satisfy \((p, \bar{x})=(p, e)=I\). Thus the hyperplane has the form \(H(p, I)\), 918
and so the optimality condition is \(P(\bar{x}) \subset H_{+}^{0}(p, I)\) and \(B(p) \subset H_{-}(p, I)\); i.e., 919
\((p, x) \leq I=(p, \bar{x})<(p, y)\) for all \(x \in B(p)\) and all \(y \in P(\bar{x})\).
    \begin{tabular}{ll|l} 
Figure 3.20 illustrates the situation with two commodities \(x_{1}\) and \(x_{2}\). & 921
\end{tabular}
920
    In the next chapter we use this optimality condition to characterise a choice when 922
preference is given by a smooth utility function \(f: \mathfrak{R}^{n} \rightarrow \mathfrak{R}\).923
In the previous two examples we considered ..... 924
1. opimisation of a profit function, which is determined by exogenously given ..... 925prices, subject to a fixed production constraint, and
2. optimisation of a fixed preference correspondence, subject to a budget constraint, ..... 927
which is again determined by exogenous prices. ..... 928
Clearly at a given price vector each producer will "demand" a certain input vector ..... 929
and supply a particular output vector, so that the combination is his choice in the ..... 930
environment determined by \(p\). In the same way a consumer will respond to a price ..... 931
vector \(p\) by demanding optimal amounts of each commodity, and possibly supplying ..... 932
other commodities such as labor, or various endowments. In contrast to Example 3.7, ..... 933regard all prices as positive, and consider a commodity \(x_{j}\) demanded by an agent 934\(i\) as an input to be negative, and positive when supplied as an output. Let \(\bar{x}_{i j}(p)\)be the optimal demand or supply of commodity \(j\) by agent \(i\) at the price vector \(p\),935
with \(m\) agents and \(n\) commodities, then market equilibrium of supply and demand ..... 937
in the economy occurs when \(\sum_{i=1}^{m} \sum_{j=1}^{n} \bar{x}_{i j}(p)=0\). A price vector which leads to ..... 938market equilibrium in demand and supply is called an equilibrium price vector.
Example 3.8. To give a simple example, consider two agents. The first agent ..... 940
controls a machine which makes use of labor, \(x\), to produce a single output \(y\). ..... 941
Regard \(x \in(-\infty, 0]\) and consider a price vector \(p \in \mathfrak{R}_{+}^{2}\), where \(p=(w, r)\) ..... 942
and \(w\) is the price of labor, and \(r\) the price of the output. An output is feasible from ..... 943
Agent One iff \(F(x, y) \geq 0\). ..... 944Agent Two is the only supplier of labor, but is averse to working. His preference 945is described by a quasi-concave utility function \(f: \mathfrak{R}^{2} \rightarrow \mathfrak{R}\) and we restrict 946attention to a domain947
\[
D=\left\{(x, y) \in \mathfrak{R}^{2}: x \leq 0, y \geq 0\right\} .
\]
Assume that \(f\) is monotonic, i.e., if \(x_{1}<x_{2}\) and \(y_{1}<y_{2}\) then \(f\left(x_{1}, y_{1}\right)<\) \(f\left(x_{2}, y_{2}\right)\). The budget constraint of Agent Two at \((w, r)\) is therefore
\[
B(w, r)=\left\{\left(x_{1}, y_{2}\right) \in D: r y_{2} \leq w|x|\right\},
\]
where \(|x|\) is the quantity of labor supplied, and \(y_{2}\) is the amount of commodity \(y\)952
consumed. Profit for Agent One is \(\pi(x, y)=r y-w x\), and we shall assume that ..... 953
this agent then Consumes an amount \(y_{1}=\frac{\pi(x, y)}{r}\) of commodity \(y\). ..... 954
For equilibrium of supply and demand at prices ( \(w, p\) ) ..... 9551. \(\bar{y}=\bar{y}_{1}+\bar{y}_{2}\);956
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
2. \((\bar{x}, \bar{y})\) maximises \(\pi(x, y)=\bar{r} y-\bar{w} x\) subject to \(F(x, y) \geq 0\); \\
3. \(\left(\bar{x}, \bar{y}_{2}\right)\) maximises \(f\left(x, y_{2}\right)\) subject to \(\bar{r} y_{2}=\bar{w} x\).
\end{tabular} & 958 \\
\hline At any point \((x, y) \in D\), and vector ( \(w, r\) ) define & 959 \\
\hline \(P(x, y)=\left\{\left(x^{\prime}, y^{\prime}\right) \in D: f\left(x^{\prime}, y^{\prime}-y_{1}\right)>f\left(x, y-y_{1}\right)\right\}\) & 960 \\
\hline where as above \(y_{1}=\frac{r y-w x}{r}\) is the amount of commodity \(y\) consumed by the producer. Thus \(P(x, y)\) is the preference correspondence of Agent One displaced & 961
962 \\
\hline by the distance \(y_{1}\) up the \(y\)-axis. & \\
\hline Figure 3.21 illustrates that it is possible to find a vector ( \(w, r\) ) such that \(H\) & 964 \\
\hline \(H(w, r), \pi(\bar{x}, \bar{y})\) ) separates \(P(\bar{x}, \bar{y})\) and the production set & 965 \\
\hline \(G=\) & 966 \\
\hline As in example 3.6, the intersect of \(H\) with the \(y\)-axis is \(\bar{y}_{1}=\frac{\pi(\bar{x}, \bar{y})}{r}\), the consumption of \(y\) by Agent One. & \\
\hline The hyperplane \(H\) is the set & 969 \\
\hline & 970 \\
\hline nce for all \((x, y) \in H,\left(x, y-\bar{y}_{1}\right)\) satisfies \(r\left(y-\bar{y}_{1}\right)+w x=0\). & 971 \\
\hline Thus \(H\) is the boundary of the second agent's budget set \(\left\{\left(x, y_{2}\right): r y+w x=0\right\}\) & 972 \\
\hline displaced up the \(y\)-axis by \(\bar{y}_{1}\). & 973 \\
\hline Consequently \(\bar{y}=\bar{y}_{1}+\bar{y}_{2}\) and so \((\bar{x}, \bar{y})\) is a market equilibrium. & 974 \\
\hline
\end{tabular}

where \(x \in \mathfrak{R}_{+}^{n}\) and \(\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right) \in \mathfrak{R}_{+}^{m}\). The pair \(\left(x^{*}, \lambda^{*}\right) \in \mathfrak{R}_{+}^{n+m}\) is called a
\[
L\left(x, \lambda^{*}\right) \leq L\left(x^{*}, \lambda^{*}\right) \leq L\left(x^{*}, \lambda\right)
\]
for all \(x \in \mathfrak{R}_{+}^{n}, \lambda \in \mathfrak{R}_{+}^{m}\).
Kuhn-Tucker Theorem 1. Suppose \(f, g_{1}, \ldots, g_{m}: \mathfrak{R}^{n} \rightarrow \mathfrak{R}^{m}\) are concave functions for all \(x \in \mathfrak{R}_{+}^{n}\). Then if \(x^{*}\) is an optimum to the solvable problem \((f, g)\) \(\mathfrak{R}^{n} \rightarrow \mathfrak{R}^{m+1}\) there exists a \(\lambda^{*} \in \mathfrak{R}_{+}^{m}\) such that \(\left(x^{*}, \lambda^{*}\right)\) is a saddle point for \((f, g)\).
\[
\begin{aligned}
& \text { Proof. Let } A=\left\{\begin{array}{l}
\left.y \in \mathfrak{R}^{m+1}: \exists x \in \mathfrak{R}_{+}^{n}: y \leq(f, g)(x)\right\} \text {. Here } \\
\left(f(x), g(x), \ldots, g_{m}(x)\right) \text {. Thus } y=\left(y_{1}, \ldots, y_{m+1}\right) \in A \text { iff } x \in \mathfrak{R}_{+}^{n} \text { such that } \\
\qquad y_{1} \leq f(x) \\
y_{j+1} \leq g_{j}(x) \text { for } j=1, \ldots, m .
\end{array}\right.
\end{aligned}
\]

Let \(x^{*}\) be an optimum and
\[
B=\left\{z=\left(z_{1}, \ldots, z_{m+1}\right) \in \mathfrak{R}^{*}: z_{1}>f\left(x^{*}\right) \text { and }\left(z_{2}, \ldots, z_{m+1}\right)>0\right\} .
\]

Since \(f, g\) are concave, \(A\) is convex. To see this suppose \(y_{1}, y_{2} \in A\). But since both \(f\) and \(g\) are concave \(a f\left(x_{1}\right)+(1-a) f\left(x_{2}\right)<f\left(a x_{1}+(1-a) x_{2}\right)\) and similarly for \(g\), for any \(a \in[O, 1]\). Thus
\[
a y_{1}+(1-a) y_{2} \leq a(f, g)\left(x_{1}\right)+(1-a)(f, g)\left(x_{2}\right) \leq(f, g)\left(a x_{+}(1-a) x_{2}\right)
\]

Since \(x_{1}, x_{2} \in \mathfrak{R}_{+}^{n}, a x_{1}+(1-a) x_{2} \in \mathfrak{R}_{+}^{n}\), and so \(a y_{1}+(1-a) y_{2} \in \mathfrak{R}_{+}^{n}\).
Clearly \(B\) is convex, since \(a z_{11}+(1-a) z_{12}>f\left(x^{*}\right)\) if \(a \in[0,1]\) and \(z_{11}, z_{12}>\) \(f\left(x^{*}\right)\).

To see \(A \cap B=\Phi\), consider \(x \in \mathfrak{R}^{n}\) such that \(g(x)<0\). Then \(\left(y_{2}, \ldots, y_{m+1}\right) \leq\) \(g(x)<\underline{O} \leq\left(z_{2}, \ldots, z_{m+1}\right)\).

If \(g(x) \in \mathfrak{R}_{+}^{m}\) then \(x\) is feasible. In this case \(y_{1} \leq f(x) \leq f\left(x^{*}\right)<z_{1}\).
By the separating hyperplane theorem, there exists \(\left(p_{1}, \ldots, p_{m+1}\right) \in \mathfrak{R}^{m+1}\) and \(\alpha \in \mathfrak{R}\) such that \(H(p, \alpha)=\left\{w \in \Re^{m+1}: \sum_{j=1}^{m+1} w_{j} p_{j}=\alpha\right\}\) separates \(A\) and \(B\), i.e., \(\sum_{j=1}^{m+1} p_{j} y_{j} \leq \alpha \leq \sum_{j=1}^{m+1} p_{j} z_{j}\) for any \(y \in A\) and \(z \in B\).

Moreover \(p \in \mathfrak{R}_{+}^{m+1}\). By the definition of \(A\), for any \(y \in A, \exists x \in \mathfrak{R}\); such that \(y \leq(f, g)(x)\).

Thus for any \(x \in \mathfrak{R}_{+}^{n}\),
\[
p_{1} f(x)+\sum_{j=2}^{m} p_{j} g_{j}(x) \leq \sum_{j=1}^{m+1} p_{j} z_{j} .
\]
\[
p_{1} f(x)+\sum_{j=2}^{m} p_{j} g_{j}(x) \leq p_{1} f\left(x^{*}\right) .
\]

Suppose \(p_{1}=0\). Since \(p \in \mathfrak{R}_{+}^{m+1}\), there exists \(p_{j}>0\).
Since the problem is solvable, \(\exists x \in \mathfrak{R}_{+}^{n}\) such that \(g_{j}(x)>0\). But this gives \(\sum_{j=2}^{m} p_{j} g_{j}(x)>0\), contradicting \(p_{1}=0\). Hence \(p_{1}>0\).
Let \(\lambda_{j}^{*}=\frac{p_{j+1}}{p_{1}}\) for \(j=1, \ldots, m\).
Then \(L\left(x, \lambda^{*}\right)=f(x)+\cdot \sum_{j=1}^{m} \lambda_{j}^{*} g_{j}(x) \leq f\left(x^{*}\right)\) for all \(x \in \mathfrak{R}_{+}^{n}\), where 1035 \(\lambda^{*}=\left(\lambda_{1}^{*}, \ldots, \lambda_{m}^{*}\right) \in \mathfrak{R}_{+}^{m}\). Since \(x^{*}\) is feasible, \(g\left(x^{*}\right) \in \mathfrak{R}_{+}^{m}\), and \(\left\langle\lambda^{*}, g\left(x^{*}\right)\right\rangle \geq 0\). 1036 But \(f\left(x^{*}\right)+\left\langle\lambda^{*} g,\left(x^{*}\right)\right\rangle \leq f\left(x^{*}\right)\) implying \(\left\langle\lambda^{*}, g\left(x^{*}\right)\right\rangle \leq 0\). Thus \(\left\langle\lambda^{*}, g\left(x^{*}\right)\right\rangle=\) 0 . Clearly \(\left\langle\lambda, g\left(x^{*}\right)\right\rangle \geq 0\) if \(\lambda \in \mathfrak{R}_{+}^{m}\). Thus \(L\left(x, \lambda^{*}\right) \leq L\left(x^{*}, \lambda^{*}\right) \leq L\left(x^{*}, \lambda\right)\) for any \(x \in \mathfrak{R}_{+}^{n}, \lambda \in \mathfrak{R}_{+}^{m}\).
Kuhn-Tucker Theorem 2. If the pair \(\left(x^{*}, \lambda^{*}\right)\) is a global saddle point for the 1038 roblem \((f, g)\), then \(x^{*}\) is an optimum.
Proof. By the assumption
\[
L\left(x, \lambda^{*}\right) \leq L\left(x^{*}, \lambda^{*}\right) \leq L\left(x^{*}, \lambda\right)
\]
for all \(x \in \mathfrak{R}_{+}^{n}, \lambda \in \mathfrak{R}_{+}^{m}\).
Choose \(\lambda=\left(\lambda_{1}^{*}, \ldots, 2 \lambda_{i}^{*}, \ldots, \lambda_{m}^{*}\right)\).
Then \(L\left(x^{*}, \lambda\right) \geq L\left(x^{*}, \lambda^{*}\right)\) implies \(g_{i}\left(x^{*}\right) \lambda_{i}^{*} \geq 0\). If \(\lambda_{i}^{*} \neq 0\) then \(g_{i}\left(x^{*}\right) \geq 0\), and so \(\left\langle\lambda^{*}, g\left(x^{*}\right)\right\rangle \geq 0\).
On the other hand, \(L\left(x^{*}, \lambda^{*}\right) \leq L\left(x^{*}, O\right)\) implies \(\left\langle\lambda^{*}, g\left(x^{*}\right)\right\rangle \leq 0\). Thus \(\left\langle\lambda^{*}, g\left(x^{*}\right)\right\rangle=0\). Hence \(f(x)+\left\langle^{*}, g(x)\right) \leq f\left(x^{*}\right) \leq f\left(x^{*}\right)+\left\langle\lambda, g\left(x^{*}\right)\right\rangle\). If \(x\) is feasible, \(g(x) \geq 0\) and so \(\left\langle\lambda^{*}, g(x)\right\rangle \geq 0\).
Thus \(f(x) \leq f(x)+\left\langle\lambda^{*}, g(x)\right\rangle \leq f\left(x^{*}\right)\) for all \(x \in \mathfrak{R}_{+}^{n}\), whenever \(g(x) \cdot \in \mathfrak{R}_{+}^{m}\). Hence \(x^{*}\) is an optimum for the problem \((f, g)\). Note that for \(z\) concave optimisation problem \((f, g), x^{*}\) is an optimum for \((f, g)\) iff \(\left(x^{*}, A^{*}\right)\) is a global saddle point for the Lagrangian \(L(x, \lambda), \lambda \in \mathfrak{R}_{+}^{m}\). Moreover \(\left(x^{*}, \lambda^{*}\right)\) are such that \(\left.\lambda \lambda^{*}, g\left(x^{*}\right)\right\rangle\) minimises \(\langle\lambda, g(x)\rangle\) for all \(\lambda \in \mathfrak{R}_{+}^{m}, x \in \mathfrak{R}_{+}^{n}, g(x) \in \mathfrak{R}_{+}^{m}\).
Since \(\left\langle\lambda^{*}, g\left(x^{*}\right)\right\rangle=0\) this implies that if \(g_{i}\left(x^{*}\right)>0\) then \(\lambda_{i}^{*}=0\) and if \(\lambda_{i}^{*}>0\) then \(g_{i}\left(x^{*}\right)=0\).
The coefficients \(\left(\lambda_{1}^{*}, \ldots, \lambda_{m}^{*}\right)\) are called shadow prices. If the optimum is such that \(g_{i}\left(x^{*}\right)>0\) then the shadow price \(\lambda_{1}^{*}=0\). In other words if the optimum does not lie in the boundary of the \(i^{\text {th }}\) constraint set \(\partial B_{i}=\left\{x: g_{i}(x)=0\right\}\), then this constraint is slack, with zero shadow price. If the shadow price is non zero then the constraint cannot be slack, and the optimum lies on the boundary of the constraint set.
In the case of a single constraint, the assumption of non-satiation was sufficient to guarantee that the constraint was not slack.
In this case
\[
f(x)+\frac{p_{2}}{p_{1}} g(x) \leq f\left(x^{*}\right) \leq f\left(x^{*}\right)+\lambda g\left(x^{*}\right)
\]
for any \(x \in \mathfrak{R}_{+}\), and \(\lambda \in \mathfrak{R}_{+}\), where \(\frac{p_{2}}{p_{1}}>0\).
The Kuhn-Tucker theorem is of particular use when objective and constraint functions are smooth. In this case the Lagrangean permits computation of the optimal points of the problem. We deal with these procedures in Chapter 4.

\begin{tabular}{ll}
\(f: B^{n} \times[0,1] \rightarrow B^{n}\), or more generally \(f: Z \times[0,1] \rightarrow Z\), is often called & 1112 \\
a homotopy and written \(f_{t}: Z \rightarrow Z\) where \(f_{t}(z)=f(z, t)\). The homotopy \(f_{t}\) & 1113 \\
between the identity and the retraction \(f_{1}\) of \(Z\) on \(Y\) means that \(Z\) and \(Y\) are & 1114 \\
"topologically" equivalent (in some sense). Thus the ball \(B^{n}\) and the point \(\{x\}\) are & 1115 \\
topologically equivalent. More generally, if \(Y\) is contractible and there is a strong & 1116 \\
retraction of \(Z\) on \(Y\), then \(Z\) is also contractible. \\
Lemma 3.21. Let \(X\) be a topological space. If \(Y\) is contractible and \(Y \subset Z \subset X\) & 1117 \\
such that \(Y\) is a deformation retract of \(Z\), then \(Z\) is contractible. \\
Proof. Let \(g: Z \times[0,1] \rightarrow Z\) be the strong retraction of \(Z\) on \(Y\), and let \(f:\) & 11120 \\
\(Y \times[0,1] \rightarrow Y\) be the contraction of \(Y\) to \(y \in Y\). Define \\
\(\qquad r: Z \times\left[0, \frac{1}{2}\right] \rightarrow Z\) by \(r(x, t)=g(z, 2 t)\) & 1121 \\
\(\qquad r^{\prime}: Z \times\left[\frac{1}{2}, 1\right] \rightarrow Z\) by \(r^{\prime}(z, t)=f(g(z, 1), 2 t-1)\).
\end{tabular}

To see this define a contraction \(s\) of \(Z\) onto \(y_{0}\). Note that \(r\left(z, \frac{1}{2}\right)=r^{\prime}\left(z, \frac{1}{2}\right)\), since \(g(z, 1)=f(g(z, 1), 0)\). This follows because \(g\) is a strong retraction and so \(g(z, l) \in Y, g(y, 1)=f(y, O)=y\) if \(y \in Y\). Clearly \(s: Z \times[O, l] \rightarrow Z\) (defined by \(s(z, t)=r(z, t)\) if \(t<\frac{1}{2}, s(z, t)=r^{\prime}(z, t)\) if \(\left.t \geq \frac{1}{2}\right)\) is continuous and is the identity at \(t=0\). Finally if \(t=1\), then \(s(z, 1)=f(g(z, 1), 1)=y_{0}\).

Lemma 3.22. If \(Z\) is a (non-empty) compact, convex set in \(\mathfrak{R}^{n}\), then it is contractible.

Proof. For any \(x\) in the interior of \(Z\) there exists some \(\Xi>0\) such that \(B^{n}=\) \(\operatorname{clos}\left(B_{d}(x, \Xi)\right)\) is contained in \(Z\). (Indeed \(\Xi\) can be chosen so that \(B^{n}\) is contained in the interior of \(Z\).) As observed in Example 3.3, the closed ball, \(B^{n}\), is both compact and strictly convex. By Lemma 3.17, the distance function \(d(z,-): B^{n} \rightarrow\) \(\mathfrak{R}\) is continuous for each \(z \in Z\), and so there exists a point \(\bar{y}(z)\) in \(B^{n}\), say, such that \(d(z, \bar{y}(z))<d(z, y)) \forall y \in B^{n}\). Then \(d(z, \bar{y}(z))=d\left(z, B^{n}\right)\), the distance between \(z\) and \(B^{n}\). Indeed \(d(z, \bar{y}(z))=0\) iff \(z \in B^{n}\). Moreover for each \(z \in Z, \bar{y}(z)\) is unique. Define the function \(f: Z \times[O, 1] \rightarrow Z\) by \(f(z, t)=t z+(1-t) \bar{y}(z)\) Since \(\bar{y}(z) \in B^{n} \subset Z\) for each \(z\), and \(Z\) is convex, \(f(z, t) \in Z\) for all \(t \in(O, l]\). Clearly if,\(z \in B^{n}\) then \(f(z, t)=z\) for all \(t \in[O, 1]\) and \(f(-, 1)=h: Z \rightarrow B^{n}\) is a retraction. Thus \(f\) is a strong retraction, and \(B^{n}\) is a deformation retract of \(Z\). By Lemma 3.21, \(Z\) is contractible.

Note that compactness of \(Z\) is not strictly necessary for the validity of this lemma.

Lemma 3.23. If \(Z\) is contractible to \(z_{0}\), and \(Y \subset Z\) is a retract of \(Z\) by \(h: Z \rightarrow Y\) then \(Y\) is contractible to \(h\left(z_{0}\right)\).

Proof. Let \(f: Z \times[O, 1] \rightarrow Z\) be the contraction of \(Z\) on \(z_{0}\), and let \(h: Z \rightarrow Y\) be the retraction. Clearly \(h \circ f: Z \times[O, l] \rightarrow Z \rightarrow Y\). If \(y \in Y\), then \(f(y, 0)=y\)
```

and $h(y)=y$ (because h is a retraction). Thus $h \circ f(y, 0)=y$. Moreover $f(z, 1)=$
$z_{0} \forall \in Z$, so $h \circ f(z, 1)=h\left(z_{0}\right)$.

```

Clearly being a deformation retract of \(Z\) is a much stronger property than being a
retract of \(Z\). Both of these properties are useful in proving that any compact convex set has the fixed point property, and that the sphere is neither contractible nor has the fixed point property.

Remember that the sphere of radius \(\Xi\) in \(\mathfrak{R}^{n}\), with center \(x\), is
\[
S^{n-1}=\operatorname{Boundary}\left(\operatorname{clos}\left(B_{d}(x, \Xi)\right)\right)=\left\{y \in \mathfrak{R}^{n}: d(x, y)=\Xi\right\} .
\]

Now let \(x_{0} \in S^{n-1}\) be the north pole of the sphere. We shall give an intuitive argument why \(D=S^{n-1} \backslash\left\{x_{0}\right\}\) is contractible, but \(S^{n-1}\) is not contractible.
Example 3.9. Let \(D=S^{n-1} \backslash\left\{x_{0}\right\}\) and let \(Z\) be a copy of \(D\) which is flattened at the south pole. Let \(D_{0}\) be the flattened disc round the South Pole, \(x_{s}\). Clearly \(D_{0}\) is homeomorphic to an \((n-1)\) dimensional ball \(B^{n-1}\) centered on \(x_{s}\). Then \(Z\) is homeomorphic to the object \(D_{0} \times[0,1)\). There is obviously a strong retraction of \(D\) onto \(D_{0}\). This retraction may be thought of as the function that moves any point \(z \in S^{n-1} \backslash\left\{X_{0}\right\}\) down the lines of longitude to \(D_{0}\). Since \(D_{0}\) is compact, convex it is contractible to \(x_{s}\) and thus, by Lemma3.20, there is a contraction \(f: D \times[O, 1] \rightarrow\) \(D\) to \(x_{s}\).

To indicate why \(S^{n-1}\) cannot be contractible, let us suppose without loss of generality, that \(g: S^{n-1} \times[O, 1] \rightarrow S^{n-1}\) is a contraction of \(S^{n-1}\) to \(x_{s}\), and that \(g\) extends the contraction \(f: D \times[O, 1] \rightarrow D\) (i.e., \(g(z, t)=f(z, t)\) whenever \(z \in D)\). Now \(f(y, t)\) maps each point \(y \in D\) to a point further south on the longitudinal line through \(y\). If we require \(g(y, t)=f(y, t)\) for each \(y \in \mathcal{D}\), and we require \(g\) to be continuous at \(\left(x_{0}, 0\right)\) then it is necessary for \(g\left(x_{0}, t\right)\) to be an equatorial circle in \(S^{n-1}\). In other words if \(g\) is a function it must fail continuity at \(\left(x_{0}, 0\right)\). While this is not a formal argument, the underlying idea is clear: The sphere \(S^{n-1}\) contains a hole, and it is topologically different from the ball \(B^{n}\).

Brouwer's Theorem. Any compact, convex set in \(\mathfrak{R}^{n}\) has the fixed point property.

Proof. We prove first that the ball \(B^{n} \equiv B\) has the fixed point property. Suppose otherwise: that is there exists a continuous function \(f: B \rightarrow B\) with \(x \neq f(x)\) for all \(x \in B\).

Since \(f(x) \neq x\), construct the arc from \(f(x)\) to \(x\) and extend this to the boundary of \(B\). Now label the point where the arc and the boundary of \(B\) intersect as \(h(x)\). Since the boundary of \(B\) is \(S^{n-1}\), we have constructed a function \(h: B \rightarrow S^{n-1}\). It is easy to see that \(h\) is continuous (because \(f\) is continuous). Moreover if \(x^{\prime} \in S^{n-1}\) then \(h\left(x^{\prime}\right) \in S^{n-1}\). Since \(S^{n-1} \subset B\), it is clear that \(h: B \rightarrow S^{n-1}\) is a retraction. (See Figure 3.22.) By Lemma 3.23, the contractibility of \(B\) to its center, \(x_{0}\) say, implies that \(S^{n-1}\) is contractible to \(h\left(x_{0}\right)\). But Example 3.9 indicates that \(S^{n-1}\) is not contractible. The contradiction implies that any continuous function \(f: B \rightarrow B\) has a fixed point.

Fig. 3.22 The retraction of \(B^{n}\) on \(S^{n-1}\).


Now let \(Y\) be any compact convex set in \(\mathfrak{R}^{n}\). Then there exists for some \(\Xi\) and \(y_{0} \in Y\), a closed \(\Xi\)-ball, centered at \(y_{0}\), such that \(Y\) is contained in \(B=\) \(\operatorname{clos}\left(B_{d}\left(y_{0}, \Xi\right)\right)\). As in the proof of Lemma3.22, there exists a strong retraction \(g: B \times[O, 1] \rightarrow B\); so \(Y\) is a deformation retract of \(B\). (See Figure 3.23.) In particular \(g(-, 1)=h: B \rightarrow Y\) is a retraction. If \(f: Y \rightarrow Y\) is continuous, then \(f \circ h: B \rightarrow Y \rightarrow Y \subset B\) is continuous and has a fixed point. Since the image of \(f \circ h\) is in \(Y\), this fixed point, \(y_{1}\), belongs to \(Y\). Hence \(f \circ h\left(y_{1}\right)=y_{1}\) for some \(y_{1} \in Y\). But \(h=\operatorname{id}\) (the identity) on \(Y\), so \(h\left(y_{1}\right)=y_{1}\) and thus \(y_{1}=f\left(y_{1}\right)\). Consequently \(y_{1} \in Y\) is a fixed point of \(f\). Thus \(Y\) has the fixed point property.

Fig. 3.23 The strong retraction of \(B\) on \(Y\).


Example 3.10. The standard compact, convex set in \(\mathfrak{R}^{n}\) is the \((n-1)\) - simplex \(\Delta^{n-1}\) defined by
\[
\Delta=\Delta^{n-1}=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in \mathfrak{R}^{n}: \sum_{i=1}^{n} x_{i}=1, \text { and } 0 \forall i\right\}
\]
\(\Delta\) has \(n\) vertices \(\left\{x_{i}^{0}\right\}\), where \(x_{i}^{0}=(0, \ldots, 1, \ldots, 0)\) with a 1 in the \(i^{t h}\) entry. An edge between \(x_{i}^{0}\) and \(x_{j}^{0}\) is the arc \(\left\langle\left\langle x_{i}^{0}, x_{j}^{0}\right\rangle\right\rangle\) or convex set of the form
\[
\left\{x \in \mathfrak{R}^{n}: x=\lambda x_{i}^{0}+(1-\lambda) x_{j}^{0} \text { for } \lambda \in[0,1]\right\} .
\]

An \(s\)-dimensional face of \(\Delta\) is simply the convex hull of \((s+1)\) different vertices Note in particular that there are \(n\) different \((n-2)\) dimensional faces. Such a face is opposite the vertex \(x_{i}^{0}\), so we may label this face \(\Delta_{i}^{n-2}\). These \(n\) different faces have empty intersection. However any subfamily, \(\mathcal{F}\), of this family of \(n\) faces (where \(\mathcal{F}\) has cardinality at most \((n-1)\) ), does have a nonempty intersection. In fact if \(\mathcal{F}\) has cardinality \((n-1)\) then the intersection is a vertex.

Brouwer's Theorem allows one to derive further results on the existence of choice.

Lemma 3.24. Let \(Q: \Delta \rightarrow \mathfrak{R}^{n}\) be an LDC correspondence from the \((n-1)\) dimensional simplex to \(\mathfrak{R}^{n}\), such that \(Q(x)\) is both non-empty and convex, for each \(x \in \Delta\). Then there exists a continuous selection, \(f\), for \(Q\), namely a continuous function \(f: \Delta \rightarrow \Re^{n}\) such that \(f(x) \in Q(x)\) for all \(x \in \Delta\).

Proof. Since \(Q(x) \neq \Phi, \forall x \in \Delta\), then for each \(x \in \Delta, x \in Q^{-1}(y)\) for some \(y \in \mathfrak{R}^{n}\). Hence \(\left\{Q^{-1}(y): y \in \mathfrak{R}^{n}\right\}\) is a cover for \(\Delta\). Since \(Q\) is LDC, \(Q^{-1}(y)\) is open, \(\forall y \in \mathfrak{R}^{n}\), and thus the cover is an open cover. \(\Delta\) is compact. As in the proof of Lemma 3.9, there is a finite index set, \(A=\left\{y_{1}, \ldots, y_{k}\right\}\) of points in \(\Re^{n}\) such that \(\left\{Q^{-1}\left(y_{i}\right): y_{i} \in A\right\}\) covers \(\Delta\). Define \(\alpha_{i}: \Delta \rightarrow \mathfrak{R}\) by \(\alpha_{i}(x)=d\left(x, \Delta Q^{-1}\left(y_{i}\right)\right)\) for \(i=1, \ldots, k\), and let \(g_{i}: A \rightarrow \mathfrak{R}\) be given by \(g_{i}(x)=\alpha_{i}(x) / \sum_{j=1}^{k} \alpha_{j}(x)\). As before, \(d\) is the distance operator, so \(\alpha_{i}(x)\) is the distance from \(x\) to \(\Delta Q^{-1}\left(y_{i}\right)\). \(\left\{g_{i}\right\}\) is known as a partition of unity for \(Q\). Clearly \(\sum g_{i}(x)=1\) for all \(x \in \Delta\), and \(g_{i}(x)=0\) iff \(x \in \Delta Q^{-1}\left(Y_{i}\right)\) (since \(\Delta Q^{-1}\left(y_{i}\right)\) is closed and thus compact). Finally define \(f: \Delta \rightarrow \mathfrak{R}^{n}\) by \(f(x)=\sum_{i=1}^{k} g_{i}(x) y_{i}\). By the construction, \(g_{i}(x)=0\) iff \(y_{i} \in Q(x)\), thus \(f(x)\) is a convex combination of points all in \(Q(x)\). Since \(Q(x)\) is convex, \(f(x) \in Q(x)\). By Lemma 3.17, each \(\alpha_{i}\) is continuous. Thus \(f\) is continuous.

Lemma 3.25. Let \(P: \Delta \rightarrow \Delta\) be an LDC correspondence such that for all \(x \in\) \(\Delta, P(x)\) is convex and \(x \in \operatorname{Con} P(x)\), the convex hull of \(P(x)\). Then the choice \(C_{p}(\Delta)\) is non empty.

Proof. Suppose \(C_{p}(\Delta)=\Phi\). Then \(P(x) \neq \Phi \forall x \in \Delta\). By Lemma 3.24, there exists a continuous function \(f: \Delta \rightarrow \Delta\) such that \(f(x) \in P(x) \forall x \in \Delta\). By
Brouwer's Theorem, there exists a fixed point \(x_{0} \in \Delta\) such that \(x_{0}=f\left(x_{0}\right)\). This contradicts \(x \notin \operatorname{Con} P(x), \forall x \in \Delta\). Thus \(C_{p}(\Delta) \neq \Phi\).
These two lemmas are stated for correspondences with domain the finite dimensional simplex, \(\Delta\). Clearly they are valid for correspondences with domain a (finite dimensional) compact convex space. However both results can be extended to (infinite dimensional) topological vector spaces. The general version of Lemma 3.24 is known as Michael's Selection Theorem (Michael 1956). However it is necessary to impose conditions on the domain and codomain spaces. In particular it is necessary to be able to construct a partition of unity. For this purpose we can use a condition call "paracompactness" rather than compactness. Paracompactness of a space \(X\) requires that there exist, at any point \(x \in X\), an open set \(U_{x}\) containing \(x\), such that for any open cover \(\left\{U_{i}\right\}\) of \(X\), only finitely many of the open sets of the cover intersect \(U_{x}\). To construct continuous selection it is also necessary that the codomain \(Y\) of the correspondence has a norm, and is complete (essentially this means that a limit of a convergent sequences of points is contained in \(Y\) ). A complete normed topological vector space \(Y\) is called a Banach space. We also need \(Y\) to be "separable" (ie \(Y\) contains a countable dense subset.) If \(Y\) is a separable Banach space we say it is admissible.
Michael's Selection Theorem employs a property, called lower hemi-continuity.
Definition 3.8. A correspondence \(Q: X \rightarrow Y\) between the topological spaces, \(X\)and \(Y\), is lower hemi-continuous (LHC) if whenever \(U\) is open in \(Y\), then the set\(\{x \in X: Q(x) \cap U \neq \Phi\}\) is open in \(X\).
Michael's Selection Theorem. Suppose \(Q: X \rightarrow Y\) is a lower hemi continuous correspondence from a paracompact, Hausdorff topological space \(X\) into the admissible space \(Y\), such that \(Q(x)\) is non-empty closed and convex, for all \(x \in X\). Then there exists a continuous selection \(f: X \rightarrow Y\) for \(Q\).
Lemma 3.24 also provides the proof for a useful intersection theorem known as the Knaster-Kuratowski-Mazurkiewicz (KKM) Theorem.
Before stating this theorem, consider an arbitrary collection \(\left\{x_{1}, \ldots, x_{k}\right\}\) of distinct points in \(\mathfrak{R}^{n}\). Then clearly the convex hull, \(\Delta\), of these points can be identified with a \((k-1)\)-dimensional simplex. Let \(S \subset\{1, \ldots, k\}\) be any index set, and let \(\Delta_{s}\) be the simplex generated by this collection of \(s-1\) points (where \(s=|s|\) ).
KKM Theorem. Let \(R: X \rightarrow Y\) be a correspondence between a convex set \(X\) contained in a Hausdorff topological vector space \(Y\) such that \(R(x) \neq \Phi\) for all \(x \in X\). Suppose that for at least one point \(x_{0} \in X, R\left(x_{0}\right)\) is compact. Suppose further that \(R(x)\) is closed for all \(x \in X\). Finally for any set \(\left\{x_{1}, \ldots, x_{k}\right\}\) of points in \(X\), suppose that
\[
\operatorname{Con}\left\{x_{1}, \ldots, x_{k}\right\} \subset U_{i=1}^{k} R\left(x_{i}\right)
\]
Then \(\cap_{x \in X} R(x)\) is non empty.
Proof. By Lemma3.8, since \(R\left(x_{0}\right)\) is compact, \(\cap_{x \in X} R(x)\) is non-empty iff \(\cap_{i=1}^{k} R\left(x_{i}\right) \neq \Phi\) for any finite index set. So let \(K=\{1, \ldots, k\}\) and let \(\Delta\) be1227
the \((k-1)\)-dimensional simplex spanned by \(\left\{x_{1}, \ldots, x_{k}\right\}\). Define \(P: \Delta \rightarrow \Delta\) by \({ }_{122}\) \(P(x)=\{y \in \Delta: x \in \Delta \backslash R(y)\}\) and define \(Q: \Delta+\Delta\) by \(Q(x)=\operatorname{Con} P(x)\), the 1229 convex hull of \(P(x)\).

But \(P^{-1}(y)=\{x \in \Delta: y \in P(x)\}=\Delta \backslash R(y)\) is an open set, in \(\Delta\), and so \(P\)
is LDC. Thus \(Q\) is LDC. Now suppose that \(\cap_{i \in K} R\left(x_{i}\right)=\Phi\).
Thus for each \(x \in \Delta\) there exists \(x_{i}(i \in K)\) such that \(x \in R\left(x_{i}\right)\). But then 1231
\(x \in \Delta-R\left(x_{i}\right)\) and so \(x \in p^{-1}\left(x_{i}\right)\). In particular, for each \(x \in \Delta, P(x)\), and thus \(Q(x)\), is non-empty. Moreover \(\left\{Q^{-1}\left(x_{i}\right): i \in K\right\}\) is an open cover for \(\Delta\). As in the proof of Lemma 3.24, there is a partition of unity for \(Q\). (We need \(Y\) to be Hausdorff for this construction.) In particular there exists a continuous selection \(f: \Delta+\Delta\) for \(Q\). By Brouwer's Theorem, \(f\) has a fixed point \(x_{0} \in \Delta\). Thus \(x_{0} \in \operatorname{Con} P\left(x_{0}\right)\), and so \(x_{0} \in \operatorname{Con}\left\{y_{1}, \ldots, y_{k}\right\}\) where \(y_{i} \in P\left(x_{0}\right)\) for \(i \in K\). But then \(x_{0} \in \Delta \backslash R\left(y_{i}\right)\) for \(i \in K\), and so \(x_{0} \in R\left(y_{i}\right)\) for \(i \in K\).

Hence
\[
\operatorname{Con}\left\{y_{1}, \ldots, y_{k}\right\} \subset \cup_{i=1}^{k} R\left(y_{i}\right) .
\]

This contradicts the hypothesis of the Theorem. Consequently \(\cap_{i \in K} R\left(x_{i}\right) \neq \Phi\) for any finite vertex set \(K\). By compactness \(\cap_{x \in X} R(x) \neq \Phi\).

We can immediately use the KKM theorem to prove a fixed point theorem for a correspondence \(P\) from a compact convex set \(X\) to a Hausdorff topological vector space, \(Y\). In particular \(X\) need not be finite dimensional.

Browder Fixed Point Theorem. Let \(Q: X \rightarrow X\) be a correspondence where \(X\) is a compact convex subset of the Hausdorff topological vector space, \(Y\). Suppose further that \(Q\) is LDC, and that \(Q(x)\) is convex and non-empty for all \(x \in X\). Then there exists \(x_{0} \in X\) such that \(x_{0} \in Q\left(x_{0}\right)\).

Proof. Suppose that \(x \notin Q(x) \forall x \in X\). Define \(R: X \rightarrow X\) by \(R(x)=\) \(X \backslash Q^{-1}(x)\). Since \(Q\) is LDC, \(R(x)\) is closed and thus compact \(\forall x \in X\). To use KKM, we seek to show that \(\operatorname{Con}\left\{x_{1}, \ldots, x_{k}\right\} \subset \cup_{i=1}^{k} R\left(x_{i}\right)\) for any finite index set, \(K=\{1, \ldots, k\}\).

We proceed by contradiction. That is, suppose that there exists \(x_{0}\) in \(X\) with \(x_{0} \in \operatorname{Con}\left\{x_{1}, \ldots, x_{k}\right\}\) but \(x_{0} \in R\left(x_{i}\right)\) for \(i \in K\). Then \(x_{0} \in Q^{-1}\left(x_{i}\right)\),so \(x_{i} \in\) \(Q\left(x_{0}\right), \forall i \in K\). But then \(x_{0} \in \operatorname{Con} Q\left(x_{0}\right)\). Since \(Q(x)\) is convex \(\forall x \in X\), this implies that \(x_{0} \in Q\left(x_{0}\right)\), a contradiction. Consequently \(x \in R\left(x_{i}\right)\) for some \(i \in K\). By the KKM Theorem, \(\cap_{x \in X} R(x) \neq \Phi\).

Thus \(\exists x_{0} \in X\) with \(x_{0} \in R(x)\), and so \(x_{0} \in x \backslash Q^{-1}(x) \forall x \in X\). Thus \(x_{0} \notin\) \(Q^{-1}(x)\) and \(x \in Q\left(x_{0}\right) \forall x \in X\). This contradicts the assumption that \(Q(x) \notin\) \(\Phi \forall x \in X\). Hence \(\exists x_{0} \in X\) with \(x_{0} \in Q\left(x_{0}\right)\).

Ky Fan Theorem. Let \(P: X \rightarrow X\) be an LDC correspondence where \(X\) is a compact convex subset of the Hausdorff topological vector space, \(Y\). If \(x \notin \operatorname{Con} P(x), \forall x \in X\), then the choice \(C_{p}\left(X_{0}\right) \neq \Phi\) for any compact convex subset, \(X_{0}\) of \(X\).

Proof. Define \(Q: X \rightarrow X\) by \(Q(x)=\operatorname{Con} P(x)\). If \(Q(x) \neq \Phi\) for all \(x \in X\), then by the Browder fixed point theorem, \(\exists x_{0} \in X\) with \(x_{0} \in Q\left(x_{0}\right)\). This contradicts
\(x \notin \operatorname{Con} P(x) \forall x \in X\). Hence \(Q\left(x_{0}\right)=\Phi\) for some \(x_{0} \in X\). Thus \(C_{p}(X)=\{x \in\)
\(X: P(x)=\Phi\}\) is non-empty. The same inference is valid for any compact, convex
subset \(X_{0}\) of \(X\).

\subsection*{3.8 Political and Economic Choice}
The results outlined in the previous section are based on the intersection propertyof a family of closed sets. With compactness, this result can be extended to the caseof a correspondence \(R: X \rightarrow X\) to show that \(\cap_{x \in X} R(x) \neq \Phi\). If we regard \(R\) asderived from an LDC correspondence \(P: X \rightarrow X\) by \(R(x)=X \backslash P^{-1}(x)\) then\(R(x)\) can be interpreted as the set of points "no worse than" or "at last as good as"\(x\).But then the choice \(C_{p}(X)=\cap_{x \in X} R(x)\), since such a choice must be at leastas good as any other point. The finite-dimensional version (Lemma 3.25) of theproof that the choice is non-empty is based simply on a fixed point argument usingBrouwer's Theorem. To extend the result to an infinite dimensional topologicalvector space we reduced the problem to one on a finite dimensional simplex, \(\Delta\),spanned by \(\left\{x_{1}, \ldots, x_{k}: x_{i} \in X\right\}\) and then showed essentially that \(\cap_{x \in \Delta} R(x)\)is non empty. By compactness the \(\cap_{x \in X} R(x)\) is non-empty. There is, in fact, arelated infinite dimensional version of Brouwer's Fixed Point Theorem, known asSchauder's fixed point theorem for a continuous function \(f: X \rightarrow Y\), where \(Y\) is acompact subset of the convex Banach space \(X\).One technique for proving existence of an equilibrium price vector in anexchange economy (as discussed in \(\S 3.5\) ) is to construct a continuous function\(f: \Delta \rightarrow \Delta\), where \(\Delta\) is the price simplex of feasible price vectors, and show that\(f\) has a fixed point (using either the Brouwer or Schauder fixed point theorems).An alternative technique is to use the Ky Fan Theorem to prove existence of anequilibrium price vector. This technique permits a proof even when preferences arenot representable by utility functions. More importantly, perhaps,it can be used inthe infinite dimensional case.Example 3.11. . To illustrate the Ky Fan Theorem with a simple example, considerFigure 3.24, which reproduces Figure ?? from Chapter 1.It is evident that the inverse preference, \(P^{-1}\), is not LDC : for example,\(P^{-1}\left(\frac{3}{4}\right)=\left(\frac{1}{4}, \frac{1}{2}\right] \cup\left(\frac{3}{3}, 1\right]\) which is not open. As we saw earlier the choice of1290
1291\(P\) on the unit interval is empty. In fact, to ensure existence of a choice we canrequire simply that \(P\) be lower hemi-continuous. This we can do by deleting thesegment \(\left(\frac{1}{2}, 1\right)\) above the point \(\frac{1}{2}\). If the choice were indeed empty, then by Michael'sSelection Theorem we could find a continuous selection \(f:[O, l] \rightarrow[0,1]\) for \(P\).By Brouwer's fixed point theorem \(f\) has a fixed point, \(x_{0}\), say, with \(x_{0} \in P\left(x_{0}\right)\).12921293129412951296
By inspection the fixed point must be \(x_{0}=\frac{1}{2}\). If we require \(P\) to be irreflexive ..... 1297
(since it is a strict preference relation) then this means that \(\frac{1}{2} \notin P\left(\frac{1}{2}\right)\) and so the ..... 1298

choice must be \(C_{p}([0,1])=\left\{\frac{1}{2}\right\}\). Notice that the preference displayed in Figure 3.24 cannot be represented by a utility function. This follows because the implicit indifference relation is intransitive.

Fig. 3.25 The graph of indifference.


The Ky Fan Theorem gives a proof of the existence of a choice for a "spatial voting game". Remember a social choice procedure, \(\sigma\) is simple iff it is defined by a family \(\mathcal{D}\) of decisive coalitions, each a subset of the society \(M\). In this case if \(\pi=\) \(\left(P_{1}, \ldots, P_{m},\right)\) is a profile on the topological space \(X\), then the social preference is given by
\[
x \sigma(\pi) y \mathrm{iff} x \in \cup_{A \in \mathcal{D}} \cap_{i \in A} P_{i}(y)=P_{\mathcal{D}}(y) .
\]
Here we use \(P_{i}: X \rightarrow X\) to denote the preference correspondence of individual
Thus \(x \in \cup_{A \in \mathcal{D}} P_{A}(y)\) means that for some coalition \(A \in \mathcal{D}\) all members of
\(A\) prefer \(x\) to \(y\). Finally we write \(x \in P_{\mathcal{D}}(y)\) for the condition that \(x\) is socially
\[
C_{\sigma(\pi)}(X)=x: P_{\mathcal{D}}(x)=\Phi .
\]
Nakamura Theorem. Suppose \(X\) is a compact convex topological vector space of dimension \(n\). Suppose that \(\pi=\left(P_{1}, \ldots, P_{m},\right)\) is a profile on \(X\) such that each preference \(P_{i}: X \rightarrow X\) is (i) LDC; and (ii) semi-convex, in the sense that \(x \notin\) \(\operatorname{Con} P_{i}(x)\) for all \(x \in X\). If \(\sigma\) is simple and has Nakamura number \(k(\sigma)\), and if \(n \leq k(\sigma)-2\) then the choice \(C_{\sigma}(\pi)(X)\) is non-empty.
Proof. For any point \(x, y, \in P_{\mathcal{D}}^{-1}(x)\) means \(x \in P_{\mathcal{D}}(y)\) and so \(x \in P_{i}(y) \forall i \in A\), some \(A \in \mathcal{D}\). Thus \(y \in P_{i}^{-1}(x) \forall i \in A\) or \(y \in \cap_{i \in A} P_{i}^{-1}(x)\) or \(y \in \cup_{\mathcal{D}} \cap_{A} P_{i}^{-1}(x)\). But each \(P_{i}\) is LDC and so \(P_{i}^{-1}(x)\) is open, for all \(x \in X\). Finite intersection of open sets is open, and so \(P_{\mathcal{D}}\) is LDC.
Now suppose that \(P_{\mathcal{D}}\) is not semi-convex (that is \(x \in \operatorname{Con} P_{\mathcal{D}}(x)\) for some \(x \in\) \(X\) ). Since \(X\) is \(n\)-dimensional and convex, this means it is possible to find a set of points \(x_{1}, \ldots, x_{n+1}\) such that \(x \in \operatorname{Con} x_{1}, \ldots, x_{n+1}\) and such that \(x_{j} \in P_{\mathcal{D}}(x)\) for each \(j=1, \ldots, n+1\). Without loss of generality this means there exists a subfamily \(D^{\prime}=A_{1}, \ldots, A_{n+1}\) of \(\mathcal{D}\) such that \(x_{j} \in P_{j}^{A}(x)\). Now \(n+1 \leq k(\sigma)-1\), and by the definition of the Nakamura number, the collegium \(K\left(\mathcal{D}^{\prime}\right)\) is non-empty. In particular there is some individual \(i \in A_{j}\), for \(j=1, \ldots, n+1\). Hence \(x_{j} \in P_{i}(x)\) for \(j=1, \ldots, n+l\). But then \(x \in \operatorname{Con} P_{i}(x)\).This contradicts the semi-convexity of individual preference. Consequently \(P_{\mathcal{D}}\) is semi-convex. The conditions of the \(K_{y}\) Fan Theorem are satisfied, and so \(P_{\mathcal{D}}(\bar{x})=\Phi\) for some \(\bar{x} \in X\). Thus \(C_{\sigma(\pi)}(x) \neq \Phi\)

It is worth observing that in finite dimensional spaces the Ky Fan Theorem is valid with the continuity property weakened to lower hemi-continuity (LHC). Note first that if \(P\) is LDC then it is LHC; this follows because \(x \in X: P(x) \cap V \neq \Phi=\cup_{y \in V}\left(P^{-} 1(y) \cap X\right)\) is the union of open sets and thus open.

Moreover (as suggested in Example 3.11) if \(P\) is LHC and the choice is non empty, then the correspondence \(x \rightarrow \operatorname{Con} P(x)\) has a continuous selection \(f\) (by Michael's Selection Theorem). By the Brouwer Fixed Point Theorem, there is a fixed point \(x_{0}\) such that \(x_{0} \in \operatorname{Con} P\left(x_{0}\right)\). This violates semi-convexity of \(P\). Thus the Nakamura Theorem is valid when preferences are LHC. The finite dimensional version of the Ky Fan Theorem can be used to show existence of a Nash equilibrium (Nash 1950).

Definition 3.9. (i) A Game \(G=\left(P_{i}, X\right): i \in M\) for society \(M\) consists of a strategy space, \(X_{i}\), and a strict preference correspondence \(P_{i}: X \rightarrow X\) for
each \(i \in M\), where \(X=\Pi_{i} X_{i}=X_{1} \times \ldots \times X_{m}\), is the joint strategy space.
item[(ii)]In a game \(G\), the Nash improvement correspondence for individual \(i\)
is defined by
\(\hat{P}_{i}: X \rightarrow X\) where \(y \in \hat{P}_{i}(x)\) iff \(y \in P_{i}(x)\) and
\[
\begin{aligned}
Y & =\left(x_{1}, \ldots, x_{i-1}, x_{i}^{*}, \ldots x_{m}\right), \\
x & =\left(x_{1}, \ldots, x_{i-1}, x_{i}, \ldots x_{m}\right),
\end{aligned}
\]
(iii) The overall Nash improvement correspondence is
\[
\hat{P}=\cup_{i \in M} P_{i}: X \rightarrow X .
\]
(iv) A point \(\bar{x} \in X\) is a Nash Equilibrium for the game \(G\) iff \(\hat{P}(\bar{x})=\Phi\). Bergstrom \((1975,1992)\) showed the following.

Bergstrom's Theorem. Let \(G=\left(P_{i}, X\right)\) be a game, and suppose each \(X_{i} \subset \Re^{n}\) is a non-empty compact, convex subset of \(\mathfrak{R}^{n}\). Suppose further that for all \(i \in M, \hat{P}_{i}\) is both semi-convex and LHC. Then there exists a Nash equilibrium for \(G\).
Proof. Since each \(\hat{P}_{i}\) is LHC, it follows easily that \(\hat{P}: X \rightarrow t X\) is LBC. To see that \(\hat{P}\) is semi-convex, suppose that \(y \in \operatorname{Con} \hat{P}(x)\), then \(y=\sum \lambda_{i} y^{i}, \sum i \in N \lambda_{i} \geq\) \(0, \forall i \in N\) and \(y^{i} \in \hat{P}_{i}(x)\). By the definition of \(\hat{P}_{j}, y-x=\sum_{i \in M} \lambda_{i} z^{i}\) where \(z^{i}=y^{i}-x\).

This follows because \(y^{i}\) and \(x\) only differ on the \(i^{t} h\) coordinate, and so \(z^{i}=\)
1353 \(\left(0, \ldots, z_{0}^{i}, \ldots\right)\) where \(z_{0}^{i} \in X_{i}\). Moreover, \(\lambda_{i} \neq 0\) iff \(z^{i} \neq 0\) because \(\hat{P}_{i}\) is semiconvex.

Clearly \(z^{i}: i \in M, \lambda_{i} \neq 0\) is a linearly independent set, so \(y=x\) iff \(\lambda_{i}=0 \forall i \in\) \(M\). But then \(y^{i}=x \forall i \in M\), which again violates semiconvexity of \(P_{i}\). Thus \(y \neq x\) and so \(\hat{P}\) is semi-convex. By the Ky Fan Theorem, for \(X\) finite dimensional, the choice of \(\hat{P}\) on \(X\) is non-empty. Thus the Nash Equilibrium is non-empty. Q. \(E\). D.

Although the Nakamura Theorem guarantees existence of a social choice for a social choice rule, \(\sigma\), for any semi-convex and LDC profile in dimension at most \(k(\sigma)-2\), it is easy to construct situations in higher dimensions with empty choice. The example we now present also describes a game with no Nash equilibrium.
Example 3.12. Consider a simply voting procedure with \(M=1,2,3\) and let \(\mathcal{D}\) consist of any coalition with at least two voters. Let \(X\) be a compact convex set in \(\Re^{2}\), and construct preferences for each \(i\) in \(M\) as follows. Each \(i\) has a "bliss point" \(x_{i} \in X\) and a preference \(P_{i}\) on \(X\) such that for \(y, x \in P_{i}(y)\) iff \(\left\|x-x_{i}\right\|<\|\) \(y-y_{i} \|\). The preference is clearly LDC and semi-convex (since \(P_{i}(x)\) is a convex set and \(x \notin P(x)\) for all \(x \in X)\). Now let \(\Delta=\operatorname{Con} x_{1}, x_{2}, x_{3}\) the 2-dimensional simplex in \(X\) (for convenience suppose all \(x_{i}\) are distinct and in the interior of \(X\) ). For each \(A \subset M\) let \(P_{A}(x)=\cap i \in A P_{i}(x)\) as before.

\begin{tabular}{|lll} 
Fig. 3.27 Empty Nash \\
equilibrium.
\end{tabular}
At price \(p\), the demand vector \(\bar{x}=\left(\bar{x}_{1}, \ldots, \bar{x}_{m}\right)\) satifies the optimality condition \(\hat{P}_{i}(\bar{x}) \cap\left\{x \in X: x_{i} \in B_{i}(p)\right\}=\Phi\) for each \(i\).
As before \(\hat{P}_{i}: X=X\) is the Nash improvement correspondence (as in
As we discussed earlier in \(\S 3.5 .1\), an equilibrium price vector \(\bar{p}\) is a price vector \(\bar{p}=\left(p_{1}, \ldots, p_{n}\right)\) such that the demand vector \(\bar{x}\) satisfies the optimality condition at \(\bar{p}\) and such that total demand does not exceed supply. This latter condition requires that \(\sum_{i \in M} \bar{x}_{i} \leq \sum_{i \in M} e_{i}\) (the two terms are both vectors in \(\Re^{n}\) ). That is, if we use the suffix of \(x_{j}\) to denote commodity \(j\), then \(\sum_{i \in M}\left(\bar{x}_{i j}-e_{i j}\right) \leq 0\) for each \(j=1, \ldots, n\).

Note also that a transformation \(p>\lambda_{p}\), for a real number \(\lambda>0\), does not change the budget set.

This follows because \(B_{i}(p)=\left\{x_{i} \in \mathfrak{R}_{+}^{n}:\langle p, x\rangle \leq\left\langle p, e_{i}\right\rangle\right\}=B_{i}(\lambda p)\).
Consequently if \(\bar{p}\) is an equilibrium price vector, then so is \(\lambda \bar{p}\). Without loss of generality, then, we can normalize the price vector, \(p\), so that \(\|p\|=1\) for some norm on \(\Re^{n}\). We may do this for example by assuming that \(\sum_{j=1}^{n} p_{j}=1\) and that \(p_{j} \geq 0 \forall j\).

For this reason we let \(\Delta^{n-1}\) represent the set of all price vectors.
A further point is worth making. Since we assume that \(p_{j} \geq 0 \forall j\) it is possible for commodity \(j\) to have zero price. But then the good must be in excess supply. To ensure this, we require the equilibrium price vector \(\bar{p}\) and \(i\) 's demand \(\bar{x}_{i}\) at \(\bar{p}\) to satisfy the condition \(\left\langle\bar{p}, \bar{x}_{i}\right\rangle=\left\langle\bar{p}, \bar{e}_{i}\right\rangle\) As we noted in \(\S 3.5 .1\), this can be ensured by assuming that preference is locally non-satiated in \(X\). That is if we let \(\bar{P}_{i}(x) \subset X_{i}\) be the projection of \(\bar{P}_{i}\) onto \(X_{i}\) at \(x\), then for any neighborhood \(U\) of \(x_{i}\) in \(X_{i}\) there exists \(x_{i}^{\prime} \in U\) such that \(x_{i}^{\prime} \in \bar{P}_{i}(x)\).

To show existence of a price equilibrium we need to define a price adjustment mechanism.

To this end define:
\[
\hat{P}_{0}: \Delta \times X \rightarrow \Delta \text { by }
\]
\[
\hat{P}_{0}(p, x)=\left\{p^{\prime} \in \Delta:\left\langle p^{\prime}-p \sum_{i \in M}\left(x_{i}-e_{i}\right)\right\rangle>0\right\}
\]

Now let \(X^{*}=\Delta \times X\) and define \(P_{0}^{*}: X^{*} \rightarrow X^{*}\) by \(\left(p^{\prime}, x\right) \in P_{0}^{*}(p, y)\) iff \(x=y\) and \(p^{\prime} \in \hat{P}_{0}(p, x)\).

In the same way for each \(i \in M\) extend \(\hat{P}_{i}: X \rightarrow X\) to \(P_{i}^{*}: X^{*} \times X^{*}\) by
letting \(\left(p^{\prime}, x\right) \in P_{i}^{*}(p, y)\) iff \(p^{\prime}=p\) and \(x \in \hat{P}_{i}(y)\). This defines an exchange game \(G_{e}=\left\{\left(P_{i}^{*} X^{*}\right): i=0, \ldots, m\right\}\).

Bergstrom (1992) has shown (under the appropriate conditions of semiconvexity,
LHC and local monotonicity for each \(\hat{P}_{i}\) ) that there is a Nash equilibrium to \(G_{e}\). Note that \(e \in\left(\mathfrak{R}^{n}\right)^{m}\) is the initial vector of endowments. We can show that the Nash equilibria comprise a non-empty set \(\{(\bar{p}, \bar{x}) \in \Delta \times X\}\) where \(\bar{x}=\left(\bar{x}_{1}, \ldots, \bar{x}_{m}\right)\) is a vector of final demands for the members of \(M\), and \(\bar{p}\) is an equilibrium price vector.

A Nash equilibrium \((\bar{p}, \bar{x}) \in \Delta \times X\) satisfies the following properties:
(i) Since \(P_{i}^{*}(\bar{p}, \bar{x})=\Phi\) for each \(i \in N\), it follows that \(h\) is \(i\) 's demand.

Moreover by local monotonicity we have \(\left\langle\bar{p}, \bar{x}_{i}\right\rangle=\left\langle\bar{p}, e_{i}\right\rangle, \forall i \in M\).
Thus \(\sum_{i \in M}\left\langle\bar{p}, \bar{x}-e_{i}\right\rangle=0 .(*)\)
(ii) Now \(P_{0}^{*}(\bar{p}, \bar{x})=\Phi\) so \(\left\langle p-\bar{p}, \sum_{i \in M}\left(\bar{x}_{i}-e_{i}\right)\right\rangle \leq 0 \forall p \in \Delta\) (See \(\left.{ }^{* *}\right)\).

Suppose that \(\sum_{i \in M}\left(\bar{x}_{i}-e_{i}\right)>0\). Then it is clearly possible to find \(p \in \Delta\) such that \(p_{j}>0\), for some \(j\), with \(\left\langle p, \sum_{i \in M}\left(x_{i}-e_{i}\right)\right\rangle>0\). But this violates \(\left(^{*}\right)\) and \(\left({ }^{* *}\right)\). Consequently \(\sum_{i \in M}\left(\bar{x}_{i j}-e i j\right) \leq 0\) for \(j=1, \ldots, n\).

Thus \(\bar{x} \in\left(\Re^{n}\right)^{m}\) satifies the feasibility constraint \(\sum_{i \in M} \bar{x}_{i} \leq \sum_{i \in M} e_{i}\).
Hence \((\bar{p}, \bar{x})\) is a free-disposal equilibrium, in the sense that total demand may be less than total supply. Bergstrom (1992) demonstrates how additional assumptions on individual preference are sufficient to guarantee equality of demand and supply. Section 4.4, below, discusses this more fully.

\section*{References}

The reference for the Kuhn-Tucker Theorems is:
H. W. Kuhn and A. W. Tucker (1950) "Non-Linear Programming", in Proceedings: 2nd Berkeley Symposium on Mathematical Statistics and Probability. Berkeley: University of California Press.
A useful further reference for economic applications is
E. M. Heal (1973) Theory of Economic Planning. North Holland: Amsterdam.

The classic references on fixed point theorems and the various corollaries of the theorems are:
Brouwer, L. E. J. (1912) "Uber Abbildung von Mannigfaltikeiten," Math Annalen 71: 97-115.
Browder, F. E. (1967) "A New Generalization of the Schauder Fixed Point Theorem," Math Annalen 174: 285-290.
Browder, F. E. (1968) "The Fixed Point Theory of Multivalued Mappings sin Topological Vector Spaces," Math Annalen 177: 283-301.
Fan, K. (1961) "A Generalization of Tychonoff's Fixed Point Theorem," Math Annalen 142: 305310.


\section*{Chapter 4 \\ Differential Calculus and Smooth Optimisation}
Under certain conditions a continuous function \(f: \mathfrak{R}^{n} \rightarrow \mathfrak{R}^{m}\) can be approximated 3 at each point \(x\) in \(\mathfrak{R}^{n}\) by a linear function \(d f(x): \mathfrak{R}^{n} \rightarrow \mathfrak{R}^{m}\), known as the differential of \(f\) at \(x\). In the same way the differential \(d f\) may be approximated by a bilinear map \(d^{2} f(x)\). When all differentials are continuous then \(f\) is called smooth. For a smooth function \(f\), Taylor's Theorem gives a relationship between the differentials at a point \(x\) and the value of \(f\) in a neighbourhood of a point. This in turn allows us to characterise maximum points of the function by features of the first and second differential. For a real-valued function whose preference correspondence is convex we can virtually identify critical points (where \(d f(x)=0\) ) with maxima.
In the maximisation problem for a smooth function on a "smooth" constraint set, we seek critical points of the Lagrangian, introduced in the previous chapter. In particular in economic situations with exogenous prices we may characterise optimum points for consumers and producers to be points where the differential of the utility or production function is given by the price vector. Finally we use these results to show that for a society the set of Pareto optimal points belongs to a set of generalised critical points of a function which describes the preferences of the society. way of writing this is that as \(\left(x_{n}\right) \rightarrow x\) then
\[
\left.\frac{f\left(x_{n}\right)-f(x)}{x_{n}-x} \rightarrow \frac{d f}{d x}\right|_{x},
\]


Fig. 4.1

This means that there is a real number \(\lambda(x)=\left.\frac{d f}{d x}\right|_{x} \in \mathfrak{\Re}\) such that \(f(x)=26\) \(\lambda(x) h+\epsilon|h|\), where \(\epsilon \rightarrow 0\) as \(h \rightarrow 0\). \(\quad{ }_{27}\)

Let \(d f(x)\) be the linear function \(\Re \rightarrow \Re\) given by \(d f(x)(h)=\lambda(x) h\). Then the map \(\mathfrak{R} \rightarrow \mathfrak{R}\) given by
\[
h \rightarrow f(x)+d f(x)(h)=g(x+h)
\]
is a "first order approximation" to the map
\[
f \rightarrow f(x+h) .
\]

In other words the maps \(h \rightarrow g(x+h)\) and \(h \rightarrow f(x+h)\) are "tangent" to one 33 another where "tangent" means that
\[
\frac{|f(x+h)-g(x+h)|}{|h|}
\]
approaches 0 as \(h \rightarrow 0\). Note that the map \(h \rightarrow f(x)+d f(x)(h)=g(x+h)\) has a 36 straight line graph, and so \(d f(x)\) is a "linear approximation" to the function \(f\) at \(a\). \({ }^{37}\) Example 4.1. 1. Suppose \(f: \Re \rightarrow \Re: x \rightarrow x^{2}\). Then \(\operatorname{Lim}_{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=38\) \(\operatorname{Lim}_{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h}=\operatorname{Lim}_{h \rightarrow 0} \frac{2 h x+h^{2}}{h}=2 x+\operatorname{Lim}_{h \rightarrow 0} h=2 x\). Similarly if \(f\)
\(\mathfrak{R} \rightarrow \mathfrak{R}: x \rightarrow x^{r}\) then \(d f(x)=r x^{r-1} . \quad 40\)
2. Suppose \(f: \Re \rightarrow \mathfrak{R}: x \rightarrow \sin x\). Then \(\operatorname{Lim}_{h \rightarrow 0}\left(\frac{\sin (x+h)-\sin x}{h}\right)=41\)
\[
\begin{aligned}
& \operatorname{Lim}_{h \rightarrow 0}\left(\frac{\sin x(\cos h-1)+\cos x \sin h}{h}\right) \\
& \quad=\operatorname{Lim}_{h \rightarrow 0} \frac{\sin x}{h}\left(\frac{-h^{2}}{2}\right)+\operatorname{Lim}_{h \rightarrow 0} \frac{\cos x}{h}(h) \\
& \quad=\cos x .
\end{aligned}
\]
3. \(f: \mathfrak{R} \rightarrow \mathfrak{R}: x \rightarrow e^{x} . \operatorname{Lim}_{h \rightarrow 0} \frac{e^{x+h}-e^{x}}{h}=\operatorname{Lim}_{h \rightarrow 0} \frac{e^{x}}{h}\left[1+h+\frac{h^{2}}{2} \ldots-1\right]=\) \(e^{x}\).
4. \(f: \mathfrak{R} \rightarrow \mathfrak{R}: x \rightarrow x^{4}\) if \(x \geq 0, x^{2}\) if \(x<0\).

Consider the limit as \(h\) approaches 0 from above (i.e., \(h \rightarrow 0_{+}\)). Then
\[
\operatorname{Lim}_{h \rightarrow 0_{+}} \frac{f(0+h)-f(0)}{h}=\frac{h^{4}-0}{h}=h^{3}=0 .
\]

The limit as \(h\) approaches 0 from below is
\[
\operatorname{Lim}_{h \rightarrow 0-} \frac{f(0+h)-f(0)}{h}=\frac{h^{3}-0}{h}=h^{2}=0 .
\]

Thus \(f\) is continuous at \(x=1\).
\[
\begin{aligned}
& \operatorname{Lim}_{x \rightarrow 0_{-}} d f(x)=\operatorname{Lim}_{x \rightarrow 0_{-}}(-2 x)=0 . \\
& \operatorname{Lim}_{x \rightarrow 0_{+}} d f(x)=\operatorname{Lim}_{x \rightarrow 0_{+}} 2(x-1)=-2 .
\end{aligned}
\]


Fig. 4.2
\[
\begin{aligned}
& \operatorname{Lim}_{x \rightarrow 1_{-}} d f(x)=\operatorname{Lim}_{x \rightarrow 1_{-}} 2(x-1)=-0 . \\
& \operatorname{Lim}_{x \rightarrow 1_{+}} d f(x)=\operatorname{Lim}_{x \rightarrow 1_{+}}(1)=-1 .
\end{aligned}
\]

Hence \(d f(x)\) is not continuous at \(x=0\) and \(x=1\).
To extend the definition to the higher dimension case, we proceed as follows:
Definition 4.1. Let \(X, Y\) be two normed vector spaces, with norms \(\left\|\left\|\left\|_{X},\right\|\right\|\right\|_{Y}\), and 57 suppose \(f, g: X \rightarrow Y\). Then say \(f\) and \(g\) are tangent at \(x \in X\) iff
\[
\operatorname{Lim}_{\|h\|_{X \rightarrow 0}} \frac{\|f(x+h)-g(x+h)\|_{Y}}{\|h\|_{X}}=0
\]

If there exists a linear map \(d f(x): X \rightarrow Y\) such that the function \(g: X \rightarrow Y{ }_{60}\) given by
\[
g(x+h)=f(x)+d f(x)(h)
\]
is tangent to \(f\) at \(x\), then \(f\) is said to be differentiable at \(x\), and \(d f(x)\) is called the 63 differential of \(f\) at \(x\).

In other words \(d f(x)\) is the differential of \(f\) at \(x\) iff there is a linear approxima- 65 \begin{tabular}{l|l|l} 
tion \(d f(x)\) to \(f\) at \(x\), in the sense that & 66
\end{tabular}
\[
f(x+h)-f(x)=d f(x)(h)+\|h\|_{X} \mu(h)
\]
where \(\mu: X \rightarrow Y\) and \(\|\mu(h)\|_{y} \rightarrow 0\) as \(\|h\|_{X} \rightarrow 0\).
Note that since \(d f(x)\) is a linear map from \(X\) to \(Y\), then its image is a vector subspace of \(Y\), and \(d f(x)(\underline{0})\) is the origin, \(\underline{0}\), in \(Y\).

Suppose now that \(f\) is defined on an open ball \(U\) in \(X\).
For some \(x \in U\), consider an open neighborhood \(V\) of \(x\) in \(U\). The image of the
map
\[
h \rightarrow g(x+h) \text { for each } h \in U
\]
will be of the form \(f(x)+d f(x)(h)\), which is to say a linear subspace of \(Y\), but 75 translated by the vector \(f(x)\) from the origin.

If \(f\) is differentiable at \(x\), then we can regard \(d f(x)\) as a linear map from \(X\) to 77 \(Y\), so \(d f(x) \in L(X, Y)\), the set of linear maps from \(X\) to \(Y\). As we have shown in 78 \(\S 3.2\) of Chapter 3, \(L(X, Y)\) is a normed vector space, when \(X\) is finite dimensional. 79 For example, for \(k \in L(X, Y)\) we can define \(\|k\|\) by
\[
\|k\|=\sup \left\{\|k(x)\|_{Y}: x \in X \text { s.t. }\|x\|_{X}=1\right\} .
\]

Let \(\mathcal{L}(X, Y)\) be \(L(X, Y)\) with the topology induced from this norm.
When \(f: U \subset X \rightarrow Y\) is continuous we shall call \(f\) a \(C^{0}\)-map. If \(f\) is \(C^{0}\), and 83 \(d f(x)\) is defined at \(x\), then \(d f(x)\) will be linear and thus continuous, in the sense 84 that \(d f(x) \in \mathcal{L}(X, Y)\).

Hence we can regard \(d f\) as a map
\[
d f: U \rightarrow \mathcal{L}(X, Y)
\]

It is important to note here that though the map \(d f(x)\) may be continuous, the 88 map \(d f: U \rightarrow \mathcal{L}(X, Y)\) need not be continuous at \(x\). However when \(f\) is \(C^{0}\), and 89 the map
\[
d f: U \rightarrow \mathcal{L}(X, Y)
\]
is continuous for all \(x \in U\), then we shall say that \(f\) is a \(C^{1}\) - differentiable map 92 on \(U\). Let \(C_{0}(U, Y)\) be the set of maps from \(U\) to \(Y\) which are continuous on \(U\), 93 and let \(C_{1}(U, Y)\) be the set of maps which are \(C^{1}\)-differentiable on \(U\). Clearly 94 \(C_{1}(U, Y) \subset C_{0}(U, Y)\). If \(f\) is a differentiable map, then \(d f(x)\), since it is linear, 95 can be represented by a matrix. Suppose therefore that \(f: \mathfrak{R}^{n} \rightarrow \mathfrak{R}\), and let 96 \(\left\{e_{1}, \ldots, e_{n}\right\}\) be the standard basis for \(\mathfrak{R}^{n}\). Then for any \(h \in \mathfrak{R}^{n}, h=\sum_{i=1}^{n} h_{i} e_{i}{ }_{97}\) and so \(d f(x)(h)=\sum_{i=1}^{n} h_{i} d f(x)\left(e_{i}\right)=\sum_{i=1}^{n} h_{i} e_{i}\) say.

Consider the vector \(\left(0, \ldots, h_{i}, \ldots, 0\right) \in \mathfrak{R}^{n}\).
Then by the definitions \(\alpha_{i}=d f(x)\left(0, \ldots, e_{i}, \ldots, 0\right)=\)
\[
\left.\operatorname{Lim}_{h_{i} \rightarrow o}\left\{\frac{f\left(x_{1}, \ldots, x_{i}+h_{i}, \ldots,\right)-f\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}\right)}{h_{i}}\right\} \frac{\partial f}{\partial x_{i}}\right|_{x},
\]
where \(\left.\frac{\partial f}{\partial x_{i}}\right|_{x}\) is called the partial derivative of \(f\) at \(x\) with respect to the \(i^{\text {th }}\) coordinate, \(x_{i}\).

Thus the linear function \(d f(x): \Re \rightarrow \Re\) can be represented by a "row vector" or matrix
\[
D f(x)=\left(\left.\frac{\partial f_{j}}{\partial x_{1}}\right|_{x, \ldots},\left.\frac{\partial f}{\partial x_{n}}\right|_{x}\right) .
\]102

Note that this representation is dependent on the particular choice of the basis for 107 \(\Re^{n}\). This matrix \(D f(x)\) can also be regarded as a vector in \(\Re^{n}\), and is then called the direction gradient of \(f\) at \(x\). The \(i^{\text {th }}\) coordinate of \(\operatorname{Df}(x)\) is the partial deriative of \(f\) with respect to \(x_{i}\) at \(x\).

If \(h\) is a vector in \(\Re^{n}\) with coordinates \(\left(h_{1}, \ldots, h_{n}\right)\) with respect to the standard basis, then
\[
d f(x)(h)=\left.\sum_{i=1}^{n} h_{i} \frac{\partial f}{\partial x_{i}}\right|_{x}=\left\langle D f(x), h_{i}\right\rangle
\]
where \(\langle D f(x), h\rangle\) is the scalar product of \(h\) and the direction gradient \(D f(x)\).
In the same way if \(f: \mathfrak{R}^{n}+\mathfrak{R}^{m}\) and \(f\) is differentiable at \(x\), then \(d f(x)\) can be represented by the \(n \times m\) matrix
\[
D f(x)=\left(\frac{\partial f_{j}}{\partial x_{i}}\right)_{x}, i=1, \ldots, n ; j=1, \ldots, m
\]
where \(f(x)=f\left(x_{1}, \ldots, x_{n}\right)=\left(f_{1}(x), \ldots, f_{j}(x), \ldots, f_{m}(x)\right)\). This matrix is called the Jacobian of \(f\) at \(x\). We may define the norm of \(D f(x)\) to be
\[
\|D f(x)\|=\sup \left\{\left|\frac{\partial f_{j}}{\partial x_{i}}\right|_{x}: i=1, \ldots, n ; j=1, \ldots, m\right\}
\]

When \(f\) has domain \(U \subset \mathfrak{R}^{n}\), then continuity of \(D f: U \rightarrow M(n, m)\), where \(M(n, m)\) is the set of \(n \times m\) matrices, implies the continuity of each partial derivative
\[
U \rightarrow \Re:\left.x \rightarrow \frac{\partial f_{j}}{\partial x_{i}}\right|_{x} .
\]

Note that when \(f: \Re \rightarrow \Re\) then \(\left.\frac{\partial f}{\partial x}\right|_{x}\), is written simply as \(\left.\frac{d f}{d x}\right|_{x}\) and is a real number.

Then the linear function \(d f(x): \Re \rightarrow \Re\) is given by \(d f(x)(h)=\left(\left.\frac{d f}{d x}\right|_{x}\right) h\).
To simplify notation we shall not distinguish between the linear function \(d f(x)\) and the real number \(\left.\frac{d f}{d x}\right|_{x}\), when \(f: \Re \rightarrow \Re\).

Suppose now that \(f: U \subset X \rightarrow Y\) and \(g: V \subset Y \rightarrow Z\) such that \(g \circ f: U \subset\) \(X \rightarrow Z\) exists. If \(f\) is differentiable at \(x\), and \(g\) is differentiable at \(f(x)\) then \(g \circ f\) is differentiable at \(x\) and is given by
\[
d(g \circ f)(x)=d g(f(x)) \circ d f(x)
\]

In terms of Jacobian matrices this is
\[
D(g \circ f)(x)=D g(f(x)) \circ D f(x), \text { or } \frac{\partial g_{k}}{\partial x_{i}}=\sum_{j=1}^{m} \frac{\partial g_{k}}{\partial x_{j}} \frac{\partial f_{j}}{\partial x_{i}}, i . e .,
\]


Fig. 4.3
\[
k^{t h} \operatorname{row}\left(\begin{array}{lll}
\frac{\partial g_{k}}{\partial f_{1}} & \ldots & \frac{\partial g_{k}}{\partial f_{m}}
\end{array}\right)\left(\begin{array}{c}
\frac{\partial f_{1}}{\partial x_{i}} \\
\vdots \\
\frac{\partial f_{m}}{\partial x_{i}} \\
i^{\text {th } \text { column }}
\end{array}\right)
\]

This is also known as the chain-rule.
If Id : \(\mathfrak{R}^{n} \rightarrow \mathfrak{R}^{n}\) is the identity map then clearly the Jacobian matrix of Id must be the identity matrix.

Suppose now that \(f: U \subset \mathfrak{R}^{n} \rightarrow V \subset \mathfrak{R}^{n}\) is differentiable at \(x\), and has an inverse \(g=f^{-1}\) which is differentiable. Then \(g \circ f=\mathrm{Id}\) and so Id \(=D(g \circ\) \(f)(x)=D g(f(x)) \circ D f(x)\). Thus \(D\left(f^{-1}\right)(f(x))=[D f(x)]^{-1}\)

In particular, for this to be the case \(D f(x)\) must be an \(n \times n\) matrix of rank \(n\). When this is so, \(f\) is called a diffeomorphism.

On the other hand suppose \(f: X \rightarrow \mathfrak{R}\) and \(g: Y \rightarrow \mathfrak{R}\), where \(f\) is differentiable at \(x \in X\) and \(g\) is differentiable at \(y \in Y\).

Let \(f g: X \times Y \rightarrow \Re:(x, y) \rightarrow f(x) g(y)\). From the chain rule,

Hence \(f g\) is differentiable at the point \((x, y) \in X \times Y\).
When \(X=Y=\mathfrak{R}\), and \((f g)(x)=f(x) g(x)\) then \(d(f g)(x)=f d g(x)+\) \(g d f(x)\), where this is called the product rule.
Example 4.2. Consider the function \(f: \mathfrak{R} \rightarrow \mathfrak{R}\) given by \(x \rightarrow x^{2} \sin \frac{1}{x}\) if \(x \neq 0 ; 0\) if \(x=0\).

We first of all verify that \(f\) is continuous. Let \(g(x)=x^{2}, h(x)=\sin \frac{1}{x}=\) \(\rho[m(x)]\) where \(m(x)=\frac{1}{x}\) and \(\rho(y)=\sin (y)\). Since \(m m\) is continuous at any non
zero point, both \(h\) and \(g\) are continuous. Thus \(f\) is continuous at \(x \neq 0\). (Compare 1 with Example 3.1.)

Now \(\operatorname{Lim}_{x \rightarrow 0} x^{2} \sin \frac{1}{x}=\operatorname{Lim}_{y \rightarrow+\infty} \frac{\sin y}{y^{2}}\). But \(-1<\sin y<1\), and so \(\operatorname{Lim}_{y \rightarrow+\infty} \frac{\sin y}{y^{2}}=0\).

Hence \(x_{n} \rightarrow 0\) implies \(f\left(x_{n}\right) \rightarrow 0=f(0)\). Thus \(f\) is also continuous at \(x=0\).
Consider now the differential of \(f\). By the product rule, since \(f=g h\),
\[
d(g h)(x)=x^{2} d h(x)+\left(\sin \frac{1}{x}\right) d g(x) .
\]

Since \(h(x)=\rho[m(x)]\), by the chain rule,
\[
\begin{aligned}
d h(x) & =d \rho(m(x)) \cdot d m(x) \\
& =\cos \left[(m(x))\left(-\frac{1}{x}\right)\right] \\
& =-\frac{1}{x^{2}} \cos \frac{1}{x} .
\end{aligned}
\]

Thus \(d f(x)=d(g h)(x)\)
\[
\begin{aligned}
& =x^{2}\left[-\frac{1}{x^{2}} \cos \frac{1}{x}+2 x \sin \frac{1}{x}\right] \\
& =-\cos \frac{1}{x}+2 x \sin \frac{1}{x},
\end{aligned}
\]
for any \(x \neq 0\).
Clearly \(d f(x)\) is defined and continuous at any \(x \neq 0\). To determine if \(d f(0)\) is defined, let \(k=\frac{1}{h}\). Then
\[
\begin{aligned}
\operatorname{Lim}_{h \rightarrow 0_{+}} \frac{f(0+h)-f(0)}{h} & =\operatorname{Lim}_{h \rightarrow 0_{+}} \frac{h^{2} \sin \frac{1}{h}}{h} \\
& =\operatorname{Lim}_{h \rightarrow 0_{+}} h \sin \frac{1}{h} \\
& =\operatorname{Lim}_{k \rightarrow \infty} \frac{\sin k}{h}
\end{aligned}
\]

But again \(-1 \leq \sin k \leq 1\) for all \(k\), and so \(\operatorname{Lim}_{k \rightarrow+\infty} \frac{\operatorname{sink}}{k}=0\). In the same way \(\operatorname{Lim}_{h \rightarrow 0-} \frac{h^{2} \sin \frac{1}{h}}{h}=0\). Thus \(\operatorname{Lim}_{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}=0\), and so \(d f(0)=0\). Hence \(d f(0)\) is defined and equal to zero.

On the other hand consider \(\left(x_{n}\right) \rightarrow 0_{+}\). We show that \(\operatorname{Lim}_{x_{n} \rightarrow 0_{+}} d f\left(x_{n}\right)\) does not exist. By the above \(\operatorname{Lim}_{x \rightarrow 0_{+}} d f(x)=\operatorname{Lim}_{x \rightarrow 0_{+}}\left[2 x \sin \frac{1}{x}-\cos \frac{1}{x}\right]\).
\begin{tabular}{|} 
While \(\operatorname{Lim}_{x \rightarrow 0_{+}} 2 x \sin \frac{1}{x}=0\), there is no limit for \(\cos \frac{1}{x}\) as \(x \rightarrow 0_{+}\)(see \\
Example 3.1). Thus the function \(d f: \Re \rightarrow \mathcal{L}(\Re, \Re)\) is not continuous at the point
\end{tabular} \(x=0\).

The reason for the discontinuity of the function \(d f\) at \(x=0\) is that in any neighbourhood \(U\) of the origin, there exist an "infinite" number of non-zero points, \(x^{\prime}\), such that \(d f\left(x^{\prime}\right)=0\). We return to this below.

\section*{4.2 \(\quad C^{r}\)-Differentiable Functions}

\subsection*{4.2.1 The Hessian}

Suppose that \(f: X \rightarrow Y\) is a \(C^{1}\)-differentiable map, with domain \(U \subset X\). Then as we have seen \(d f: U \rightarrow \mathcal{L}(X, Y)\) where \(\mathcal{L}(X, Y)\) is the topological vector space of linear maps from \(X\) to \(Y\) with the norm
\[
\|\boldsymbol{k}\|=\sup \left\{\|k(x)\|_{Y}: x \in X \text { s.t. }\|x\|_{X}=1\right\}
\]

Since both \(U\) and \(\mathcal{L}(X, Y)\) are normed vector spaces, and \(d f\) is continuous, \(d f\) may itself be differentiable at a point \(x \in U\). If \(d f\) is differentiable, then its derivative at \(x\) is written \(d^{2} f(x)\), and will itself be a linear approximation of the map \(d f\) from \(X\) to \(\mathcal{L}(X, Y)\). If \(d f\) is \(C^{1}\), then \(d f\) will be continuous, and \(d^{2} f(x)\) will also be a continuous map. Thus \(d^{2} f(x) \in \mathcal{L}(X, \mathcal{L}(X, Y))\).

When \(d^{2} f: U \rightarrow \mathcal{L}(X, \mathcal{L}(X, Y))\) is continuous, and \(f\) is \(C^{1}\)-differentiable, then say \(f\) is \(C^{2}\)-differentiable. Let \(C_{2}(U, Y)\) be the set of \(C^{2}\)-differentiable maps on \(U\). In precisely the same way say that \(f\) is \(C^{r}\)-differentiable iff \(f\) is \(C^{r-1}\) differentiable, and the \(r^{\text {th }}\) derivative \(d f: U \rightarrow \mathcal{L}(X, \mathcal{L}(X, \mathcal{L}(X, \ldots))\) is continuous

The map is called smooth or \(C^{\infty}\) if \(d^{r} f\) is continuous for all \(r\).
Now the second derivative \(d^{2} f(x)\) satisfies \(d^{2} f(x)(h)(k) \in Y\) for vectors \(h, k \in\) \(X\). Moreover \(d^{2} f(x)(h)\) is a linear map from \(X\) to \(Y\) and \(d^{2} f(x)\) is a linear map from \(X\) to \(\mathcal{L}(X, Y)\).

Thus \(d^{2} f(x)\) is linear in both factors \(h\) and \(k\). Hence \(d^{2} f(x)\) may be regarded as a map
\[
H(x): X \times X \rightarrow Y
\]
where \(H(x)(h, k)=d^{2} f(x)(h)(k) \in Y\).
Moreover \(d^{2} f(x)\) is linear in both \(h\) and \(k\), and so \(H(x)\) is linear in both \(h\) and k. As in Section 2.3.2, we say \(H(x)\) is bilinear.

Let \(L^{2}(x ; Y)\) be the set of bilinear maps \(X \times X \rightarrow Y\). Thus \(H \in L^{2}(x ; Y)\) iff
\[
\begin{aligned}
& H\left(\alpha_{1} h_{1}+\alpha_{2} h_{2}, k\right)=\alpha_{1} H\left(h_{1}, k\right)+\alpha_{2} H\left(h_{2}, k\right) \\
& H\left(h, \beta_{1} k_{1}+\beta_{2} k_{2}\right)=\beta_{1} H\left(k_{1}, h\right)+\beta_{2} H\left(h, k_{2}\right)
\end{aligned}
\]
for any \(\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2} \in \mathfrak{R}, h, h_{1}, h_{2}, k, k_{1}, k_{2} \in X\).
Since \(X\) is a finite-dimensional normed vector space, so is \(X \times X\), and thus the 207 set of bilinear maps \(L^{2}(x ; Y)\) has a norm topology. Write \(\mathcal{L}^{2}(x, Y)\) when the set of bilinear maps has this topology. The continuity of the second differential \(d^{2} f\) : \(U \rightarrow \mathcal{L}(X, \mathcal{L}(X, Y))\) is equivalent to the continuity of the map \(H: U \rightarrow \mathcal{L}^{2}(x ; Y)\), and we may therefore regard \(d^{2} f\) as a map \(d^{2} f: U \rightarrow \mathcal{L}^{2}(X ; Y)\). In the same way we may regard \(d^{2} f\) as a map \(d^{r} f: U \rightarrow \mathcal{L}^{r}(X ; Y)\) where \(\mathcal{L}^{r}(X ; Y)\) is the set of maps \(X^{r}+Y\) which are linear in each component, and is endowed with the norm topology.

Suppose now that \(f: \mathfrak{R}^{n} \rightarrow \mathfrak{R}\) is a \(C^{2}\)-map, and consider a point \(x=\) \(\left(x-1, \ldots, x_{n}\right)\) where the coordinates are chosen with respect to the standard basis. As we have seen the differential \(d f: U \rightarrow \mathcal{L}\left(\Re^{n}, \mathfrak{R}\right)\) can be represented by a continuous function
\[
D f: x \rightarrow\left(\left.\frac{\partial f}{\partial x_{1}}\right|_{x, \ldots,},\left.\frac{\partial f}{\partial x_{n}}\right|_{x}\right) .
\]

Now let \(\partial f_{j}: U \rightarrow \mathfrak{R}\) be the continuous function \(\left.x \rightarrow \frac{\partial f}{\partial x_{j}}\right|_{x}\). Clearly the differential of \(\partial f_{j}\) will be
\[
x \rightarrow\left(\left.\left.\frac{\partial}{\partial x_{1}}\left(\partial f_{j}\right)\right|_{x, \ldots} \frac{\partial}{\partial x_{n}}\left(\partial f_{j}\right)\right|_{x}\right) ;
\]
\[
D^{2} f(x)(h, k)=\langle h, H f(x)(k)\rangle
\]
\[
\begin{aligned}
& =\left(h_{1}, \ldots, h_{n}\right)\left(\frac{\partial}{\partial x_{i}}\left(\frac{\partial f}{\partial x_{j}}\right)\binom{k_{1}}{k_{n}}\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} h_{i} \frac{\partial}{\partial x_{i}}\left(\frac{\partial f}{\partial x_{j}}\right) k_{j} .
\end{aligned}
\]

As an illustration if \(f: \mathfrak{R}^{2} \rightarrow \mathfrak{R}\) is \(C^{2}\) then \(D^{2} f(x): \mathfrak{R}^{2} \times \mathfrak{R}^{2} \rightarrow \mathfrak{R}\) is given by
\[
\begin{aligned}
D^{2} f(x)(h, h) & =\left(h_{1} h_{2}\right)\left(\begin{array}{ll}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1}^{2} \partial x_{2}} \\
\frac{\partial^{2} f}{\partial x_{1}^{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}}
\end{array}\right)\binom{h_{1}}{h_{2}} \\
& =\left.\left(h_{1}^{2} \frac{\partial^{2} f}{\partial x_{1}^{2}}+2 h_{1} h_{2} \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}+h_{2}^{2} \frac{\partial^{2} f}{\partial x_{2}^{2}}\right)\right|_{x} .
\end{aligned}
\]

In the case that \(f: \Re \rightarrow \mathfrak{R}\) is \(C^{2}\), then \(\left.\frac{\partial^{2} f}{\partial x^{2}}\right|_{x}\), is simply written as \(\left.\frac{d^{2} f}{d x^{2}}\right|_{x}\), a real number. Consequently the second differential \(D^{2} f(x)\) is given by
\[
\begin{aligned}
D^{2} f(x)(h, h) & =h\left(\left.\frac{d^{2} f}{d x^{2}}\right|_{x}\right) h \\
& =\left.h^{2} \frac{d^{2} f}{d x^{2}}\right|_{x}
\end{aligned}
\]

We shall not distinguish in this case between the linear map \(D^{2} f(x): \mathfrak{R}^{2} \rightarrow \mathfrak{R}\) and the real number \(\left.\frac{d^{2} f}{d x^{2}} \right\rvert\,\)

\subsection*{4.2.2 Taylor's Theorem}

From the definition of the derivative of a function \(f: X \rightarrow Y, d f(x)\) is the linear approximation to \(f\) in the sense that \(f(x+h)-f(x)=d f(x)(h)+\|h\|_{x} \mu(h)\) where the "error" \| \(h \|_{x}, \mu(h)\) approaches zero as \(h\) approaches zero. Taylor's Theorem is concerned with the "accuracy" of this approximation for a small vector \(h\), by using the higher order derivatives. Our principal tool in this is the following. If \(f: U \subset X \rightarrow \mathfrak{R}\) and the convex hull \([x, x+h]\) of the points \(x\) and \(x+h\) belongs to \(U\), then there is some point \(z \in[x, x+h]\) such that \(f(x+h)=f(x)+d f(z)(h)\).

To prove this result we proceed as follows.
Lemma 4.1 (Rolle's Theorem). Let \(f: U \rightarrow \mathfrak{R}\) where \(U\) is an open set in


Fig. 4.4

Proof. From the Weierstrass Theorem (and Lemma3.16) \(f\) attains its upper and lower bounds on the compact interval, \(I\). Thus there exists finite \(m, M \in \Re\) such that \(m \leq f(x) \leq M\) for all \(x \in I\).

If \(f\) is constant on \(I\), so \(m=f(x)=M, \forall x \in I\), then clearly \(d f(x)=0\) for all \(x \in I\).

Then there exists a point \(c\) in the interior \((a, b)\) of \(I\) such that \(d f(c)=0\). Suppose that \(f\) is not constant. Since \(f\) is continuous and \(I\) is compact, there exist points \(c, e \in I\) such that \(f(c)=M\) and \(f(e)=m\). Suppose that neither \(c\) nor \(e\) belong to \((a, b)\). In this case we obtain \(a=e\) and \(b=c\), say. But then \(M=m\) and so \(f\) is the constant function. When \(f\) is not the constant function either \(c\) or \(e\) belongs to the interior \((a, b)\) of \(I\).
1. Suppose \(c \in(a, b)\). Clearly \(f(c)-f(x) \geq 0\) for all \(x \in I\). Since \(c \in(a, b)\) there exists \(x \in I\) s.t. \(x>c\), in which case \(\frac{f(x)-f(x)}{x-c} \leq 0\). On the other hand there exists \(x \in I\) s.t. \(x<c\) and \(\frac{f(x)-f(x)}{x-c} \geq 0\). By the continuity of \(d f\) at \(x, d f(c)=\operatorname{Lim}_{x \rightarrow c_{+}} \frac{f(x)-f(c)}{x-c}=\operatorname{Lim}_{x \rightarrow c_{-}} \frac{f(x)-f(c)}{x-c}=0\). Since \(c \in(a, b)\) and \(d f(x)=0\) we obtain the result.
2. If \(e \in(a, b)\) then we proceed in precisely the same way to show \(d f(e)=0\). Thus there exists some point \(c \in(a, b)\), say, such that \(d f(c)=0\).

Note that when both \(c\) and \(e\) belong to the interior of \(I\), then these maximum and minimum points for the function \(f\) are critical points in the sense that the derivative is zero.

Lemma 4.2. Let \(f: \mathfrak{R} \rightarrow \mathfrak{R}\) where \(f\) is continuous on the interval \(I=[a, b]\) and \(d f\) is continuous on \((a, b)\). Then there exists a point \(c \in(a, b)\) such that \(d f(c)=\) \(\frac{f(b)-f(a)}{b-c}\).
Proof. Let \(g(x)=f(b)-f(x)-k(b-x)\) and \(k=\frac{f(b)-f(a)}{b-a}\). Clearly \(g(a)=\) \(g(b)=0\). By Rolle's Theorem, there exists some point \(c \in(a, b)\) such that \(d g(c)=\) 0 . But \(d g(c)=k-d f(c)\). Thus \(d f(c)=\frac{f(b)-f(a)}{b-a}\).

Fig. 4.5
Lemma 4.3. Let \(f: \mathfrak{R} \rightarrow \mathfrak{R}\) be continuous and differentiable on an open set containing the interval \([a, a+h]\). Then there exists a number \(t \in(0,1)\) such that
\[
f(a+h)=f(a)+d f(a+t h)(h)
\]

Proof. Put \(b=a+h\). By the previous lemma there exists \(c \in(a, a+h)\) such that
\[
d f(c)=\frac{f(b)-f(a)}{b-a}
\]

Let \(t=\frac{c-a}{b-a}\). Clearly \(t \in(0,1)\) and \(c=a+t h\). But then \(d f(a+t h): \mathfrak{R} \rightarrow \mathfrak{R}\) is the linear map given by \(d f(a+t h)(h)=f(b)-f(a)\), and so \(f(a+h)=\) \(f(a)+d f(a+t h)(h)\).
Mean Value Theorem. Let \(f: U \subset X \rightarrow \mathfrak{R}\) be a differentiable function on \(U\), where \(U\) is an open set in the normed vector space \(X\). Suppose that the line segment
\[
[x, x+h]=\{z: z=x+t h \text { where } t \in[0,1]\}
\]
belongs to \(U\). Then there is some number \(t \in(0,1)\) such that
\[
f(x+h)=f(x)+d f(x+t h)(h)
\]

Proof. Define \(g:[0,1] \rightarrow \mathfrak{R}\) by \(g(t)=f(x+t h)\). Now \(g\) is the composition of the function
\[
\rho:[0,1] \rightarrow U: t \rightarrow x+t h
\]
with \(f:[x, x+h] \rightarrow \mathfrak{R}\).
Since both \(\rho\) and \(f\) are differentiable, so is \(g\). By the chain rule,
\[
\begin{aligned}
d g(t) & =d f(\rho(t)) \circ d p(t) \\
& =d f(x+t h)(h) .
\end{aligned}
\]

By Lemma 4.3, there exists \(t \in(0,1)\) such that \(d g(t)=\frac{g(1)-g(0)}{1-0}\). But \(g(1)=\) \(f(x+h)\) and \(g(0)=f(x)\). Hence \(d f(x+t h)(h)=f(x+h)-f(x)\).
Lemma 4.4. Suppose \(g: U \rightarrow \mathfrak{\Re}\) is a \(C^{2}\)-map on an open set \(U\) in \(\mathfrak{R}\) containing the interval \([0,1]\). Then there exists \(\theta \in(0,1)\) such that
\[
g(1)=g(0)+d g(0)+\frac{1}{2} d^{2} g(\theta)
\]

Proof. (Note here that we regard \(d g(t)\) and \(d^{2} g(t)\) as real numbers.) Now define \(k(t)=g(t)-g(0)-t d g(0)-t^{2}[g(1)-g(0)-d g(0)]\).

Clearly \(k(0)=k(1)=0\), and so by Rolle's Theorem, there exists \(\theta \in(0,1)\) 293 such that \(d k(\theta)=0\). But \(d k(t)=d g(t)-d g(0)-2 t[g(1)-g(0)-d g(0)]\). Hence \(d k(0)=0\).

Again by Rolle's Theorem, there exists \(\theta^{\prime} \in(0, \theta)\) such that \(d^{2} k\left(\theta^{\prime}\right)=0\). But \(d^{2} k\left(\theta^{\prime}\right)=d^{2} g\left(\theta^{\prime}\right)-2[g(1)-g(0)-d g(0)]\).

Hence \(g(1)-g(0)-d g(0)=\frac{1}{2} d^{2} g\left(\theta^{\prime}\right)\) for some \(\theta^{\prime} \in(0,1)\).
Lemma 4.5. Let \(f: U \subset X \rightarrow \Re\) be a \(C^{2}\)-function on an open set \(U\) in the normed vector space \(X\). If the line segment \([x, x+h]\) belongs to \(U\), then there exists \(z \in(x, x+h)\) such that
\[
f(x+h)=f(x)+d f(x)(h)+\frac{1}{2} d^{2} f(z)(h, h)
\]

Proof. Let \(g:[0,1] \rightarrow \mathfrak{R}\) by \(g(t)=f(x+t h)\). As in the mean value theorem,
By Lemma 4.4, \(g(1)=g(0)+d g(0)+\frac{1}{2} d^{2} g\left(\theta^{\prime}\right)\) for some \(\theta^{\prime} \in(0,1)\).
Let \(z=x+\theta^{\prime} h\). Then \(f(x+h)=f(x)+d f(x)(h)+\frac{1}{2} d^{2} f(h, h)\).
Taylor's Theorem. Let \(f: U \subset X \rightarrow \mathfrak{R}\) be a smooth (or \(C^{\infty}\)-) function on an open set \(U\) in the normed vector space \(X\). If the line segment \([x, x+h]\) belongs to \(U\), then \(f(x+h)=f(x)+\sum_{r=1}^{n} \frac{1}{r!} d^{r} f(x)(h, \ldots, h)+R_{n}(h)\) where the error 308 term \(R_{n}(h)=\frac{1}{(n+1)!} d^{n+1} f(z)(h, \ldots, h)\) and \(z \in(x, x+h)\).

Proof. By induction on Lemma 4.5, using the mean value theorem.
The Taylor series off at \(x\) to order \(k\) is
\[
[f(x)]_{k}=f(x)+\sum_{r=1}^{k} \frac{1}{r!} d^{r} f(x)(h, \ldots, h) .
\]


Fig. 4.6

When \(f\) is \(C^{\infty}\), then \([f(x)]_{k}\) exists for all \(k\). In the case when \(X=\Re^{n}\) and the error term \(R_{k}(h)\) approaches zero as \(k \rightarrow \infty\), then the Taylor series \([f(x)]_{k}\) will converge to \(f(x+h)\).

In general however \([f(x)]_{k}\) need not converge, or if it does converge then it need not converge to \(f(x+h)\).

Example 4.3. To illustrate this, consider the flat function \(f: \mathfrak{R} \rightarrow \mathfrak{R}\) given by
\[
\begin{array}{rlrl}
f(x) & =\exp \left(-\frac{1}{x^{2}}\right), & & x \neq 0, \\
& =0 & x=0 .
\end{array}
\]

Now \(D f(x)=-\frac{2}{x^{3}} \exp \left(-\frac{1}{x^{2}}\right)\) for \(x \neq 0\). Since \(y^{\frac{3}{2}} e^{-y} \rightarrow 0\) as \(y \rightarrow \infty\), we obtain \(D f(x) \rightarrow 0\) as \(x \rightarrow 0\). However
\[
D f(0)=\operatorname{Lim}_{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}=\operatorname{Lim}_{h \rightarrow 0} \frac{1}{h} \exp \left(-\frac{1}{h^{2}}\right)=0
\]

Thus \(f\) is both continuous and \(C^{1}\) at \(x=0\). In the same way \(f\) is \(C^{r}\) and \(D^{r} f(0)=0\) for all \(r>1\). Thus the Taylor series is \([f(0)]_{k}=0\). However for small \(h>0\) it is evident that \(f(0+h) \neq 0\). Hence the Taylor series cannot converge to \(f\).

These remarks lead directly to classification theory in differential topology, and are beyond the scope of this work. The interested reader may refer to Chillingsworth (1976) for further discussion.

5. Similarly a global (strict) maximum (or minimum) on \(U\) is defined by requiring 362 \(f(y)<(\leq,>, \geq) f(x)\) respectively on \(U . \quad 363\)
6. If \(f\) is \(C^{1}\) - differentiable then \(x\) is called a critical point iff \(d f(x)=0\), the zero map from \(\mathfrak{R}^{n}\) to \(\mathfrak{R}\).
Lemma 4.7. Suppose that \(f: U \subset \Re^{n} \rightarrow \mathfrak{R}\) is a \(C^{2}\)-function on an open set \(U\) in \(\Re^{n}\). Then \(f\) has a local strict maximum (minimum) at \(x\) if
1. \(x\) is a critical point of \(f\) and
2. the Hessian \(H f(x)\) is negative (positive) definite.
Proof. Suppose that \(x\) is a critical point and \(H f(x)\) is negative definite. By Lemma 4.5
\[
f(y)=f(x)+d f(x)(h)+\frac{1}{2} d^{2} f(z)(h, h)
\]
whenever the line segment \([x, y] \in U, h=y-x\) and \(z=x+\theta h\) for some \(\theta \in(0,1)\).
Now by the assumption there is a coordinate base for \(\mathfrak{R}^{n}\) such that \(\operatorname{Hf(x)}\) is negative definite. By Lemma 4.6, there is a neighbourhood \(V\) of \(x\) in \(U\) such that \(H f(y)\) is negative definite for all \(y\) in \(V\). Let \(N_{\epsilon}(x)=\{x+h:\|h\|<\epsilon\}\) be an \(\epsilon\)-neighborhood in \(V\) of \(x\). Let \(S_{\frac{\epsilon}{2}}(\underline{0})=\left\{h \in \mathfrak{R}^{n}:\|h\|=\frac{1}{2} \epsilon\right\}\).
Clearly any vector \(x+h\), where \(h \in S_{\frac{\epsilon}{2}} ;(\underline{0})\) belongs to \(N_{\epsilon}(x)\), and thus \(V\). Hence \(H f(z)\) is negative definite for any \(z=x+\theta h\), where \(h \in S_{\frac{\epsilon}{2}}(\underline{0})\), and \(\theta \in(0,1)\). Thus \(H f(z)(h, h)<0\), and any \(z \in[x, x+h]\).
But also by assumption \(d f(x)=0\) and so \(d f(x)(h)=0\) for all \(h \in \mathfrak{R}^{n}\). Hence \(f(x+h)=f(x)+\frac{1}{2} d^{2} f(z)(h, h)\) and so \(f(x+h)<f(x)\) for \(h \in S_{\frac{\epsilon}{2}}(\underline{0})\). But the same argument is true for any \(h\) satisfying \(\|h\|<\frac{\epsilon}{2}\). Thus \(f(y)<f(x)\) for all \(y\) in the open ball of radius \(\frac{\epsilon}{2}\) about \(x\). Hence \(x\) is a local strict maximum. The same argument when \(H f(x)\) is positive definite shows that \(x\) must be a local strict minimum.
In \(\S 2.3\) we defined a quadratic form \(A^{*}: \Re^{n} \times \mathfrak{R}^{n} \rightarrow \Re\) to be non-degenerate iff the nullity of \(A^{*}\), namely \(\left\{x: A^{*}(x, x)=0\right\}\), is \(\{\underline{0}\}\). If \(x\) is a critical point of a \(C^{2}\) function \(f: U \subset \mathfrak{R}^{n} \rightarrow \mathfrak{R}\) such that \(d^{2} f(x)\) is non-degenerate (when regarded as a quadratic form), then call \(x\) a non-degenerate critical point.
The dimension (s) of the subspace of \(\Re^{n}\) on which \(d^{2} f(x)\) is negative definite is called the index of \(f\) at \(x\), and \(x\) is called a critical point of index \(s\).
If \(x\) is a non-degenerate critical point, then when any coordinate system for \(\mathfrak{R}^{n}\) is chosen, the Hessian \(H f(x)\) will have s eigenvalues which are negative, and \(n-s\) which are positive.
For example if \(f: \mathfrak{R} \rightarrow \mathfrak{R}\), then only three cases can occur at a critical point
1. \(d^{2} f(x)>0: x\) is a local minimum;
2. \(d^{2} f(x)<0: x\) is a local maximum;
3. \(d^{2} f(x)=0: x\) is a degenerate critical point.
If \(f: \mathfrak{R}^{2} \rightarrow \mathfrak{R}\) then a number of different cases can occur. There are three non-degenerate cases:
1. \(H f(x)=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\), say, with respect to a suitable basis; \(x\) is a local minimum since both eigenvalues are positive. Index \(=0\).
2. \(H f(x)=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right] ; x\) is a local maximum, both eigenvalues are negative. Index \(=2\).
3. \(H f(x)=\left[\begin{array}{ll}1 & 0 \\ 0 & -1\end{array}\right] ; x\) is a saddle point or index 1 non-degenerate critical point. 400 In the degenerate cases, one eigenvalue is zero and so \(\operatorname{det}(H f(x))=0\).
\[
\wedge=\frac{1}{2}\left(\begin{array}{ll}
1 & 1 \\
-1 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
-1 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & -1
\end{array}\right) .
\]

Consider a vector \(h=\left(h_{1}, h_{2}\right) \in \mathfrak{R}^{2}\). In matrix notation, \(h^{t} H h=h^{t} P \wedge P^{-1} h\)
Now \(P(h)=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}1 & 1 \\ 1 & -1\end{array}\right)\binom{h_{1}}{h_{2}}=\frac{1}{\sqrt{2}}\binom{h_{1}+h_{2}}{h_{2}-h_{2}}\). Thus \(h^{t} H h=\frac{1}{2}\left[\left(h_{1}+\right.\right.\) \(\left.\left.h_{2}\right)^{2}-\left(h_{1}-h_{2}\right)^{2}\right]=2 h_{1} h_{2}\). It is clear that \(D^{3} f(0,0)=0\). Hence from Taylor's Theorem,
\[
f\left(0+h_{1}, 0+h_{2}\right)=f(0)+D f(0)(h)+\frac{1}{2} D^{2} f(0)(h, h)
\]
and so \(f\left(h_{1}, h_{2}\right)=\frac{1}{2} h^{t} H h=h-1 h_{2}\).
Suppose we make the basis change represented by \(P\). Then with respect to the 416 basis \(\left\{v-1, v_{2}\right\}\) the point \((x, y)\) has mordinatm \(\left(\frac{1}{\sqrt{2}}\left(h_{1}+h_{2}\right), \frac{1}{\sqrt{2}}\left(h_{1}-h_{2}\right)\right)\).

Thus \(f\) can be represented in a neighbourhood of the origin as
\[
\left(h_{1}+h_{2}\right) \rightarrow \frac{1}{\sqrt{2}}\left(h_{1}+h_{2}\right) \frac{1}{\sqrt{2}}\left(h_{1}-h_{2}\right)=\frac{1}{2}\left(h_{1}^{2}-h_{2}^{2}\right) .
\]

Notice that with respect to this new coordinate system
\[
D f\left(h_{1}, h_{2}\right)=\left(h_{1},-h_{2}\right), \text { and }
\]
\[
H f\left(h_{1}, h_{2}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & -1
\end{array}\right)
\]

In the eigenspace \(E_{1}=\left\{(x, y) \in \mathfrak{R}^{2}: x=y\right\}\) the Hessian has eigenvalue 1 and so
Conversely in the eigenspace \(E_{-1}==\left\{(x, y) \in \mathfrak{R}^{2}: x+y=0\right\}, f\) has a local 423
maximum at 0 .
More generally when \(f: \mathfrak{R}^{2} \rightarrow \mathfrak{R}\) is a quadratic function in \(x, y\), then at a
1. \((x, y) \rightarrow x^{2}+y^{2}\) an index 0 , minimum
2. \((x, y) \rightarrow-x^{2}-y^{2}\) an index 2 , maximum
3. \((x, y) \rightarrow x^{2}-y^{2}\) an index 1 saddle point.

Example 4.5. Let \(f: \mathfrak{R}^{3} \rightarrow \mathfrak{R}:(x, y, z) \rightarrow x^{2}+2 y^{2}+3 z^{2}+x y+x z\). Therefore \(D f(x, y, z)=(2 x+y+z, 4 y+x, 62+x)\).

Clearly \((0,0,0)\) is the only critical point.
\[
H=H f(x, y, z)=\left(\begin{array}{lll}
2 & 1 & 1 \\
1 & 4 & 0 \\
1 & 0 & 6
\end{array}\right)
\]
\(|H|=38\) and so \((0,0,0)\) is non-degenerate. It can be shown that the eigenvalues of

Notice that Lemma 4.7 does not assert that a local strict maximum (or minimum)

For example consider the "flat" function \(f: \mathfrak{R} \rightarrow \mathfrak{R}\) given by \(f(x)=\)
Yet clearly \(0>-\exp \left(\frac{1}{a^{2}}\right)\) for any \(a \neq 0\). Thus 0 is a global strict maximum of
A local maximum or minimum must however be a critical point. If the point is a local maximum for example then the Hessian can have no positive eigenvalues.
Consequently \(D^{2} f(x)(h, h)<0\) for all \(h\), and so the Hessian must be negative semi-definite. As the flat function indicates, the Hessian may be identically zero at the local maximum.

Lemma 4.8. Suppose that \(f: U \subset \Re^{n} \rightarrow \mathfrak{R}\) is a \(C^{2}\)-function on an open set \(u\) in \(\mathfrak{R}^{n}\). Then \(f\) has a local maximum or minimum at \(x\) only if \(x\) is a critical point of \(f\).

Proof. Suppose that \(d f(x) \neq 0\). Then we seek to show that \(x\) can be neither a local maximum nor minimum at \(x\).


Fig. 4.7

Since \(d f(x)\) is a linear map from \(\mathfrak{R}^{n}\) to \(\mathfrak{R}\) it is possible to find some vector \(h \in \mathfrak{R}^{n}\) such that \(d f(x)(h)>0\).

Choose \(h\) sufficiently small so that the line segment \([x, x+h]\) belongs to \(U\).
Now \(f\) is \(C^{1}\), and so \(d f: U \rightarrow \mathcal{L}\left(\Re^{n}, \mathfrak{R}\right)\) is continuous. In particular since \(d f(x) \neq 0\) then for some neighbourhood \(V\) of \(x\) in \(U, d f(y) \neq 0\) for all \(y \in V\). Thus for all \(y \in V, d f(y)(h)>0\) (see Lemma 18 for more discussion of this phenomenon).

By the mean value theorem there exists \(t \in(0,1)\) such that \(f(x+h)=f(x)+\) \(d f(x+t h)(h)\). By choosing \(h\) sufficiently small, the vector \(x+t h \in V\). Hence \(f(x+h)>f(x)\). Consequently \(x\) cannot be a local maximum.

But in precisely the same way if \(d f(x) \neq 0\) then it is possible to find \(h\) such that \(d f(x)(h)<0\). A similar argument can then be used to show that \(f(x+h)<f(x)\) and so \(x\) cannot be a local minimum. Hence if \(x\) is either a local maximum or minimum of \(f\) then it must be a critical point of \(f\).
Lemma 4.9. Suppose that \(f: U \subset \mathfrak{R}^{n} \rightarrow \mathfrak{R}\) is a \(C^{2}\)-function on an open set \(U\) in \(\mathfrak{R}^{n}\). If \(f\) has a local maximum at \(x\) then the Hessian \(d^{2} f\) at the critical point must be negative semi-definite (i.e., \(d^{2} f(x)(h, h)<0\) for all \(h \in \mathfrak{R}^{n}\) ).

Proof. We may suppose that \(x\) is a critical point. Suppose further that for some coordinate basis at \(x\), and vector \(h \in \mathfrak{R}^{n}, d^{2} f(x)(h, h)>0\). From Lemma 4.6, by the continuity of \(d^{2} f\) there is a neighbourhood \(V\) of \(x\) in \(U\) such that \(d^{2} f\left(x^{\prime}\right)(h, h)>0\) for all \(x^{\prime} \in V\).

Choose an \(\epsilon\)-neighbourhood of \(x\) in \(V\), and choose \(\alpha>0\) such that \(\|a h\|=\frac{1}{2} \epsilon\). Clearly \(x+\alpha h \in V\). By Taylor's Theorem, there exists \(z=x+\theta \alpha h, \theta \in(0,1)\), such that \(f(x+\alpha h)=f(x)+d f(x)(h)+\frac{1}{2} d^{2} f(z)(\alpha h, \alpha h)\). But \(d^{2} f(z)\) is bilinear, so \(d^{2} f(z)(\alpha h, \alpha h)=\alpha^{2} d^{2} f(z)(h, h)>0\) since \(z \in V\). Moreover \(d f(x)(h)=0\). Thus \(f(x+\alpha h)>f(x)\).

Moreover for any neighbourhood \(U\) of \(x\) it is possible to choose \(\epsilon\) sufficiently small so that \(x+\alpha h\) belongs to \(U\). Thus \(x\) cannot be a local maximum.

Similarly if \(f\) has a local minimum at \(x\) then \(x\) must be a critical point with positive semi-definite Hessian.


Now
\[
H f(x, y)=\left(\begin{array}{ll}
2(y-2)^{2} & -4 x(2-y) \\
-4 x(2-y) & 2 x^{2}
\end{array}\right)
\]
and so when \((x, y) \in V_{1}\) then \(H f(x, y)=\left(\begin{array}{ll}\mu^{2} & 0 \\ 0 & 0\end{array}\right)\), and when \((x, y) \in V_{2}\), then
\(H f(x, y)=\left(\begin{array}{ll}0 & 0 \\ 0 & \tau^{2}\end{array}\right)\).
For suitable \(\mu\) and \(\tau\), any point in \(S(f)\) is degenerate. On \(V_{1} \backslash\{(0,0)\}\) clearly 489 a critical point is not negative semi-definite, and so such a point cannot be a local maximum. The same is true for a point on \(V_{2} \backslash\{(0,0)\}\).

Now \((0,0) \in V_{1} \cap V_{2}\), and \(H f(0,0)=(0)\). Lemma 4.9 does not rule out \((0,0)\) as a local maximum. However it should be obvious that the origin is a local minimum.

Unlike examples 4.4 and 4.5 no linear change of coordinate bases transforms the function into a quadratic canonical form.

To find a local maximum point we therefore seek all critical points. Those which have negative definite Hessian must be local maxima. Those points remaining which do not have a negative semi-definite Hessian cannot be local maxima, and may be rejected. The remaining critical points must then be examined.

A \(C^{2}\)-function \(f: \mathfrak{R}^{n} \rightarrow \mathfrak{R}\) with a non-degenerate Hessian at every critical point is called a Morse function. Below we shall show that any Morse function can be represented in a canonical form such as we found in Example 4.4. For such a function, local maxima are precisely those critical points of index \(n\). Moreover, any smooth function with a degenerate critical point can be "approximated' by a Morse function.

Suppose now that we wish to maximise a \(C^{2}\)-function on a compact set \(K\). As we know from the Weierstrass theorem, there does exist a maximum. However, Lemmas 4.8 and 4.9 are now no longer valid and it is possible that a point on the boundary of \(K\) will be a local or global maximum but not a critical point. However, Lemma 4.7 will still be valid, and a negative definite critical point will certainly be a local maximum.
A further difficulty arises since a local maximum need not be a global maximum. However, for concave functions, local and global maxima coincide. We discuss maximisation by smooth optimisation on compact convex sets in the next section.\((Y)\) of \(Y\), then we may extend \(d f\) over \(Y\) by defining \(d f(x)\), at each point \(x\) in theboundary, \(\partial Y\) of \(Y\), to be the limit \(d f\left(x_{k}\right)\) for any sequence, \(\left(x_{k}\right)\), of points in Int522\((Y)\), which converge to \(x\). More generally we shall say a function \(f: Y \subset \mathfrak{R}^{n} \rightarrow \mathfrak{R}\)is \(C^{1}\) on the admissible set \(Y\) if \(d f: Y \rightarrow \mathcal{L}\left(\Re^{n}, \mathfrak{R}\right)\) is defined and continuousin the above sense at each \(x \in Y\). We now give an alternative definition of thedifferential of a \(C^{1}\)-function \(f: Y \rightarrow \Re\). Suppose that \(Y\) is convex and both \(x\) and\(x+h\) belong to \(Y\). Then the \(\operatorname{arc}[x, x+h]=\left\{z \in \mathfrak{R}^{n}: z=x+\lambda h, \lambda \in[0,1]\right\}\)belongs to \(Y\).
Now \(d f(x)(h)=\lim _{\lambda \rightarrow 0_{+}} \frac{f(x+\lambda h)-f(x)}{\lambda}\) and thus \(d f(x)(h)\) is often called the directional derivative of \(f\) at \(x\) in the direction \(h\).
Finding maxima of a function becomes comparatively simple when \(f\) is a concave or quasi-concave function (see \(\S 3.4\) for definitions of these terms). Our first result shows that if \(f\) is a concave function then we may relate \(d f(x)(y-x)\) to \(f(y)\) and \(f(x)\).
Lemma 4.10. If \(f: Y \subset \Re^{n} \rightarrow \mathfrak{R}\) is a concave \(C^{1}\)-function on a convex admissible set \(Y\) then
\[
d f(x)(y-x) \geq f(y)-f(x)
\]
Proof. Since \(f\) is concave
\[
f(\lambda y+(1-\lambda) x) \geq \lambda f(y)+(1-\lambda) f(x)
\]
for any \(\lambda \in[0,1]\) whenever \(x, y \in Y\). But then \(f(x+\lambda(y-x)-f(x)) \geq\) \(\lambda[f(y)-f(x)]\), and so
\[
d f(x)(y-x)=\operatorname{Lim}_{\lambda \rightarrow 0+} \frac{f(x=\lambda(y-x))-f(x)}{\lambda}
\]

\section*{\(\geq f(y)-f(x)\).}

This enables us to show that for a concave function, \(f\), a critical point of \(f\) must be a global maximum when \(Y\) is open.

First of all call a function \(f: Y \subset \Re^{n} \rightarrow \mathfrak{R}\) strictly quasi-concave iff \(Y\) is convex and for all \(x, y \in Y\)
\[
f(\lambda y+(1-\lambda) x)>\min (f(x), f(y)) \quad \text { for all } \lambda \in(0,1) .
\]

Remember that \(f\) is quasi-concave if
\[
f(\lambda y+(1-\lambda) x) \geq \min (f(x), f(y)) \quad \text { for all } \lambda \in[0,1] .
\]

As above let \(P(x ; Y)=\{y \in Y: f(y)>f(x)\}\) be the preferred set of a function \(f\) on the set \(Y\). A point \(x \in Y\) is a global maximum of \(f\) on \(Y\) iff \(P(x ; Y)=\Phi\). When there is no chance of misunderstanding we shall write \(P(x)\) for \(P(x ; Y)\). As shown in §3.4, if \(f\) is (strictly) quasi-concave then, \(\forall x \in Y\), the preferred set, \(P(x)\), is (strictly) convex.

Lemma 4.11. I. If \(f: Y \subset \Re^{n} \rightarrow \Re\) is a concave or strictly quasi-concave 555 function on a convex admissible set, then any point which is a local maximum of \(f\) is also a global maximum.
2. If \(f: U \subset \Re^{n} \rightarrow \Re\) is a concave \(C^{1}\)-function where \(U\) is open and convex, then any critical point of \(f\) is a global maximum on \(U\).

Proof. 1. Suppose that \(f\) is concave or strictly quasi-concave, and that \(x\) is a local maximum but not a global maximum on \(Y\). Then there exists \(y \in Y\) such that \(f(y)>f(x)\).

Since \(Y\) is convex, the line segment \([x, y]\) belongs to \(Y\). For any neighbourhood \(U\) of \(x\) in \(Y\) there exists some \(\lambda^{*} \in(0,1)\) such that, for \(\lambda \in\left(0, \lambda^{*}\right), z=\) \(\lambda y+(1-\lambda) x \in U\). But by concavity
\[
f(z) \geq \lambda f(y)+(1-\lambda) f(x)>f(x) .
\]

Hence in any neighbourhood \(U\) of \(x\) in \(Y\) there exists a point \(z\) such that \(f(z)>\) \(f(x)\). Hence \(x\) cannot be a local maximum. Similarly by strict quasi-concavity
\[
f(z)>\min (f(x), f(y))=f(x),
\]
and so, again, \(x\) cannot be a local maximum. By contradiction a local maximum must be a global maximum.
2. If \(f\) is \(C^{1}\) and \(U\) is open then by Lemma 4.8, a local maximum must be a critical point. By Lemma 4.10, \(d f(x)(y-x) \geq f(y)-f(x)\). Thus \(d f(x)=0\) implies
that \(f(y)-f(x) \leq 0\) for all \(y \in Y\). Hence \(x\) is a global maximum of \(f\) on \(Y\).

Clearly if \(x\) were a critical point of a concave function on an open set then the Hessian \(d^{2} f(x)\) must be negative semi-definite. To see this, note that by Lemma 4.11, the critical point must be a global maximum, and thus a local maximum. By Lemma 4.9, \(d^{2} f(x)\) must be negative semi-definite. The same is true if \(f\) is quasi-concave.
575


Lemma 4.12. If \(f: U \subset \Re^{n} \rightarrow \mathfrak{R}\) is a quasi-concave \(C^{2}\)-function on an open set, then at any critical point, \(x, d^{2} f(x)\) is negative semi-definite.
Proof. Suppose on the contrary that \(d f(x)=0\) and \(d^{2} f(x)(h, h)>0\) for some 5 \(h \in \Re^{n}\). As in Lemma 4.6, there is a neighbourhood \(V\) of \(x\) in \(U\) such that 580 \(d^{2} f(z)(h, h)>0\) for all \(z\) in \(V\). \(\quad 581\)

Thus there is some \(\lambda^{*} \in(0,1)\) such that, for all \(\lambda \in\left(0, \lambda^{*}\right)\), there is some \(z\) in \(V 582\) such that
\[
\begin{aligned}
f(x+\lambda h) & =f(x)+d f(x)(\lambda h)+\lambda^{2} d^{2} f(z)(h, h), \text { and } \\
f(x-\lambda h) & =f(x)+d f(x)(-\lambda h)+(-\lambda h)^{2} d^{2} f(z)(h, h)
\end{aligned}
\]
where \([x-\lambda h, x+\lambda h]\) belongs to \(U\). Then \(f(x+\lambda h)>f(x)\) and \(f(x-\lambda h)>\) \(f(x)\). Now \(x \in[x-\lambda h, x+\lambda h]\) and so by quasi-concavity,
\[
f(x) \geq \min (f(x+\lambda h), f(x-\lambda h))
\]

By contradiction \(d^{2} f(x)(h, h) \leq 0\) for all \(h \in \mathfrak{R}^{n}\).
For a concave function, \(f\), on a convex set \(Y, d^{2} f(x)\) is negative semi-definite not just at critical points, but at every point in the interior of \(Y\).
Lemma 4.13. 1. If \(f: U \subset \Re^{n} \rightarrow \mathfrak{R}\) is a concave \(C^{2}\)-function on an open convex set \(U\), then \(d^{2} f(x)\) is negative semi-definite for all \(x \in U\).
2. If \(f: Y \subset \Re^{n} \rightarrow \Re\) is a \(C^{2}\) - function on an admissible convex set \(Y\) and 591 \begin{tabular}{ll|l}
\(d^{2} f(x)\) is negative semi-definite for all \(x \in Y\), then \(f\) is concave. & 592
\end{tabular}
Proof. 1. Suppose there exists \(x \in U\) and \(h \in \mathfrak{R}^{n}\) such that \(d^{2} f(x)(h, h)>593\) 0 . By the continuity of \(d^{2} f\), there is a neighbourhood \(V\) of \(x\) in \(U\) such that 594 \(d^{2} f(z)(h, h)>0\), for \(z \in V\). Choose \(\theta \in(0,1)\) such that \(x+\theta h \in V\). Then by Taylor's theorem there exists \(z \in(x, x+\theta h)\) such that
\[
\begin{aligned}
f(x+\theta h) & =f(x)+d f(x)(\theta h)+\frac{1}{2} d^{2} f(z)(\theta h, \theta h) \\
& >f(x)+d f(x)(\theta h)
\end{aligned}
\]

But then \(d f(x)(\theta h)<f(x+\theta h)-f(x)\). This contradicts \(d f(x)(y-x) \geq\) \(f(y)-f(x), \forall x, y\) in \(U\). Thus \(d^{2} f(x)\) is negative semi-definite.
590
592











2. If \(x, y \in Y\) and \(Y\) is convex, then the arc \([x, y] \subset Y\).
Hence there is some \(z=\lambda x+(1-\lambda) y\), where \(\lambda \in(0,1)\), such that
\[
f(y)=f(x)+d f(x)(y-x)+d^{2} f(z)(y-x, y-x)
\]
\[
\leq f(x)+d f(x)(y-x) .
\]
But in the same way \(f(x)-f(z) \leq d f(z)(x-z)\) and \(f(y)-f(z) \leq d f(z)(y-z)\).

Proof. 1. Suppose that \(f\) is not strictly quasi-concave. Then for some \(x, y \in 630\) \(Y, f\left(\lambda^{*} y+\left(1-\lambda^{*}\right) x\right) \leq \min (f(x), f(y))\) for some \(\lambda^{*} \in(0,1)\). Without 631 loss of generality suppose \(f(x) \leq f(y)\), and \(f(\lambda y+(1-\lambda) x) \leq f(x)\) for all 632 \(\lambda \in(0,1)\). Then \(d f(x)(y-x)=\operatorname{Lim}_{\lambda \rightarrow 0_{+}} \frac{f(\lambda y+(l-\lambda) x)-f(x)}{\lambda} \leq 0\). But by strict 633 pseudo-concavity, we require that \(d f(x)(y-x)>0\). Thus \(f\) must be strictly 634 quasi-concave.
2. If \(d f(x)=0\) then \(d f(x)(y-x)=0\) for all \(y \in U\). Hence \(f(y)<f(x)\) for all \(y \in U, y \neq x\). Thus \(x\) is a global strict maximum.

As we have observed, when \(f\) is a quasi-concave function on \(Y\), the preferred set \(P(x ; Y)\) is a convex set in \(Y\). Clearly when \(f\) is continuous then \(P(x ; Y)\) is open \({ }_{637}\) in \(Y\). As we might expect from the Separating Hyperplane Theorem, \(P(x ; Y)\) will 638 then belong to an "open half space". To see this note that Lemma 4.14 establishes (for a quasi-concave \(C^{1}\) function \(f\) ) that the weakly preferred set
\[
R(x ; Y)=\{y \in Y: f(y) \geq f(x)\}
\]
belongs to the closed half-space
\[
R(x ; Y)=\{y \in Y: d f(x)(y-x) \geq 0\} .
\]

When \(Y\) is open and convex the boundary of \(H(x ; Y)\) is the hyperplane \(\{y \in\) \(Y: d f(x)(y-x)=0\}\) and \(H(x ; Y)\) has relative interior \(\stackrel{0}{H}(x ; Y)=\{y \in Y\) \(d f(x)(y-x)>0\}\). Write \(H(z), R(x), P(x)\) for \(H(x ; Y), R(x ; Y), P(x ; Y)\), etc. when \(Y\) is understood.

Lemma 4.16. Suppose \(f: U \subset \Re^{n} \rightarrow \Re\) is \(C^{1}\), and \(U\) is open and convex.
1. If \(f\) is quasi-concave, with \(d f(x) \neq 0\) then \(P(x) \subset \stackrel{0}{H}(x)\),
2. If \(f\) is concave or strictly pseudo-concave then \(P(x) \subset \stackrel{0}{H}(x)\) for all \(x \in U\). In particular if \(x\) is a critical point, then \(P(x)=\stackrel{0}{H}(x)=\Phi\).
Proof. 1. Suppose that \(d f(x) \neq 0\) but that \(P(x) \subset \stackrel{0}{H}(x)\). However both \(P(x)\) and
2. Since a concave or strictly pseudo-concave function is a quasi-concave function, (1) establishes that \(P(x) \subset \stackrel{0}{H}(x)\) for all \(x \in U\) such that \(d f(x) \neq 0\). By


Lemmas 4.11 and 4.15, if \(d f(x)=0\) then \(x\) is a global maximum. Hence \(P(x)=\stackrel{0}{H}(x)=\Phi\).

Lemma 4.8 shows that if \(\stackrel{0}{H}(x) \neq \Phi\), then \(x\) cannot be a global maximum on the 660 open set \(U\).

Moreover for a concave or strictly pseudo-concave function \(P(x)\) is empty if 662 0 \(H(x)\) is empty (i.e., when \(d f(x)=0\) ).

Figure 4.8 illustrates these observations. Let \(P(x)\) be the preferred set of a quasiconcave function \(f\) (at a non-critical point \(x\) ).

Point \(y_{1}\) satisfies \(f\left(y_{1}\right)=f(x)\) and thus belongs to \(R(x)\) and hence \(H(x)\). Point \(y_{2} \in H(x) \backslash(x)\) but there exists an open interval \((x, z)\) belonging to \(\left[x, y_{2}\right]\) and to \(P(x)\).

We may identify the linear map \(d f(x): \mathfrak{R}^{n} \rightarrow \mathfrak{R}\) with a vector \(D f(x) \in \mathfrak{R}^{n}\) where \(d f(x)(h)=\langle D f(x), h\rangle\) the scalar product of \(D f(x)\) with \(h . D f(x)\) is the direction gradient, and is normal to the indifference surface at \(x\), and therefore to the hyperplane \(\partial H(x)=\{y \in Y: d f(x)(y-x)=0\}\).

To see this intuitively, note that the indifference surface \(I(x)=\{y \in Y\) \(f(y)=f(x)\}\) through \(x\), and the hyperplane \(\partial H(x)\) are tangent at \(x\). Just as \(d f(x)\) is an approximation to the function \(f\), so is the hyperplane \(\partial(x)\) an approximation to \(I(x)\), near to \(x\).

As we shall see in Example 4.7, a quasi-concave function, \(f\), may have a critical \(f\) may have a degenerate critical point with \(P(x) \neq \Phi\). Lemma 4.16 establishes
\begin{tabular}{|c|c|}
\hline that this cannot happen when \(f\) is concave and \(Y\) is an open set. The final Lemma of this section extends Lemma 4.16 to the case when \(Y\) is admissible. & 681 \\
\hline Lemma 4.17. Let \(f: Y \subset \Re^{n} \rightarrow \mathfrak{R}\) be \(C^{1}\), and let \(Y\) be a convex admissible set. & 682
683 \\
\hline 1. If \(f\) is quasi-concave on \(Y\), then \(\forall x \in Y, \stackrel{0}{H}(x ; Y) \neq \Phi \operatorname{implies} P(x ; y) \neq \Phi\). If \(x\) is a local maximum of \(f\), then \(\stackrel{0}{H}(x ; Y)=\Phi\). & 684
685 \\
\hline 2. If \(f\) is a strictly pseudo-concave function on an admissible set \(Y\), and \(x\) is a local maximum, then it is a global strict maximum. & 686
687 \\
\hline 3. If \(f\) is concave \(Y) \forall x \in Y\). Henc & 688
689 \\
\hline Proof. 1. If \(\stackrel{0}{H}(x ; Y) \neq\) then \(d f(x)(y-x)>0\) for some \(y \in Y\). Then by & 690 \\
\hline Lemma4.14(2), in any neighbourhood \(U\) of \(x\) in \(Y\) there exists \(z\) such that \(f(z)>f(x)\). Hence \(x\) cannot be a local maximum, and indeed \(P(x) \neq \Phi\). & 691
692 \\
\hline 2. By Lemma 4.15, \(f\) must be quasi-concave. By (1), if \(x\) is a local maximum then \(d f(x)(y-x) \leq 0\) for all \(y \in Y\). By definition this implies that \(f(y)<f(x)\) for all \(y \in Y\) such that \(y \neq x\). Thus \(x\) is a global strict maximum. & 693
694
695 \\
\hline 3. If \(f\) is concave and \(y \in P(x ; Y)\), then \(f(y)>f(x)\). By Lemma 4.10, \(d f(x)(y-x) \geq f(y)-f(x)>0\). Thus \(y \in \stackrel{0}{H}(x)\). & 696
697 \\
\hline 4. If \(f\) is strictly pseudo-concave then \(f(y)>f(x)\) implies \(d f(x)(y-x)>0\), and so \(P(x ; Y) \subset \stackrel{0}{H}(x ; Y)\). & \\
\hline & 8 \\
\hline 1. For the general function \(f_{1}, b\) is a critical point and local maximum, but not a global maximum (e). On the compact interval \([a, d], d\) is a local maximum but not a global maximum. & 700
701 \\
\hline \begin{tabular}{l}
2. For the quasi-concave function \(f_{2}, a\) is a degenerate critical point but neither a local nor global maximum, while \(b\) is a degenerate critical point which is also a global maximum. \\
Point \(c\) is a critical point which is also a local maximum. However on \([b, c], c\) is not a global maximum.
\end{tabular} & 702
703
704
705
706 \\
\hline 3. For the concave function \(f_{3}\), clearly \(b\) is a degenerate (but negative semidefin & 707 \\
\hline \begin{tabular}{l}
critical point, which is also a local and global maximum. Moreover on the interval \([a, c], c\) is the local and global maximum, even though it is not a critical point. Note that \(d f_{3}(c)(a-c)<0\). \\
Lemma 4.17 suggests that we call any point \(x\) in an admissible set \(Y\) a generalized critical point in \(Y\) iff \(\stackrel{0}{H}(x ; Y)=\Phi\), Of course if \(d f(x)=0\), then
\end{tabular} & 708
709
710
711 \\
\hline \({ }_{H}^{0}(x ; Y)=\Phi\), but the converse is not true when \(x\) is a boundary point. Lemma 4.17 shows that \((i)\) for a quasi-concave \(C^{1}\)-function, a global maximum & 713
714 \\
\hline is a local maximum is a generalised critical point; (ii) for a concave \(C^{1}\) - or strictly & 715 \\
\hline
\end{tabular}

Fig. 4.9
1.

2.

3.

pseudo-concave function a critical point is a generalised critical point is a local maximum is a global maximum.

\subsection*{4.3.2 Economic Optimisation with Exogenous Prices}

Suppose now that we wish to find the maximum of a quasi-concave \(C^{1}\)-function \(f: Y \rightarrow \mathfrak{R}\) subject to a constraint \(g(x) \geq 0\) where \(g\) is also a quasi-concave \(C^{1}\)-function \(g: Y \rightarrow \Re\).

As we know from the previous section, when \(P_{f}(x)=\{y \in Y: f(y)>f(x)\}\) and \(d f(x) \neq 0\), then
\[
P_{f}(x) \subset H_{f}(x)=\{y \in Y: d f(x)(x-y) \geq 0\} .
\]

Suppose now that \(H_{g}(x)=\{y \in Y: d g(x)(x-y) \geq 0\}\) has the property that \(H_{g}(x) \cap \stackrel{0}{H}_{f}(x)=\Phi\), and \(x\) satisfies \(g(x)=0\).

In this case, there exists no point \(y\) such that \(g(y) \geq 0\) and \(f(y)>f(x)\).
A condition that is sufficient for the disjointness of the two half-spaces \({ }_{H}^{H} f(x)\) and \(H_{g}(x)\) is clearly that \(\lambda d g(x)+d f(x)=0\) for some \(\lambda>0\).

In this case if \(d f(x)(v)>0\), then \(d g(x)(v)<0\), for any \(v \in \mathfrak{R}^{n}\).
Now let \(L=L_{\lambda}(f, g)\) be the Lagrangian \(f+\lambda g: Y \rightarrow \Re\). A sufficient
condition for \(x\) to be a solution to the optimisation problem is that \(d L(x)=0\).

Fig. 4.10


Note however that this is not a necessary condition. As we know from the previous section it might well be the case for some point \(x\) on the boundary of the admissible set \(Y\) that \(d L(x) \neq 0\) yet there exists no \(y \in Y\) such that
\[
d g(x)(x-y) \geq 0 \text { and } d f(x)(x-y)>0 .
\]

Figure 4.10 illustrates such a case when
\[
Y=\left\{(x, y) \in \Re^{2}: x \geq 0, y \geq 0\right\} .
\]

We shall refer to this possibility as the boundary problem.
As we know we may represent the linear maps \(d f(x), d g(x)\) by the direction 740 gradients, or vectors normal to the indifference surfaces, labelled \(D f(x), D g(x)\).

When the maps \(d f(x), d g(x)\) satisfy \(d f(x)+\lambda d g(x)=0, \lambda>0\), then the direction gradients are positively dependent and satisfy \(D f(x)+\lambda D g(x)=0\).

In the example \(D f(x)\) and \(D g(x)\) are not positively dependent, yet \(x\) is a solution to the optimisation problem.

It is often common to make some boundary assumption so that the solution does not belong to the boundary of the feasible or admissible set \(Y\).

In the more general optimisation problem \((f, g): Y \rightarrow \mathfrak{R}^{m+1}\), the Kuhn \(L_{\lambda}(f, g)=f+\sum \lambda_{i} g_{i}\) gives a solution \(x^{*}\) to the optimisation problem. Aside from the boundary problem, we may find the global maxima of \(L_{\lambda}(f, g)\) by finding the critical points of \(L_{\lambda}(f, g)\).

Thus we must choose \(x^{*}\) such that
\[
d f\left(x^{*}\right)+\sum_{i=1}^{m} \lambda_{i} d g_{i}\left(x^{*}\right)=0 .
\]

Once a coordinate system is chosen this is equivalent to finding \(\left(x^{*}\right)\), and coefficients \(\lambda_{1}, \ldots, \lambda_{m}\), all non-negative such that
\[
D f\left(x^{*}\right)+\sum_{i=1}^{m} \lambda_{i} D g_{i}\left(x^{*}\right)=0 .
\]

The Kuhn Tucker Theorem also showed that if \(\left(x^{*}\right)\) is such that \(g_{i}\left(x^{*}\right)>0\), then
\(\lambda_{i}=0\) and if \(g_{i}\left(x^{*}\right)=0\) then \(\lambda_{i}>0\).
Example 4.8. Maximise the function \(f: \mathfrak{R} \rightarrow \mathfrak{R}\) :
\[
\begin{array}{r}
x \rightarrow x^{2}: x \geq 0 \\
x \rightarrow 0: x<0
\end{array}
\]
subject to \(g_{1}(x)=x \geq 0\) and \(g_{2}(x)=1-x \geq 0\).
Now \(L_{\lambda}(x)=x^{2}+\lambda_{1} x+\lambda_{2}(1-x) ; \frac{\partial L}{\partial x}=2 x+\lambda_{1}-\lambda_{2}=0, \frac{\partial L}{\partial \lambda_{1}}=x=\) \(\frac{\partial L}{\partial \lambda_{2}}=1-x=0\).

Clearly these equations have no solution. By inspection the solution cannot satisfy \(g_{1}(x)=0\). Hence choose \(\lambda_{1}=0\) and solve
\[
L_{\lambda}(x)=x^{2}+\lambda(1-x) .
\]

Then \(\frac{\partial L}{\partial x}=2 x-\lambda, \frac{\partial L}{\partial \lambda}=1-x=0\). Thus \(x=1\) and \(\lambda=2\) is a solution.
Suppose now that \(f, g_{1}, \ldots, g_{m}\) are all concave functions on the convex admissible set \(Y=\left\{x \in \mathfrak{R}^{n}: x_{i} \geq 0, i=1, \ldots, n\right\}\). Obviously if \(z=\alpha y+(1-\alpha) x\), then
\[
\begin{aligned}
L_{\lambda}(f, g)(z) & =f(z)+\sum_{i=1}^{m} \lambda_{i} g_{i}(z) \\
& =\alpha f(y)+(1-\alpha) f(x)+\sum_{i=1}^{m} \lambda_{i}\left[\alpha g_{i}(y)+(1-\alpha) g_{i}(x)\right] \\
& =\alpha L_{\lambda}(f, g)(y)+(1-\alpha) L_{\lambda}(f, g)(x) .
\end{aligned}
\]

Thus \(L_{\lambda}(f, g)\) is a concave function. By Lemma \(4.11, x^{*}\) is a global maximum of \(L_{\lambda}(f, g)\) iff \(d L(f, g)\left(x^{*}\right)=0\) (aside from the boundary problem).

For more general functions, to find the global maximum of the Lagrangian \(L_{\lambda}(f, g)\), and thus the optimum to the problem \((f, g)\), we find the critical points of \(L_{\lambda}(f, g)\). Those critical points which have negative definite Hessian will then be local maxima of \(L_{\lambda}(f, g)\). However we still have to examine the local maxima when the Hessian of the Lagrangian is negative semi-definite to find the global maxima. Even in this general case, any solution \(x^{*}\) to the problem \((f, g)\) must be a global maximum for a suitably chosen Lagrangian \(L_{\lambda}(f, g)\), and thus must satisfy the first order condition

Fig. 4.11

\[
D f\left(x^{*}\right)+\sum_{i=1}^{m} \lambda_{i} D g_{i}\left(x^{*}\right)=0
\]
(again, subject to the boundary problem).
Example 4.9. Maximise \(f: \mathfrak{R}^{2} \rightarrow \mathfrak{R}:(x, y) \rightarrow x y\) subject to the constraint 78 \begin{tabular}{ll|l}
\(g(x, y)=1-x^{2}-y^{2} \geq 0\). We seek a solution to the first order condition: & 784
\end{tabular}
\[
D L(x, y)=D f(x, y)+\lambda D g(x, y)=0 .
\]

Thus \((y, x)+\lambda(-2 x,-2 y)=0\) or \(\lambda=\frac{y}{2 x}=\frac{x}{2 y}\) so \(x^{2}=y^{2}\).
For \(x=-y, \lambda<0\) and so \(D f(x, y)=|\lambda| D g(x, y)\), (corresponding to a 787 minimum off on the feasible set \(g(x, y) \geq 0)\).

Thus we choose \(x=y\) and \(\lambda=\frac{1}{2}\). For \((x, y)\) on the boundary of the constraint 789 set we require \(1-x^{2}-y^{2}=0\). Hence \(x=y= \pm \frac{1}{\sqrt{2}}\).

The Lagrangian is therefore \(L=x y+\frac{1}{2}\left(1-x^{2}-y^{2}\right)\) with differential (with 791 respect to \(x, y\) )
\[
\begin{aligned}
& D L(x, y)=(y-x, x-y) \text { and Hessian } \\
& H L(x, y)=\left(\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right)
\end{aligned}
\]

The eigenvalues of \(H L\) are \(-2,0\) corresponding to eigenvectors \((1,-1)\) and \((1,1)\) respectively. Hence \(H L\) is negative semi-definite, and so for example the point 794 \(\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)\) is a local maximum for the Lagrangian.

As we have observed in Example 3.4, the function \(f(x, y)=x y\) is not 796 quasiconcave on \(\mathfrak{R}^{2}\), and hence it is not the case that \(P_{f} \subset H_{f}\). However on \(\mathfrak{R}_{+}^{2}=\left\{(x, y) \in \mathfrak{R}^{2}: x \geq 0, y \geq 0\right\}, f\) is quasi-concave, and so the optimality condition \(H_{g}(x, y) \cap H_{f}(x, y)=\Phi\) is sufficent for an optimum.


Fig. 4.12

Note also that \(D f(x, y)=(y, x)\) and so the origin \((0,0)\) is a critical point of \(f\). However setting \(D L(x, y)=0\) at \((x, y)=(0,0)\) requires \(\lambda=0\). In this case however
\[
H L(x, y)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
\]
and as in Example 4.4, \(H L\) is non-degenerate with eigenvalues \(+1,-1\). Hence \(H L\) is not negative semi-definite, and so \((0,0)\) cannot be a local maximum for the Lagrangian.

However if we were to maximise \(f(x, y)=-x y\) on the feasible set \(\Re_{+}^{2}\) subject to the same constraint then \(L\) would be maximized at \((0,0)\) with \(\lambda=0\).

Example 4.10. In Example ?? we examined the maximisation of a convex preference correspondence of a consumer subject to a budget constraint of the form \(B(p)=\left\{x \in \mathfrak{R}_{+}^{n}:\langle p, x\rangle \leq\langle p, e\rangle=I\right\}\), given by an exogenous price vector \(p \in \mathfrak{R}_{+}^{n}\), and initial endowment vector \(e \in \mathfrak{R}_{+}^{n}\).

Suppose now that the preference correspondence is given by a utility function:
\[
f: \mathfrak{R}_{+}^{2} \rightarrow \Re:(x, y) \rightarrow \beta \log x+(1-\beta) \log y, 0<\beta<1 .
\]

Clearly \(D f(x, y)=\left(\frac{\beta}{x}, \frac{1-\beta}{y}\right)\), and so \(H f(x, y)=\left(\begin{array}{ll}\frac{-\beta}{x^{2}} & 0 \\ 0 & \frac{-(1-\beta)}{y^{2}}\end{array}\right)\) is negative definite. Thus \(f\) is concave on \(\mathfrak{R}^{2}\). The budget constraint is
\[
g(x, y)=I-p_{1} x-p_{2} y \geq 0
\]


Fig. 4.13
where \(p_{1}, p_{2}\) are the given prices of commodities \(x, y\). The first order condition on and \(\lambda>0\). Hence \(\frac{p_{1}}{p_{2}}=\frac{\beta}{x} \cdot \frac{y}{1-\beta}\). See Figure 4.13.

Now \(f\) is concave and has no critical point within the constraint set. Thus \((x, y)\) maximises \(L_{\lambda}\) iff
\[
y=x\left(\frac{p_{1}}{p_{2}}\right)\left(\frac{1-\beta}{\beta}\right) \text { and } g(x, y)=0 .
\]

Thus \(y=\frac{I-p_{1} x}{p_{2}}\) and so \(x=\frac{I \beta}{p_{1}}, y=\frac{I(1-\beta}{p_{2}}\), and \(\lambda=\frac{1}{I}\), is the marginal utility of income.

Now consider a situation where prices vary. Then optimal consumption \(\left(x^{*}, y^{*}\right)=\left(d_{1}\left(p_{1}, p_{2}\right), d_{2}\left(p_{1}, p_{2}\right)\right)\) where \(d_{i}\left(p_{1}, p_{2}\right)\) is the demand for commodity \(x\) or \(y\). As we have just shown, \(d_{1}\left(p_{1}, p_{2}\right)=\frac{I \beta}{p_{1}}\), and \(d_{2}\left(p_{1}, p_{2}\right)=\frac{I(1-\beta)}{p_{2}}\).

Suppose that all prices are increased by the same proportion i.e., \(\left(P_{1}^{\prime}, P_{2}^{\prime}\right)=829\) \(\alpha\left(p_{1}, p_{2}\right), \alpha>0\).

In this exchange situation \(I^{\prime}=p_{1}^{\prime} e_{1}+p_{2}^{\prime} e_{2}=\alpha I=\alpha\left(p_{1} e_{1}+p_{2} e_{2}\right)\).
Thus \(x^{\prime}=\frac{I^{\prime} \beta}{p_{1}}=\frac{\alpha I \beta}{\alpha p_{1}}=x^{\prime}\), and \(y^{\prime}=y\). Hence \(d_{i}\left(\alpha p_{1}, \alpha p_{2}\right)=d_{i}\left(p_{1}, p_{2}\right)\), for \(i=1,2\). The demand function is said to be homogeneous in prices.

Suppose now that income is obtained from supplying labor at a wage rate \(w\) say.
Let the supply of labor by the consumer be \(e=1-x_{3}\), where \(x_{3}\) is leisure time
83

Then \(f: \mathfrak{R}^{3} \rightarrow \mathfrak{R}:\left(x_{1} x_{2} x_{3}\right) \rightarrow \sum_{i=1}^{3} a_{i} \log x_{i}\) and the budget constraint is \(p_{1} x_{1}+p_{2} x_{2} \leq\left(1-x_{3}\right) w\), or \(g\left(x_{1}, x_{2}, x_{3}\right)=w-\left(p_{1} x_{1}+p_{2} x_{2}+w x_{3}\right) \geq 0\). The first order condition is \(\left(\frac{a_{1}}{x_{1}}, \frac{a_{2}}{x_{2}}, \frac{a_{3}}{x_{3}}\right)=\lambda\left(p_{1}, p-2, w\right), \lambda>0\).

Clearly the demand function will again be homogeneous, since \(d\left(p_{1}, p_{2}, w\right)=\) \(d\left(\alpha p_{1}, \alpha p_{2}, \alpha w\right)\).

For the general consumer optimisation problem, we therefore normalise the price vector. In general, in an \(n\)-commodity exchange economy let
\[
\Delta=\left\{p \in \mathfrak{R}_{+}^{n}:\|p\|=1\right\}
\]
be the price simplex. Here \(\|\) is a convenient norm on \(\mathfrak{R}^{n}\).
If \(f: \mathfrak{R}_{+}^{n} \rightarrow \mathfrak{R}\) is the utility function, let
\[
D^{*} f(x)=\frac{D f(x)}{\|D f(x)\|} \in \Delta
\]

Suppose then that \(x^{*} \in \mathfrak{R}^{n}\) is a maximum of \(f: \mathfrak{R}_{+}^{n} \rightarrow \mathfrak{R}\) subject to the budget constraint \(\langle p, x\rangle \leq I\).

As we have seen the first order condition is
\[
D f(x)+\lambda D g(x)=0,
\]
where \(D g(x)=-p=\left(-p_{1}, \ldots,-p_{n}\right), p \in \Delta\), and
\[
D f(x)=\left(\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}\right) .
\]

Thus \(D f(x)=\lambda\left(p_{1}, \ldots, p_{n}\right)=\lambda p \in \mathfrak{R}_{+}^{n}\). But then \(D^{*} f(x)=\frac{p}{\|p\| \|} \in \Delta\).
Subject to boundary problems, a necessary condition for optimal consumer 855 behavior is that \(D^{*} f(x)=\frac{p}{\| p}\).

As we have seen the optimality condition is that \(\frac{\partial f}{\partial x_{i}} / \frac{\partial f}{\partial x_{j}}=\frac{p_{i}}{p_{j}}\), for the \(i^{\text {th }}\) and 857 \(j^{t h}\) commodity, where \(\frac{\partial f}{\partial x_{i}}\) is often called the marginal utility of the \(i^{\text {th }}\) commodity.

Now any point \(y\) on the boundary of the budget set satisfies
\[
\langle p, y\rangle=I=\frac{1}{\lambda}\left\langle D f\left(x^{*}\right), x^{*}\right\rangle .
\]

Hence \(y \in H(p, I)\), the hyperplane separating the budget set from the preferred set at the optimum \(x^{*}, \operatorname{iff}\left\langle D f\left(x^{*}\right), y-x^{*}\right\rangle=0\).

Consider now the problem of maximisation of a profit function by a producer
\[
\pi\left(x_{1}, \ldots, x_{m}, x_{m+1}, \ldots, x_{n}\right)=\sum_{j=1}^{n-m} p_{m+j} x_{m+j}-\sum_{j=1}^{m} p_{j} x_{j},
\]


Fig. 4.14
where \(\left(x_{1}, \ldots, x_{m}\right) \in \mathfrak{R}\) are inputs, \(\left(x_{m+1}, \ldots, x_{n}\right)\) are outputs and \(p \in \Re_{+}^{n}\) is a non-negative price vector.

As in Example 3.6, the set of feasible input-output combinations is given, by the production set \(G=\left\{x \in \mathfrak{R}_{+}^{n}: F(x) \geq 0\right\}\) where \(F: \mathfrak{R}_{+}^{n} \rightarrow \mathfrak{R}\) is a 868 smooth function and \(F(x)=0\) when \(x\) is on the upper boundary or frontier of 869 the production set \(G\).

At a point \(x\) on the boundary, the vector which is normal to the surface \(\{x\) \(F(x)=0\}\) is
\[
D f(x)=\left(\frac{\partial F}{\partial x_{1}}, \ldots, \frac{\partial F}{\partial x_{n}}\right)_{x} .
\]

The first order condition for the Lagrangian is that
\[
D \pi(x)+\lambda D f(x)=0
\]
or \(\left(-p_{1}, \ldots,-p_{m}, p_{m+1}, \ldots, p_{n}\right)+\lambda\left(\frac{\lambda F}{\lambda x_{1}}, \ldots, \frac{\partial F}{\partial x_{n}}\right)=0\).
For example with two inputs ( \(x_{1}\) and \(x_{2}\) ) and one output ( \(x_{3}\) ) we might express 877 maximum possible output \(y\) in terms of \(x_{1}\) and \(x_{2}\), i.e., \(y=g\left(x_{1}, x_{2}\right)\). Then the feasible set is
\[
\left\{x \in \mathfrak{R}_{+}^{3}: F\left(x_{1}, x_{2}, x_{3}\right)=g\left(x_{1}, x_{2}\right)-x_{3} \geq 0\right\} .
\]

Then \(\left(-p_{1},-p_{2}, p_{3}\right)+\lambda\left(\frac{\partial g}{\partial x_{1}}, \frac{\partial g}{\partial x_{2}}-1\right)=0\) and so
\[
p_{1}=p_{3} \frac{\partial g}{\partial x_{1}}, p_{2}=p_{3} \frac{\partial g}{\partial x_{2}}
\]
or \(\frac{p_{1}}{p_{2}}=\frac{\partial g}{\partial x_{1}} / \frac{\partial g}{\partial x_{2}}\).
Here \(\frac{\partial g}{\partial x_{j}}\) is called the marginal product (with respect to commodity \(j\) for \(j=8_{88}^{883}\) 1,2).

For fixed \(\bar{x}=\left(\bar{x}_{1}, \bar{x}_{2}\right)\) consider the locus of points in \(\mathfrak{R}_{+}^{2}\) such that \(y=g(\bar{x})\) is 886 a constant. If \(\left(\frac{\partial g}{\partial x_{1}}, \frac{\partial g}{\partial x_{2}}\right)_{\bar{x}} \neq 0\) at \(\bar{x}\), then by the implicit function theorem (discussed 887 in the next chapter) we can express \(x_{2}\) as a function \(x_{2}\left(x_{1}\right)\) of \(x_{1}\), only, near \(\bar{x} . \quad 888\)

In this case \(\frac{\partial g}{\partial x_{1}}+\frac{d x_{2}}{d x_{1}} \frac{\partial g}{\partial x_{2}}=0\) and so \(\frac{\partial g}{\partial x_{1}} /\left.\frac{\partial g}{\partial x_{2}}\right|_{\bar{x}}=\left.\frac{d x_{2}}{d x_{1}}\right|_{x}=\frac{p_{1}}{p_{2}}\).
The ratio \(\frac{\partial g}{\partial x_{1}} /\left.\frac{\partial g}{\partial x_{2}}\right|_{\bar{x}}\) is called the marginal rate of technical substitution of \(x_{2}\) for \(x_{1}\) at the point \(\left(\bar{x}_{2}, \bar{x}_{2}\right)\).

Example 4.11. There are two inputs \(K\) (capital) and \(L\) (labor), and one output, \(Y\),
Let \(g(K, L)=\left[d K^{-p}+(1-d) L^{-p}\right]^{\frac{-1}{\rho}}\). The feasibility constraint is
\[
F(K, L, Y)=g(K, L)-Y \geq 0
\]

Let \(-v,-w, p\) be the prices of capital, labor and the output. For optimality we
\[
(-v,-w, p)+\lambda\left(\frac{\partial F}{\partial K}, \frac{\partial F}{\partial L}, \frac{\partial F}{\partial Y}\right)=0 .
\]

On the production frontier, \(g(K, L)=Y\) and so \(p=-\lambda \frac{\partial F}{\partial Y}=\lambda\) since \(\frac{\partial F}{\partial L}=-1\).
Now let \(X=\left[d k^{-\rho}+(1-d) L^{-\rho}\right]\).
Then \(\frac{\partial F}{\partial K}=\left(-\frac{1}{\rho}\right)\left[-\rho d k^{-\rho-1}\right] X^{-\frac{1}{\rho}-1}\).
Now \(Y=X^{-\frac{1}{\rho}}\) so \(Y^{1+\rho}=X^{-\frac{1}{\rho}-1}\). Thus \(\frac{\partial F}{\partial K}=d\left(\frac{Y}{K}\right)^{1+\rho}\).
Similarly \(\frac{\partial F}{\partial L}=(1-d)\left(\frac{Y}{L}\right)^{1+\rho}\). Thus \(\frac{r}{w}=\frac{\partial F}{\partial K} / \frac{\partial F}{\partial L}=\frac{d}{1-d}\left(\frac{L}{K}\right)^{1+\rho}\).
In the case just of a single output, where the production frontier is given by a function
\[
x_{n+1}=g\left(x_{1}, \ldots, x_{n}\right) \text { and }\left(x_{1}, \ldots, x_{n}\right) \in \mathfrak{R}_{+}^{n}
\]
is the input vector, then clearly the constraint set will be a convex set if and only if \(g\) is a concave function. (See Example 3.3.) In this case the solution to the Lagrangian 908 will give an optimal solution. However when the constraint set is not convex, then 909 some solutions to the Lagrangian problem may be local minima. See Figure 4.15 for 910 an illustration.

As with the consumer, the optimum point on the production frontier is unchanged 912 if all prices are multiplied by a positive number.

For a general consumer let \(d: \mathfrak{R}_{+}^{n} \rightarrow \mathfrak{R}_{+}^{n}\); be the demand map where
\[
d\left(p_{1}, \ldots, p_{n}\right)=\left(x_{1}^{*}(p), \ldots, x_{n}^{*}(p)\right)=x^{*}(p)
\]
and \(x^{*}(p)\) is any solution to the maximisation problem on the budget set


Fig. 4.15
\[
B\left(p_{1}, \ldots, p_{n}\right)=\left\{x \in \mathfrak{R}_{+}^{n}:\langle p, x\rangle \leq I\right\} .
\]

In general it need not be the case that \(d\) is single-valued, and so it need not be a function.

As we have seen, \(d\) is homogeneous in prices and so we may regard \(d\) as a correspondence
\[
d: \Delta+\mathfrak{R}_{+}^{n} .
\]

Similarly for a producer let \(s: \Delta \rightarrow \mathfrak{R}_{+}^{n}\) where \(s\left(p_{1}, \ldots, p_{n}\right)=\) \(\left(-x_{1}^{*}(p), \ldots,-x_{m}^{*}(p), x_{m+1}^{*}(p) \ldots.\right)\) be the supply correspondence. (Here the first \(m\) values are negative because these are inputs.)

Consider a society \(\{1, \ldots, i, \ldots, m\}\) and commodities named \(\{1 \ldots j \ldots n\}\). Let \(e_{i} \in \Re_{+}^{n}\) be the initial endowment vector of agent \(i\), and \(e=\sum_{i=1}^{m} e_{i}\) the total endowment of the society. Then a price vector \(p^{*} \in \Delta\) is a market-clearing price equilibrium when \(e+\sum_{i=1}^{m} s_{i}\left(p^{*}\right)=\sum_{i=1}^{m} d_{i}\left(p^{*}\right)\) where \(s_{i}\left(p^{*}\right) \in \mathfrak{R}_{+}^{n}\) belongs to the set of optimal input-output vectors at price \(p^{*}\) for agent \(i\), and \(d_{i}\left(p^{*}\right)\) is an optimal demand vector for consumer \(i\) at price vector \(p^{*}\).

As an illustration, consider a two person, two good exchange economy (without production) and let \(e_{i j}\) be the intial endowment of good \(j\) to agent \(i\). Let \(\left(f_{1}, f_{2}\right)\) \(\mathfrak{R}_{+}^{2}: \mathfrak{R}^{2}\) be the \(C^{1}\)-utility functions of the two players.

At \(\left(p_{1}, p_{2}\right) \in \Delta\), for optimality we have
\[
\left(\frac{\partial f_{i}}{\partial x_{i 1}}, \frac{\partial f_{i}}{\partial x_{i 2}}\right)=\lambda_{i}\left(p_{1}, p_{2}\right), \lambda_{i}>0
\]

But \(x_{1 j}+x_{2 j}=e_{1 j}+e_{2 j}\), for \(j=1\) or 2 , in market equilibrium.


Fig. 4.16

Thus \(\frac{\partial f_{i}}{\partial x_{i j}}=-\frac{\partial f_{i}}{\partial x_{k j}}\) when \(i \neq k\). Hence \(\frac{1}{\lambda_{1}}\left(-\frac{\partial f_{1}}{\partial x_{11}}, \frac{\partial f_{1}}{\partial x_{12}}\right)=\left(p_{1}, p_{2}\right)=938\) \(\frac{1}{\lambda}\left(\frac{\partial f_{2}}{\partial x_{11}},-\frac{\partial f_{2}}{\partial x_{12}}\right)\) or \(\left(\frac{\partial f_{1}}{\partial x_{11}}, \frac{\partial f_{1}}{\partial x_{12}}\right)+\lambda\left(\frac{\partial f_{2}}{\partial x_{11}}, \frac{\partial f_{2}}{\partial x_{12}}\right)=0\), for some \(\lambda>0\). See 939 Figure 4.16.

We shall see in the next section this implies that the result \(\left(x_{11}, x_{12}, x_{21}, x_{22}\right)\) of 941 optimal individual behaviour at the market-clearing price equilibrium is a Pareto optimai outcome under certain conditions.

\subsection*{4.4 The Pareto Set and Price Equilibria}

\subsection*{4.4.1 The Welfare and Core Theorems}

Consider a society \(M=\{1, \ldots, m\}\) of \(m\) individuals where the preference of the

A point \(y \in Y\) is said to be Pareto preferred (for the society \(M\) ) to \(x \in Y\) iff 950 \(u_{i}(y)>u_{i}(x)\) for all \(i \in M\). In this case write \(y \in P_{M}(x)\) and call \(P_{M}: Y \rightarrow{ }_{951}\) \(Y\) the Pareto correspondence. The (global) Pareto set for \(M\) on \(Y\) is the choice 952 \begin{tabular}{ll|l}
\(P\left(u_{1}, \ldots, u_{m}\right)\) & \(=\left\{y \in Y: P_{M}(y)=\Phi\right\}\). We seek to characterise this set. & 953
\end{tabular}

In the same way as before we shall let
\[
H_{i}(x)=\left\{y \in Y: d u_{i}(x)(y-x)>0\right\}
\]
where \(H_{i}: Y \rightarrow Y\) for each \(i=1, \ldots, m\). (Notice that \(H_{i}(x)\) is open \(\forall x \in Y\).)
Given a correspondence \(P: Y \rightarrow Y\) the inverse correspondence \(P^{-1}: Y \rightarrow Y\) is defined by
\[
P^{-1}(x)=\{y \in Y: x \in P(y)\} .
\]

In \(\S 3.3\) we said a correspondence \(P: Y \rightarrow Y\) (where \(Y\) is a topological space)
Clearly if \(u_{i}: W \rightarrow \mathfrak{R}\) is continuous then the preference correspondence \(P_{i}\) \(Y \rightarrow Y\) given by \(P_{i}(x)=\left\{y: u_{i}(y)>u_{i}(x)\right\}\) is LDC, since
\[
P_{i}^{-1}(y)=\left\{x \in Y: u_{i}(y)>u(x)\right\}
\]
is open.
We show now that when \(u_{i}: Y \rightarrow \mathfrak{R}\) is \(C^{1}\) then \(H_{i}: Y \rightarrow Y\) is LDC and as a 966 consequence if \(H_{i}(x) \neq \Phi\) then \(P_{i}(x) \neq \Phi\).

This implies that if \(x\) is a global maximum of \(u_{i}\) on \(Y\) (so \(P_{i}(x)=\Phi\) ) then 968 \(H_{i}(x)=\Phi(\) so \(x\) is a generalised critical point).

Lemma 4.18. If \(u_{i}: Y \rightarrow \Re\) is \(a C^{1}\)-function on the convex admissible set \(Y\), then \(H_{i}: Y \rightarrow Y\) is lower demi-continuous and if \(H_{i}(x) \neq \Phi\) then \(P_{i}(x) \neq \Phi\).
Proof. Suppose that \(H_{i}(x) \neq \Phi\). Then there exists \(y \in Y\) such that \(d u_{i}(x)(y-972\)
\(x)>0\). Let \(h=y-x\).
By the continuity of \(d u_{i}: Y \rightarrow \mathcal{L}\left(\Re^{n}, \mathfrak{R}\right)\) there exists a neighbourhood \(U\) of \(x\)
in \(Y\), and a neighbourhood \(V\) of \(h\) in \(\Re^{n}\) such that \(d u_{i}(z)\left(h^{\prime}\right)>0\) for all \(z \in U\), for all \(h^{\prime} \in V\).

Since \(y \in H_{i}(x)\), we have \(x \in H_{i}^{-1}(y)\). Now \(h=y-x\). Let
\[
U^{\prime}=\left\{x^{\prime} \in U: y-x^{\prime} \in V\right\}
\]

For all \(x^{\prime} \in U^{\prime}, d u_{i}\left(x^{\prime}\right)\left(y-x^{\prime}\right)>0\). Thus \(U^{\prime} \subset H_{i}^{-1}(y)\). Hence \(H_{i}^{-1}(y)\) is open. This is true at each \(y \in Y\), and so \(H_{i}\) is \(L D C\).

Suppose that \(H_{i}(x) \neq \Phi\) and \(h \in H_{i}(x)\). Since \(H_{i}\) is LDC it is possible to choose \(\lambda \in(0,1)\), by Taylor's Theorem, such that
\[
u_{i}(x+\lambda h)=u_{i}(x) d u_{i}(z)(\lambda h)
\]
```

where $d u_{i}(z)(h)>0$, and $z \in(x, x+\lambda h)$. Thus $u_{i}(x+\lambda h)>u_{i}(x)$ and so
$P_{i}(x) \neq \Phi$.
When $u=\left(u_{1}, \ldots, u_{m}\right): Y \rightarrow \mathfrak{R}^{m}$ is a C^{1}-profile then define the 984
correspondence $H_{M}: Y \rightarrow Y$ by $H_{M}(x)=\cap_{i \in M} H_{i}(x)$ i.e., $y \in H_{M}(x)$ iff 985
$d u_{i}(x)(y-x)>0$ for all $i \in M$.
Lemma 4.19. If $\left(u_{1}, \ldots, u_{m}\right): Y \rightarrow \mathfrak{R}^{m}$ is a C^{1}-profile, then $H_{M}: Y \rightarrow Y$ is
lower demi-continuous. If $H_{M}(x) \neq \Phi$ then $P_{M}(x) \neq \Phi$.
Proof. Suppose that $H_{M}(x) \neq \Phi$. Then there exists $y \in H_{i}(x)$ for each $i \in M$.
Thus $x \in H_{i}^{-1}(y)$ for all $i \in M$. But each $H_{i}^{-1}(y)$ is open; hence \exists an open 990
neighbourhood U_{i} of x in $H_{i}^{-1}(y)$ let $U=\cap_{i \in M} U_{i}$. Then $x^{\prime} \in U$ implies that 991
$x^{\prime} \in H_{M}^{-1}(y)$. Thus H_{M} is LDC. As in the proof of Lemma 4.18 it is then possible
to choose $h \in \mathfrak{R}^{n}$ such that, for all i in M,

$$
u_{i}(x+h)=u_{i}(x)+d u_{i}(z)(h)
$$

```
where \(z\) belongs to \(U\), and \(d u_{i}(z)(h)>0\). Thus \(x+h \in P_{M}(x)\) and so \(P_{M}(x) \neq \Phi\).

The set \(\left\{x: H_{M}(x)=\Phi\right\}\) is called the critical Pareto set, and is often written as \(\Theta_{M}\), or \(\Theta\left(u_{1}, \ldots, u_{m}\right)\). By Lemma 4.19, \(\Theta\left(u_{1}, \ldots, u_{m}\right)\) contains the Pareto set

Moreover we can see that \(\Theta_{M}\) must be closed in \(Y\). To see this suppose that 998 \(H_{M}(x) \neq \Theta\), and \(y \in H_{M}(x) \neq \Phi\). Thus \(x \in H_{M}^{-1}(y)\). But \(H_{M}\) is LDC and so 999 there is a neighbourhood \(U\) of \(x\) in \(Y\) such that \(x^{\prime} \in H_{M}^{-1}(y)\) for all \(x^{\prime} \in U\). Then \(y \in H_{M}\left(x^{\prime}\right)\) for all \(x^{\prime} \in U\), and so \(H_{M}\left(x^{\prime}\right) \neq \Phi\) for all \(x^{\prime} \in U\).

Hence the set \(\left\{x \in Y: H_{M}(x) \neq \Phi\right\}\) is open and so the critical Pareto set is closed.

In the same way, the Pareto correspondence \(P_{M}: Y \rightarrow Y\) is given by \(P_{M}(x)=\) \(\cap_{i \in M} P_{i}(x)\) where \(P_{i}(x)=\left\{y: u_{i}(y)>u_{i}(x)\right\}\) for each \(i \in M\). Since each \(P_{i}\) is LDC, so must be \(P_{M}\), and thus the Pareto set \(P\left(u_{1}, \ldots, u_{m}\right)\) must also be closed.

Suppose now that \(u_{1}, \ldots, u_{m}\), are all concave \(C^{1}\)-or strictly pseudo-concave functions on the convex set \(Y\).

By Lemma4.17, for each \(i \in M, P_{i}(x) \subset H_{i}(x)\) at each \(x \in Y\). If \(x \in\) \(\Theta\left(u_{1}, \ldots, u_{m}\right)\) then
\[
\cap_{i \in M} P_{i}(x) \subset \cap_{i \in M} H_{i}(x)=\Phi
\]
and so \(x\) must also belong to the (global) Pareto set. Thus if \(u=\left(u_{1}, \ldots, u_{m}\right)\) with each \(u_{i}\) concave \(C^{1}\) or strictly pseudo-concave, then the global Pareto set \(P(u)\) and the critical Pareto set \(\Theta(u)\) coincide. In this case we may more briefly say the preference profile represented by \(u\) is strictly convex.

A point in \(P\left(u_{1}, \ldots, u_{m}\right)\) is the precise analogue, in the case of a family of functions, of a maximum point for a single function, while a point in \(\Theta\left(u_{1}, \ldots, u_{m}\right)\) is the analogue of a critical point of a single function \(u: Y \rightarrow \mathfrak{R}\). In the case of
a family or profile of functions, a point \(x\) belongs to the critical Pareto set \(\Theta_{M}(u)\), when a generalid Lagrangian \(L\left(u_{1}, \ldots, u_{m}\right)\) has differential \(d L(x)=0\).

This allows us to define a Hessian for the family and determine which critical Pareto points are global Pareto points.

Suppose then that \(u=\left(u_{1}, \ldots, u_{m}\right): Y \rightarrow \Re^{m}\) where \(Y\) is a convex admissible set in \(\mathfrak{R}^{n}\) and each \(u_{i}: Y \rightarrow \mathfrak{R}\) is a \(C^{1}\)-function.

A generalised Lagrangian \(L(\lambda, u)\) is a semipositive combination \(\sum_{i=1}^{m} \lambda_{i} u_{i}\) where each \(\lambda_{i} \geq 0\) but not all \(\lambda_{i}=0\).

For convenience let us write
\[
\begin{aligned}
& \mathfrak{R}_{+}^{m}=\left\{x \in \mathfrak{R}^{m}: x_{i} \geq 0 \text { for } i \in M\right\} \\
& \mathfrak{R}_{+}^{m}=\left\{x \in \mathfrak{R}^{m}: x_{i}>0 \text { for } i \in M\right\}, \text { and } \\
& \overline{\Re_{+}^{m}}=\Re_{+}^{m} \backslash\{0\} .
\end{aligned}
\]

Thus \(\lambda \in \overline{\Re_{+}^{m}}\) iff each \(\lambda_{i} \geq 0\) but not all \(\lambda_{i}=0\). Since each \(u_{i}: Y \rightarrow \Re\) is a \(C^{1}\)-function, the differential at \(x\) is a linear map \(d u_{i}(x): \mathfrak{R}^{n} \rightarrow \mathfrak{R}\). Once a coordinate basis for \(\Re^{n}\) is chosen, \(d u_{i}(x)\) may be represented by the row vector
\[
D u_{i}(x)=\left(\left.\frac{\partial u_{i}}{\partial x}\right|_{x}, \ldots,\left.\frac{\partial u_{i}}{\partial x_{n}}\right|_{x}\right)
\]

Similarly the profile \(u: Y \rightarrow \mathfrak{R}^{m}\) has differential at \(x\) represented by the \((n \times m)\) Jacobian matrix
\[
D u(x)=\left(\begin{array}{c}
D u_{1}(x) \\
\vdots \\
D u_{m}(x)
\end{array}\right): \mathfrak{R}^{n} \rightarrow \mathfrak{R}^{m} .
\]

Suppose now that \(\lambda \in \mathfrak{R}^{m}\). Then define \(\lambda \cdot D u(x): \mathfrak{R}^{n} \rightarrow \mathfrak{R}\) by
\[
(\lambda \cdot D u(x))(v)=\langle\lambda, D u(x)(v)\rangle
\]
where \(\langle\lambda, D u(x)(v)\rangle\) is the scalar product of the two vectors \(\lambda, D u(x)(v)\) in \(\Re^{m}\).
Lemma 4.20. The gradient vectors \(\left\{D u_{i}(x): i \in M\right\}\) are linearly dependent and satisfy the equation
\[
\sum_{i=1}^{m} \lambda_{i} D u_{i}(x)=0
\]
iff \([\operatorname{Im} D u(x)]^{\perp}\) is the subspace of \(\Re^{m}\) spanned by \(\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)\).
Here \(\lambda \in[\operatorname{Im} D U(x)]^{\perp}\) iff \(\langle\lambda, w\rangle=0\) for all \(w \in \operatorname{Im} D u(x)\).
Proof.
\[
\lambda \in[\operatorname{Im} D u(x)]^{\perp} \Leftrightarrow\langle\lambda, w\rangle=0 \forall w \in \operatorname{Im} D u(x)
\]
\begin{tabular}{rl} 
& \(\Leftrightarrow\langle\lambda, D u(x)(v)\rangle=0 \forall v \in \mathfrak{R}^{n}\) \\
& \(\Leftrightarrow(\lambda \cdot D u(x))(v)=0 \forall v \in \mathfrak{R}^{n}\) \\
& \(\Leftrightarrow \lambda \cdot D u(x)=0\).
\end{tabular}

But \(\lambda \cdot D u(x)=0 \Leftrightarrow \sum_{i=1}^{m} \lambda_{i} D u_{i}(x)=0\), where \(\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)\).
Theorem 4.21. If \(u: Y \rightarrow \mathfrak{R}^{m}\) is a \(C^{1}\)-profile on an admissible convex set and \(x\) belongs to the interior of \(Y\), then \(x \in \Theta\left(u_{1}, \ldots, u_{m}\right)\) iff there exists \(\lambda \in \overline{\Re_{+}^{m}}\) such that \(d L(\lambda, u)(x)=0\).

If \(x\) belongs to the boundary of \(Y\) and \(d L(\lambda, u)(x)=0\), for \(\lambda \in \mathfrak{\Re}_{+}^{m}\), then \(x \in \Theta\left(u_{1}, \ldots, u_{m}\right)\).

Proof. Pick a coordinate basis for \(\mathfrak{R}^{m}\). Suppose that there exists \(\lambda \in \overline{\mathfrak{R}_{+}^{m}}\) such that
\[
L(\lambda, u)(x)=\sum_{i=1}^{m} \lambda_{i} u_{i}(x) \in \mathfrak{R},
\]
satisfies \(\sum_{i=1}^{m} \lambda_{i} D u_{i}(x)=0\) (that is to say \(D L(\lambda, u)(x)=0\) ).
By Lemma 4.20 this implies that
\[
\lambda \in[\operatorname{Im}(D u(x))]^{\perp}
\]

However suppose \(x \notin \Theta\left(u_{1}, \ldots, u_{m}\right)\). Then there exists \(v \in \mathfrak{R}^{n}\) such that \(D u(x)(v)=w \in \mathfrak{R}_{+}^{m}\), i.e., \(\left\langle D u_{i}(x), v\right\rangle=w_{i}>0\) for all \(i \in M\), where \(w=\left(w_{1}, \ldots, w_{m}\right)\). But \(w \in \operatorname{Im} D u(x)\) and \(w \in \mathfrak{R}_{+}^{m}\).

Moreover \(X \in \overline{\mathfrak{R}_{+}^{m}}\) and so \(\langle\lambda, w\rangle>0\) (since not all \(\lambda_{i}=0\) ).
This contradicts \(\lambda \in[\operatorname{Im}(D u(x))]^{\perp}\), since \(\langle\lambda, \omega\rangle \neq 0\). Hence \(x \in\) \(\Theta\left(u_{1}, \ldots, u_{m}\right)\). Thus we have shown that for any \(x \in Y\), if \(D L(\lambda, u)(x)=0\) for some \(\lambda \in \overline{\mathfrak{R}_{+}^{m}}\), then \(x \in \Theta\left(u_{1}, \ldots, u_{m}\right)\). Clearly \(D L(\lambda, u)(x)=0\) iff \(D L(\lambda, u)(x)=0\), so we have proved sufficiency.

To show necessity, suppose that \(\left\{D u_{i}(x): i \in M\right\}\) are linearly independent. If \(x\) belongs to the interior of \(Y\) then for a vector \(h \in \mathfrak{R}^{n}\) there exists a vector \(y=x+\theta h\), for \(\theta\) sufficiently small, so that \(y \in Y\) and \(\forall i \in M,\left\langle D u_{i}(x), h\right)>0\). Thus \(x \notin \Theta\left(u_{1}, \ldots, u_{m}\right)\).

So suppose that \(D L(\lambda, u)(x)=0\) where \(\lambda \neq 0\) but \(\lambda \notin \mathfrak{R}_{+}^{m}\). Then for at least one \(i, \lambda_{i}<0\). But then there exists a vector \(w \in \mathfrak{R}_{+}^{m}\) where \(w=\left(w_{1}, \ldots, w_{m}\right)\) and \(w_{i}>0\) for each \(i \in M\), such that \(\langle\lambda, w\rangle=0\). By Lemma4.20, \(w \in \operatorname{Im}(D u(x))\). Hence there exists a vector \(h \in \mathfrak{R}^{n}\) such that \(D u(x)(h)=w\).

But \(w \in \mathfrak{R}_{+}^{m}\), and so \(\left\langle D u_{i}(x), h\right\rangle>0\) for all \(i \in M\). Since \(x\) belongs to the interior of \(Y\), there exists a point \(y=x+\alpha h\) such that \(y \in H_{i}(x)\) for all \(i \in M\) Hence \(x \notin \Theta\left(u_{1}, \ldots, u_{m}\right)\).

Consequently if \(x\) is an interior point of \(Y\) then \(x \in \Theta\left(u_{1}, \ldots, u_{m}\right)\) implies that \(d L(\lambda, u)(x)=0\) for some semipositive \(\lambda\) in \(\mathfrak{R}_{+}^{m}\).


Fig. 4.17

Example 4.12. To illustrate, we compute the Pareto set in \(\mathfrak{R}^{2}\) when the utility functions are
\[
\begin{aligned}
& u_{1}\left(x_{1}, x_{2}\right)=x_{1}^{\alpha} x_{2} \text { where } \alpha \in(0,1), \text { and } \\
& u_{2}\left(x_{1}, x_{2}\right)=1-x_{1}^{2}-x_{2}^{2} .
\end{aligned}
\]

We maximise \(u_{1}\) subject to the constraint \(u_{2}\left(x_{1}, x_{2}\right) \geq 0\).
As in Example 4.9, the first order condition is
\[
\left(\alpha x_{x}{ }^{\alpha-1} x_{2}, x_{1}{ }^{\alpha}\right)+\lambda\left(-2 x_{1},-2 x_{2}\right)=0 .
\]

Hence \(\lambda=\frac{\alpha x_{1}{ }^{\alpha-1} x_{2}}{2 x_{1}}=\frac{x_{1}^{\alpha}}{2 x_{2}}\), so \(\alpha x_{2}^{2}=x_{1}{ }^{2}\), or \(x_{1}= \pm \sqrt{\alpha x_{1}}\).
If \(x_{1}=-\sqrt{\alpha x_{2}}\) then \(\lambda=\frac{x_{1}^{\alpha}}{\sqrt{2}} 2\left(-x_{1}\right)<0\), and so such a point does not belong to the critical Pareto set. Thus \(\left(x_{1}, x_{2}\right) \in \Theta\left(u_{1}, u_{2}\right)\) iff \(x_{1}=x_{2} \sqrt{2}\). Note that if \(x_{1}=x_{2}=0\) then the Lagrangian may be written as
\[
L(\lambda, u)(0,0)=\lambda_{1} u_{1}(0,0)+\lambda_{2} u_{2}(0,0)
\]
where \(\lambda_{1}=0\) and \(\lambda_{2}\) is any positive number. In the positive quadrant \(\mathfrak{R}_{+}^{-}\), the critical Pareto set and global Pareto set coincide.

Finally to maximise \(u_{1}\) on the set \(\left\{\left(x_{1}, x_{2}\right): u_{2}\left(x_{1}, x_{2}\right) \geq 0\right\}\) we simply choose \(\lambda\) such that \(u_{2}\left(x_{1}, x_{2}\right)=0\).

```

As coordinates for any point $x \in Y$ we may choose
$x=\left(x_{11}, \ldots, x_{1 n}, x_{21}, \ldots, x_{2 n}, \ldots, x_{(m-1) 1}, \ldots, x_{(m-1) n}\right)$

```
where it is implict that the bundle of commodities available to agent \(m\) is
\[
x_{m}=\left(x_{m 1}, \ldots, x_{m n}\right)
\]
where \(x_{m j}=e_{. j}-\sum_{i=1}^{m-1} x_{i j}\).
Now define \(u_{i}^{*}: Y+\mathfrak{R}\), the extended utility function of \(i\) on \(Y\) by
\[
u_{i}^{*}(x)=u_{i}\left(x_{i 1}, \ldots, x_{i n}\right) .
\]
\[
D u_{i}^{*}=\left(0, \ldots, 0, \frac{\partial u_{i}}{\partial x_{i}}, \ldots, \frac{\partial u_{i}}{\partial x_{i} n}, 0, \ldots\right)=\left(\ldots, 0, \ldots, D u_{i}(x), \ldots, 0\right) .
\]

For agent \(m=\frac{\partial u_{m}^{*}}{\partial x_{i j}}=-\frac{\partial u_{m}}{\partial x_{m j}}\) for \(i=1, \ldots, m-1\); thus
\[
\begin{aligned}
D u_{m}^{*}(x) & =-\left(\frac{\partial u_{m}}{\partial x_{m 1}}, \ldots, \frac{\partial u_{m}}{\partial x_{m n}}, \ldots,\right) \\
& =-\left(D u_{m}(x), \ldots, \ldots, D u_{m}(x)\right)
\end{aligned}
\]

If \(p^{*}\) is a market-clearing price equilibrium, then by definition
\[
\sum_{i=1}^{m} x_{i}^{*}\left(p^{*}\right) \sum_{i=1}^{m} e_{i}
\]

Thus \(x^{*}\left(p^{*}\right)=\left(x_{1}^{*}\left(p^{*}\right), \ldots, x_{m-1}^{*}\left(p^{*}\right)\right)\) belongs to \(Y\). But each \(x_{i}^{*}\) is a critical point of \(u_{i}: \mathfrak{R}_{+}^{n} \rightarrow \mathfrak{R}\) on the budget set \(B_{i}\left(p^{*}\right)\) and \(D u_{i}\left(x_{i}^{*}\left(p^{*}\right)\right)=\lambda_{i} p^{*}\).

Thus the Jacobian for \(u^{*}=\left(u_{1}^{*}, \ldots, u_{m}^{*}\right): Y \rightarrow \mathfrak{R}^{m}\) at \(x^{*}\left(p^{*}\right)\) is
\[
D u^{*}\left(x^{*}\right)=\left[\begin{array}{llll}
\lambda_{1} p^{*} & 0 & \cdots & \ldots 0 \\
0 & \lambda_{2} p^{*} & & \\
\vdots & \vdots & & \lambda_{m-1} p^{*} \\
-\lambda_{m} p^{*} & -\lambda_{m} p^{*} & -\lambda_{m} p^{*}
\end{array}\right]
\]

Hence \(\frac{1}{\lambda_{1}} D U_{1}^{*}\left(x^{*}\right)+\frac{1}{\lambda_{2}} D U_{2}^{*}\left(x^{*}\right) \ldots+\frac{1}{\lambda_{m}} D u_{m}^{*}\left(x^{*}\right)=0\). But each \(\lambda_{i}>0\) for \(i=1, \ldots, m\). Then \(d L\left(\mu, u^{*}\right)\left(x^{*}\left(p^{*}\right)\right)=0\) where \(L\left(\mu, u^{*}\right)(x)=\sum_{i=1}^{m} \mu_{i} u_{i}^{*}(x)\) and \(\mu_{i}=\frac{1}{\lambda_{i}}\) and \(\mu \in \overline{\mathfrak{R}_{+}^{m}}\).

By Theorem 4.21, \(x^{*}\left(p^{*}\right)\) belongs to the critical Pareto set.

Clearly, if for each \(i, u_{i}: \mathfrak{R}_{+}^{n} \rightarrow \mathfrak{R}\) is concave \(C^{1}\) - or strictly pseudo-concave then \(u_{1}^{*}: Y \rightarrow \mathfrak{R}\) will be also. By previous results, the critical and global Pareto set will coincide, and so \(x^{*}\left(p^{*}\right)\) will be Pareto optimal.

One can also show that the competitive allocation, \(x^{*}\left(p^{*}\right) \in \mathfrak{R}_{+}^{n m}\), constructed in this theorem is Pareto optimal in a very simple way. By definition \(x^{*}\left(p^{*}\right)\) is characterised by the two properties:
1. \(\sum_{i=1}^{m} x_{i}^{*}\left(p^{*}\right)=\sum_{i=1}^{m} e_{i}\) in \(\mathfrak{R}^{n}\) (feasibility)
2. If \(u_{i}\left(x_{i}\right)>u_{i}\left(x_{i}^{*}\left(p^{*}\right)\right)\) then \(\left\langle p^{*}, x_{i}\right\rangle>\left\langle p^{*}, e_{i}\right\rangle\) (by the optimality condition for agent \(i\) ).

But if \(x_{i}^{*}\left(p^{*}\right)\) is not Pareto optimal, then there exists a vector \(x=\left(x_{1}, \ldots, x_{m}\right) \in\)
\(\mathfrak{R}_{+}^{n m}\) such that \(u_{i}\left(x_{i}\right)>u_{i}\left(x_{i}^{*}\left(p^{*}\right)\right)\) for \(i=1, \ldots, m\). By (2), \(\left\langle p^{*}, x_{i}\right\rangle>\left\langle p^{*}, e_{i}\right\rangle\) for each \(i\) and so
\[
\sum_{i=1}^{m}\left\langle p^{*}, x_{i}\right\rangle=\left\langle p^{*}, \sum_{i=1}^{m} x_{i}\right\rangle>\left\langle p^{*}, \sum_{i=1}^{m} e_{i}\right\rangle .
\]

But if \(x \in \mathfrak{R}_{+}^{n m}\) is feasible then \(\sum_{i=1}^{m} x_{i} \leq \sum_{i=1}^{m} e_{i}\) which implies \(\left\langle p^{*}, \sum_{i=1}^{m} x_{i}\right\rangle \leq\left\langle p^{*}, \sum_{i=1}^{m} e_{i}\right\rangle\).

By contradiction \(x^{*}\left(p^{*}\right)\) must belong to the Pareto optimal set.
The observation has an immediate extension to a result on existence of a core of an economy.

Definition 4.3. Let \(e=\left(e_{1}, \ldots, e_{m}\right) \in \Re_{+}^{n m}\) be an initial endowment vector for a society \(M\). Let \(\mathcal{D}\) be any family of subsets of \(M\), and let \(P=\left(P_{1}, \ldots, P_{m}\right)\) be a profile of preferences for society \(M\), where each \(P_{i}: \mathfrak{R}_{+}^{n} \rightarrow \mathfrak{R}_{+}^{n}\) is a preference correspondence for \(i\) on the \(i^{\text {th }}\) consumption space \(X_{i} \subset \mathfrak{R}_{+}^{n}\).

An allocation \(x \in \mathfrak{R}_{+}^{n m}\) is \(S\)-feasible (for \(S \subset M\) ) iff \(x=\left(x_{i j}\right) \in \mathfrak{R}_{+}^{n m}\) and \(\sum_{i \in S} x_{i j}=\sum_{i \in S} e_{i j}\) for each \(j=1, \ldots, n\).

Given \(e\) and \(P\), an allocation \(x \in \mathfrak{R}_{+}^{n m}\) belongs to the \(\mathcal{D}\)-core of \((e, P)\) iff \(x=\) \(\left(x_{1}, \ldots, x_{m}\right)\) is \(M\)-feasible and there exists no coalition \(S \in \mathcal{D}\) and an allocation \(y \in \mathfrak{R}_{+}^{n m}\) such that \(y\) is \(S\)-feasible and of the form \(y=\left(y, \ldots, y_{m}\right)\) with \(y_{i} \in\) \(P_{i}\left(x_{i}\right), \forall i \in S\).
To clarify this definition somewhat, consider the set \(Y\) from the proof of the welfare theorem. \(Y=Y_{M}\) is a hyperplane of dimension \(n(m-1)\) through the endowment point \(e \in \mathfrak{R}_{+}^{n m}\). For any coalition \(S \in \mathcal{D}\) of cardinality \(s\), there is a hyperplane \(Y_{s}\), say, of dimension \(n(s-1)\) through the endowment point \(e\), consisting of \(S\)-feasible trades among the members of \(S\). Clearly \(Y_{S} \subset Y_{M}\). If \(x \in Y_{M}\) but there is some \(y \in Y_{s}\) such that every member of \(S\) prefers \(y\) to \(x\), then the members of \(S\) could refuse to accept the allocation \(x\). If there is no such point \(x\), then \(x\) is "unbeaten", and belongs to the \(\mathcal{D}\)-core of the economy described by \((e, P)\).

Core Theorem. Let \(\mathcal{D}\) be any family of subsets of \(M\). Suppose that \(p^{*} \in \Delta\) is a market clearing price equilibrium for the economy \((e, P)\) and \(x^{*}(B) \in \Re_{+}^{n m}\) is the
demand vector, where
\[
x^{*}\left(p^{*}\right)=\left(x_{1}^{*}(p), \ldots, x_{m}^{*}(p)\right) \in Y_{M}, \quad \text { and } \quad P_{i}\left(x_{i}^{*}\left(p^{*}\right)\right) \bigcap B_{i}\left(p^{*}\right)=\Phi .
\]

Then \(x^{*}\left(p^{*}\right)\) belongs to the \(\mathcal{D}\)-core, for the economy ( \(e, P\) ).
Proof. Suppose that \(x^{*}\left(p^{*}\right)\) is not in the core. Then there is some \(y \in Y_{s}\) such that

Hence
\[
\left\langle p^{*}, \sum_{i \in S} y_{i}\right\rangle=\sum_{i \in S}\left\langle p^{*}, y_{i}\right\rangle>\sum_{i \in S}\left\langle p^{*}, e_{i}\right\rangle .
\]

However if \(y \in Y_{S}\), then \(\sum_{i \in S} y_{i}=\sum_{i \in S} e_{i} \in \mathfrak{R}_{+}^{n}\), which implies \(\left\langle p^{*}, \sum_{i \in S}\left(y_{i}-e_{i}\right)\right\rangle=0\). By contradiction, \(x^{*}\left(p^{*}\right)\) must be in the core.

The Core Theorem shows, even if a price mechansim is not used, that if a market

By the results of \(\S 3.8\), a market clearing price equilibrium \(p^{*}\) will exist under certain conditions on preference. In particular suppose preference is representable by smooth utility functions that are concave or strictly pseudo-concave and monotonic in the individual consumption spaces. Then the conditions of the Welfare Theorem will be satisfied, and there will exist a market clearing price equilibirum, \(p^{*}\), and a competitive allocation, \(x^{*}\left(p^{*}\right)\), at \(p^{*}\) which belongs to the Pareto set for the society \(M\). Indeed, since the Core Theorem is valid when \(\mathcal{D}\) consists of all subsets of \(N\), the two results imply that \(x^{*}\left(p^{*}\right)\) will then belong to the critical Pareto set \(\Theta_{S}\), associated with each coalition \(S \in M\). This in turn suggests for any \(S\), there is a solution \(x^{*}=x^{*}\left(p^{*}\right)\) to the Lagrangian problem \(d L_{S}(\mu, u)\left(x^{*}\right)=0\), where \(L_{S}\left(p, u^{*}\right)(x)=\sum_{i \in S} \mu_{i} u_{i}^{*}(x)\) and \(\mu_{i} \geq 0 \forall i \in S\).

Here \(u_{i}^{*}: Y_{S} \rightarrow \mathfrak{R}\) is the extended utility function for \(i\) on \(Y_{S}\).
It is also possible to use the concept of a core in the more general context considered in \(\S 3.8\), where preferences are defined on the full space \(X=\prod_{i} X_{i} \in\) \(\mathfrak{R}_{+}^{n m}\). In this case, however, a price equilibrium may not exist if the induced social preference violates convexity or continuity. It is then possible for the \(\mathcal{D}\)-core to be empty.

Note in particular that the model outlined in this section implicitly assumes that each economic agent chooses their demand so as to optimize a utility function on the budget set determined by the price vector. Thus prices are treated as exogeneous variables. However, if agents treat prices as strategic variables then it may be rational for them to compute their effect on prices, and thus misrepresent their preferences. The economic game then becomes much more complicated than the one analyzed here.
A second consideration is whether the price equilibria are unique, or even locally 1213 unique. If there exists a continuum of pure equilibria, then prices may move around 1214 chaotically.
A third consideration concerns the attainment of the price equilibrium. In \(\S 3.8\) we constructed an abstract peference correspondence for an "auctioneer" so as to adjust the price vector to increase the value of the excess supply of the commodities. We deal with these considerations in the next section and in Chapter 5.

\subsection*{4.4.2 Equilibria in an Exchange Economy}

The Welfare Theorem gives an important insight into the nature of competitive allocations. The coefficients \(\mu_{i}\) of the Lagrangean \(L(\mu, U)\) of the social optimisation problem turn out to be inverse to the coefficients \(\lambda_{i}\) in the individual optimisation problems, where \(\lambda_{i}\) is equal to the marginal utility of income for the \(i t h\) agent This in turn suggests that it is possible for an agent to transform hi utility function from \(u_{i}\) to \(u_{i}^{\prime}\) in such a way as to decrease \(\lambda_{i}\) and thus increase \(\mu_{i}\), the "weight" of the \(i t h\) agent in the social optimisation problem. This is called the problem of preference manipulation and is an interesting research problem with applications in trade theory.

Secondly the weights \(\mu_{i}\) can be regarded as functionally dependent on the initial endowment vector \(\left(e_{1}, \ldots, e_{m}\right) \in \Re_{+}^{n m}\). Thus the question of market equilibrium could be examined in terms of the functions \(\mu_{i}: \mathfrak{R}_{+}^{n m} \rightarrow \mathfrak{R}, i=1, \ldots, m\).

It is possible that one or a number of agents could destroy or exchange commodities so as to increase their weights. This is termed the problem of resource manipulation or the transfer paradox (see Gale, 1974, and Balasko, 1978).
Example 4.13. To illustrate these observations consider a two person \((i=1,2)\) exchange economy with two commodities \((j=1,2)\).

As in Example 4.10, assume the preference of the \(i t h\) agent is given by a utility function \(f_{i}: \mathfrak{R}_{+}^{2} \rightarrow \mathfrak{R}: f_{i}(x, y)=\beta_{i} \log x+\left(1-\beta_{i}\right) \log y\) where \(0<\beta_{i}<1\).

Let the initial endowment vector of \(i\) be \(e_{i}=\left(e_{i l}, e_{i 2}\right)\). At the price vector \(p=\) \(\left(p_{1}, p_{2}\right)\), demand by agent \(i\) is \(d_{i}\left(p_{1}, p_{2}\right)=\left(\frac{I_{i} \beta_{i}}{p_{1}}, \frac{I_{i}\left(1-\beta_{i}\right)}{p_{1}}\right)\) here \(I=p_{1} e_{i l}+p_{2} e_{i 2}\) is the value at \(p\) of the endowment.

Thus agent \(i\) "desires" to change his initial endowment from \(e_{i}\) to \(e_{i}^{\prime}\) :
\[
\left(e_{i 1}, e_{i 2}\right) \rightarrow\left(e_{i 1}^{\prime}, e_{i 2}^{\prime}\right)=\left(\beta_{i} e_{i 1}+\frac{\beta_{i} e_{i 2} p_{2}}{p_{1}},\left(1-\beta_{i}\right) e_{i 2}+\left(1-\beta_{i}\right) \frac{e_{i 1} p_{1}}{p_{2}}\right) .
\]

Another way of interpreting this is that i optimally divides expenditure between sell \((1-\beta) e_{i 1} \frac{p_{1}}{p_{2}}\) units of commodity 1 for \((1-\beta) e_{i 1} p_{l}\) monetary units and buy
\(\left(1-\beta_{i}\right) e_{i 1} \frac{p_{1}}{p_{2}}\) units of the second commodity, and offers to sell \(\beta_{i} e_{i 2}\) units of the 1248 second commodity and buy \(\beta_{i} e_{i 2} \frac{p_{1}}{p_{2}}\) units of the first commodity.
At the price vector \(\left(p_{1}, p_{2}\right)\) the amount of the first commodity on offer is \((1-1250\) \(\left.\beta_{i}\right) e_{11}+\left(1-1-\beta_{2}\right) e_{21}\) and the amount on request is \(\beta_{1} e_{12} p_{2}^{*}+\beta_{2} e_{22} p_{2}^{*}\) where1251 \(p_{2}^{*}\) is the ratio \(p_{2}: p_{1}\) of relative prices. For \(\left(p_{1}, p_{2}\right)\) to be a market-clearing price \({ }_{1252}\) equilibrium we require
\[
e_{11}\left(1-\beta_{1}\right)+e_{21}\left(1-\beta_{2}\right)=p_{2}^{*}\left(e_{22} \beta_{1}+e_{22} \beta_{2}\right) .
\]
Clearly if all endowments are increased by a multiple \(\alpha>0\), then the equilibrium allocations \(\left(e_{11}^{\prime}, e_{12}^{\prime}\right),\left(e_{21}^{\prime}, e_{22}^{\prime}\right)\) can be determined.
As we showed in Example 4.10, the coefficients \(\lambda_{i}\) for the individual optimisation
By the previous analysis, the weights \(\mu_{i}\) in the social optimisation problem
atisfy \(\mu_{i}=I_{i}\). After some manipulation of the price equilibrium equation we
\[
\frac{\mu_{i}}{\mu_{k}}=\frac{e_{i 1}\left(e_{i 2}+\beta_{k} e_{k 2}\right)+e_{i 2}\left(1-\beta_{k}\right) e_{k 1}}{e_{k 1}\left(e_{k 2}+\beta_{i} e_{i 2}\right)+e_{k 2}\left(1-\beta_{i}\right) e_{i 1}} .
\]
Clearly if agent \(i\) can increase the ratio \(\mu_{i} \geqslant \mu_{k}\), then the relative utility of \(i\)
In this example the (relative) price equilibrium is unique, but this need notof \(\mathfrak{R}_{+}^{4}=\left(x_{11}, x_{12}, x_{21}, x_{22}\right)\) such that \(x_{11}+x_{21}=e_{.1} ; x_{12}+x_{22}=e_{.2}\), and this isa two-dimensional hyperplane through the point ( \(e_{11}, e_{12}, e_{21}, e_{22}\) ). Thus \(Y\) can be1272represented in the usual two-dimensional Edgeworth box where point \(A\), the mostpreferred point for agent 1 , satisfies \(\left(x_{11}, x_{12}\right)=\left(e_{.1}, e_{.2}\right)\).
The price ray \(\tilde{p}\) is that ray through \(\left(e_{11}, e_{12}\right)\) where \(\tan \alpha=\frac{p_{1}}{p_{2}}\). Clearly \(\left(p_{1}, p_{2}\right)\) is an equilibrium price vector if the price ray intersects the critical Pareto set \(\Theta\left(f_{1}, f_{2}\right)\) at a point \(\left(x_{11}, x_{12}\right)\) in \(Y\) where \(\tilde{p}\) is tangential to the indifference curve for \(f_{1}\) and \(f_{2}\) through \(\left(x_{11}, x_{12}\right)\). At such a point we then have \(D f_{1}\left(x_{11}, x_{12}\right)+\) \(\mu D f_{2}\left(x_{11}, x_{12}\right)=0\).
As Figure 4.18 indicates there may well be a second price ray \(\tilde{p}\) which satisfies the tangency property. Indeed it is possible that there exists a family of such rays, or even an open set \(V\) in the price simplex such that each \(p\) in \(V\) is a market clearing equilibrium. We now explore the question of local uniqueness of price equilibria.
To be more formal let \(X=\mathfrak{R}_{+}^{n}\) be the commodity or consumption space. An initial endowment is a vector \(e=\left(e_{1}, \ldots, e_{m}\right) \in X^{m}\). A \(C^{r}\) utility function is a \(C^{r}\)-function \(u=\left(u_{1}, \ldots, u_{m}\right): X \rightarrow \mathfrak{R}^{m}\).1273


Fig. 4.18

Let \(C_{r}\left(X, \Re^{m}\right)\) be the set of \(C^{r}\)-profiles, and endow \(C_{r}\left(X, \Re^{m}\right)\) with a topology in the following way. (See the next chapter for a more complete discussion of the Whitney topology.)

A neighbourhood of \(f \in C_{r}\left(X, \Re^{m}\right)\) is a set
\[
\left\{g \in C_{r}\left(X, \mathfrak{R}^{m}\right) ;\left\|d^{k} g(x)-d^{k} f(x)\right\|<\epsilon(x)\right\} \text { for } k=0, \ldots, r
\]
where \(\epsilon(x)>0\) for all \(x \in X\). (We use the notation that \(d^{0} g=g\) and \(d^{1} g=d g\).)
Write \(C^{r}\left(X, \mathfrak{R}^{m}\right)\) for \(C_{r}\left(X, \mathfrak{R}^{m}\right)\) with this topology. A property \(K\) is called generic iff it is true for all profiles which belong to a residual set in \(C^{r}\left(X, \mathfrak{R}^{m}\right)\). Here residual means that the set is the countable intersection of open dense sets in \(C^{r}\left(X, \Re^{m}\right)\).

If a property is generic then we may say that almost all profiles in \(C^{r}\left(X, \Re^{m}\right)\)
A smooth exchange economy is a pair \((e, u) \in X^{m} \times C^{r}\left(X, \mathfrak{R}^{m}\right)\). As before the
feasible outcome set is
\[
Y=\left\{\left(x_{1}, \ldots, x_{m}\right) \in X^{m}: \sum_{i=1}^{m} x_{i}=\sum_{i=1}^{m} e_{i}\right\}
\]
and a price vector \(p\) belongs to the simplex \(\Delta=\{p \in X:\|p\|=l\}\), where \(\Delta\) is an object of dimension \(n-1\).

As in the welfare theorem, the demand by agent \(i\) at \(p \in \Delta\) satisfies : \(x_{i}^{*}(p)\) maximises \(u_{i}\) on


and note that both \(Z_{u}\) and \(X^{m}\) have dimension \(n m\).
A regular economy \((e, u)\) is one such that the projection map proj: \(Z_{u} \rightarrow X^{m}\) \(e, x, p)+e\) has differential with maximal rank \(n m\). Call \(e\) a regular value in this case. From singularity theory it is known that for all \(u\) in a residual set \(U\), the set of regular values of the projection map is dense in \(X^{m}\). Thus when \(u \in U\), and \(e\) is regular, the set of Walrasian equilibria for \((e, u)\) will be finite. Figure 4.19 illustrates this. At \(e_{1}\) there is only one Walrasian equilibrium, while at \(e_{3}\) there are three. Moreover in a neighbourhood of \(e_{3}\) the Walrasian equilibria move continuously with \(e\). At \(e_{4}\) the Walrasian equilibrium set is one-dimensional. As \(e\) moves from the right past \(e_{2}\) the number of Walrasian equilibria drops suddenly from 3 to 1 , and displays a discontinuity. Note that the points \((x, p)\) satisfying \((e, x, p) \in(p r o j)^{-1}(e)\) need not be Walrasian equilibria in the classical sense, since we have considered only the first order conditions. It is clearly the case that if there is non-convex preference, then the first order conditions are not sufficient for equilibrium. However, Smale's theorem shows the existence of extended Walrasian equilibria. The same difficulty occurs in the proof that a Walrasian equilibrium gives a Pareto optimal point in \(Y\).

Let \(\Theta^{0}(u)=\Theta^{0}\left(u_{1}, \ldots, u_{m}\right)\) be the set of points satisfying the first order condition \(d L(X, u)=0\) where \(X \in \overline{\Re^{m}}+\). suppose that we solve this with \(\lambda_{1} \neq 0\).

Then we may write \(D u_{1}(x)+\sum_{i=2}^{m} \frac{\lambda_{i}}{\lambda_{i}} D D_{i}(x)=0\).
Clearly there are \((m-1)\) degrees of freedom in this solution and indeed \(\Theta^{0}=\) \(\left(u_{1}, \ldots, u_{m}\right)\) can be shown to be a geometric object of dimension \((m-1)\) "almost always" (see Chapter 5). However \(\Theta^{0}(u)\) will contain points that are the "social" equivalents of the minima of a real-valued function.1358

Fig. 4.20


Fig. 4.21

Note, by Lemma 4.21, that \(\Theta^{0}(u)\) and the critical Pareto set \(\Theta(u)\) coincide, except for boundary points. If the boundary of the space is smooth, then it is possible to define a Lagrangian which characterises the boundary points in \(\Theta(u)\).

For example consider Figure 4.20, of a two agent two commodity exchange economy.

Agent 1 has non-convex preference, and the critical Pareto set consists of three components \(A B C, A D C\) and \(E F G\).

On \(A D C\) although the utilities satisfy the first order condition, there exist nearby
points that both agents prefer. For example, both agents prefer a nearby point \(y\) to \(x\). See Figure 4.21.

In Figure 4.22 from an initial endowment such as \(e=\left(e_{11}, e_{12}\right)\), there exists three
Walrasian extended equilibria, but at least one can be excluded. Note that if \(e\) is the initial endowment vector, then the Walrasian equilibrium \(B\) which is accessible by exchange along the price vector may be Pareto inferior to a Walrasian equilibrium, \(F\), which is not readily accessible. \(\qquad\)

Fig. 4.22


Fig. 4.23


Example 4.14. Consider the example due to Smale (as in Figure 4.23). Let \(Y=\mathfrak{R}^{2}\) and suppose
\[
\begin{aligned}
& u_{1}(x, y)=y-x^{2} \\
& u_{2}(x, y)=\frac{-y}{x^{2}+1} .
\end{aligned}
\]

Then \(D u_{1}(x, y)=(-2 x, 1)\)
\[
D u_{2}(x, y)=\left(\frac{2 x y}{\left(x^{2}+1\right)^{2}}, \frac{-1}{x^{2}+1}\right) .
\]

Let \(D L_{\lambda}(x, y)=\lambda_{1}(-2 x, 1)+\lambda_{2}\left(\frac{2 x y}{\left(x^{2}+1\right)^{2}}, \frac{-1}{x^{2}+1}\right)\).
Clearly one solution will be \(x=0\), in which case
\[
\lambda_{1}(0,1)+\lambda_{2}(0,1)=0 \quad \text { or } \quad \lambda_{1}=\lambda_{2}=1 .
\]

The Hessian for \(L\) at \(x=0\) is then
\[
H L(0, y)=D^{2} u_{1}(0, y)+D^{2} u_{2}(0, y)
\]
\[
=\left(\begin{array}{cr}
-2 & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{ll}
2 y & 0 \\
0 & 0
\end{array}\right)
\]
which is negative semi-definite for \(2(y-1)<0\) or \(y<1\).

Arrow, K. J. and F. H. Hahn (1971) Genenzl Competitive Analysis. Oliver and Boyd: Edinburgh. Hildenbrand, W. and A. P. Kirman (1976) Introduction to Equilibrium Analysis. North Holland: Amsterdam.

For the ideas of preference or resource manipulation, see:
Gale, D. (1974) "Exchange Equilibrium and Coalitions," Journal of Mathematical Economics 1 63-66.
R. Guesnerie and J.-J. Laffont (1978) "Advantageous Reallocations of Initial Resources,' Econometrica 46: 687-694.
Safra, Z. (1983) "Manipulation by Reallocating Initial Endowments," Journal of Mathematical Economics 12: 1-17.
Balasko, Y. (1978) "The Transfer Problem and the Theory of Regular Economies," International Economic Review 19: 687-694.

For a general introduction to the application of differential topology to economics see:
Smale, S. (1976) "Dynamics in General Equilibrium Theory," American Economic Review 66: 288-294. Reprinted in S. Smale (1980) The Mathematics of Time. Springer: Berlin.
Chapter 5
Singularity Theory and General Equilibrium
In this final chapter we introduce the fundamental result in singularity theory, that the set of singularity points of a smooth profile almost always has a particular geometric structure. We then go on to use this result to discuss the Debreu-Smale Theorem on the generic existence of regular economies. No attempt is made to prove these results in full generality. Instead the aim is to provide a geometric understanding of the ideas. Section 5.4 uses an example of Scarf (1960) to illustrate the idea of an excess demand function for an exchange economy. The example provides a general way to analyse a smooth adjustment process leading to a Walrasian equilibrium. Sections 5.5 and 5.6 introduce the more abstract topological ideas of structural stability and chaos in dynamical systems.

\subsection*{5.1 Singularity Theory}
In Chapter 4 we showed that when \(f: X \rightarrow \Re\) was a \(C^{2}\)-function on a normed vector space, then knowledge of the first and second differential of \(f\) at a critical point, \(x\), gave information about the local behavior (near \(x\) ) of the function. In this section we discuss the case of a differentiable function \(f: X \rightarrow Y\) between general normed vector spaces, and consider regular points (where the differential has maximal rank) and singularity points (where the differential has non-maximal rank). For both kinds of points we can locally characterise the behavior of the function.23

\(V_{x} \subset X\) defined by \(g_{y}\left(x^{\prime}\right)=x^{\prime}-t^{-1}\left[f\left(x^{\prime}\right)-y\right]\) is continuous. By Brouwer's 6 Theorem, each \(g_{y}\) has a fixed point.

That is to say for each \(y \in V^{\prime}\), there exists \(x^{\prime} \in V_{x}\) such that \(g_{y}\left(x^{\prime}\right)=x^{\prime}\). But 68 then \(t^{-1}\left[f\left(x^{\prime}\right)-y\right]=0\). Since, by hypothesis, \(t^{-1}\) is an isomorphism, its kernel 69 \(=\{0\}\), and so \(f\left(x^{\prime}\right)=y\). Thus for each \(y \in V^{\prime}\) we establish \(g_{y}\left(x^{\prime}\right)=x^{\prime}\) is 70 equivalent to \(f\left(x^{\prime}\right)=y\). Define \(f^{-1}(y)=g_{y}\left(x^{\prime}\right)=x^{\prime}\), which gives the inverse 71 function on \(V^{\prime}\). To show \(f^{-1}\) is differentiable, proceed as follows.

Note that \(d g_{y}\left(x^{\prime}\right)=I d-t^{-1} \circ d f\left(x^{\prime}\right)\) is independent of \(y\). Now \(d g_{y}\left(x^{\prime}\right)\) is a 73 linear and continuous function from \(X\) to \(X\) and is thus bounded. Since \(X\) is Banach, it is possible to show that \(\mathcal{L}(X, X)\), the topological space of linear and continuous 75 maps from \(X\) to \(X\), is also Banach. Thus if \(u \in \mathcal{L}(X, X)\), so is \((I d-u)^{-1}\). This follows since \((I d-u)^{-1}\) converges to an element of \(\mathcal{L}(X, X)\).

Now \(d g_{y}\left(x^{\prime}\right) \in \mathcal{L}(X, X)\) and so \(\left(I d-d g_{y}\left(x^{\prime}\right)\right)^{-1} \in \mathcal{L}(X, X)\). But then \(t^{-1}\) o \(d f\left(x^{\prime}\right)\) has a continuous linear inverse. Now \(t^{-1} \circ d f\left(x^{\prime}\right): X \rightarrow Y \rightarrow X\) and \(t^{-1}\) has a continuous linear inverse. Thus \(d f\left(x^{\prime}\right)\) has a continuous linear inverse, for all \(x^{\prime} \in V\). Let \(V\) be the interior of \(V_{x}\). By the construction the inverse of \(d f\left(x^{\prime}\right)\), for \(x^{\prime} \in V\), has the required property.

This is the fundamental theorem of differential calculus. Notice that the theorem asserts that if \(f: \Re^{n} \rightarrow \Re^{n}\) and \(d f(x)\) has rank \(n\) at \(x\), then \(d f\left(x^{\prime}\right)\) has rank \(n\) for all \(x^{\prime}\) in a neighbourhood of \(x\).

Example 5.1. (i) For a simple example, consider the function \(\exp : \Re \rightarrow \Re_{+}\) \(x \rightarrow e^{x}\). Clearly for any finite \(x \in \mathfrak{R}, d(\exp )(x)=e^{x} \neq 0\), and so the rank of the differential is 1 . The inverse \(\phi: \Re_{+} \rightarrow \mathfrak{R}\) must satisfy
\[
d \phi(y)=[d(\exp )(x)]^{-1}=\frac{1}{e^{x}}
\]
where \(y=\exp (x)=e^{x}\). Thus \(d \phi(y)=\frac{1}{y}\).
Clearly \(\phi\) must be the function \(\log _{e}: y \rightarrow \log _{e} y\).
(ii) Consider sin: \((0,2 \pi) \rightarrow[-1,+1]\).

Now \(d(\sin )(x) \neq 0\). Hence there exist neighbourhoods \(V\) of \(x\) and \(V^{\prime}\) of 88 \(\sin x\) and an inverse \(\phi: V^{\prime} \rightarrow V\) such that
\[
d \phi(y)=\frac{1}{\operatorname{cox} x} \frac{1}{\sqrt{1-y^{2}}} .
\]

This inverse \(\phi\) is only locally a function. As Figure 5.1 makes clear, even when \(\sin x=y\), there exist distinct values \(x_{1}, x_{2}\) such that \(\sin \left(x_{1}\right)=\sin \left(x_{2}\right)=y\). However \(d(\sin )\left(x_{1}\right) \neq d(\sin )\left(x_{2}\right)\).

The figure also shows that there is a neighbourhood \(V^{\prime}\) of \(y\) such that \(\phi: V^{\prime} \rightarrow V{ }_{94}\) is single-valued and differentiable on \(V^{\prime}\). Suppose now \(x=\frac{\pi}{2}\). Then \(d(\sin )\left(\frac{\pi}{2}\right)=95\) 0 . Moreover there is no neighbourhood \(V\) of \(\frac{\pi}{2}\) such that \(\sin :\left(\frac{\pi}{2}-\epsilon, \frac{\pi}{2}+\epsilon\right)=96\) \(V \rightarrow V^{\prime}\) has an inverse function.


Fig. 5.1

Note one further consequence of the theorem. For \(h\) small, we may write
\[
\begin{aligned}
f(x+h) & =f(x)+d f(x) \circ[d f(x)]^{-1}(f(x+h)-f(x)) . \\
& =f(x)+d f(x) \psi(h),
\end{aligned}
\]
where \(\psi(h)=d[f(x)]^{-1}(f(x+h)-f(x))\). Now by a linear change of coordinates we can diagonalise \(d f(x)\). So that in the case \(f=\left(f_{1}, \ldots, f_{n}\right): \Re^{n} \rightarrow \Re^{n}\) we can ensure \(\left.\frac{\partial f_{i}}{\partial x_{j}}\right|_{x}=\partial_{i j}\), where \(\partial_{i j}=1\) if \(i=j\) and 0 if \(i \neq j\). Hence \(f(x+h)=f(x)+\left(\psi_{1}(h), \ldots, \psi_{n}(h)\right)\). There is therefore a \(C^{r}\)-diffeomorphic change of coordinates \(\phi\) near \(x\) such that \(\phi(Q)=x\) and
\[
f\left(\phi\left(h_{1}, \ldots, h_{n}\right)\right)=f(x)+\left(h_{1}, \ldots, h_{n}\right)
\]

In other words by choosing coordinates appropriately \(f\) may be represented by its linear differential.

Suppose now that \(f: U \subset \Re^{n} \rightarrow \Re^{m}\) is a \(C^{1}\)-function. The maximal rank of \(d f\) at a point \(x\) in \(U\) is \(\min (n, m)\). If indeed \(d f(x)\) has maximal rank then \(x\) is called a regular point of \(f\), and \(f(x)\) a regular value. In this case we write \(x \in S_{0}(f)\). The inverse function theorem showed that when \(n=m\) and \(x \in S_{0}(f)\) then \(f\) could be regarded as an identity function near \(x\).

In particular this means that there is a neighbourhood \(U\) of \(x\) such that \(f^{-1}[f(x)] \cap U=\{x\}\) is an isolated point.

\section*{In the case that \(n \neq m\) we use the inverse function theorem to characterise \(f\) at regular points.}
1. (Surjective Version). Suppose that \(f: U \subset \Re^{n} \rightarrow \Re^{m}, n \geq m\), and rank \((d f(x))=m\), with \(f(x)=\underline{0}\) for convenience. If \(f\) is \(C^{r}\)-differentiable at \(x\), then there exists a \(C^{r}\)-diffeomorphism \(\phi: \Re^{n} \rightarrow \Re^{n}\) on a neighbourhood of the origin such that \(\phi(0)=x\), and \(f \circ \phi\left(h_{1}, \ldots, h_{n}\right)=\left(h_{1}, \ldots, h_{m}\right)\).
2. (Injective Version). If \(f: U \subset \Re^{n} \rightarrow \Re^{m}, n \leq m\), \(\operatorname{rank}(d f(x))=n\), with \(f(\underline{0})=y\), and \(f\) is \(C^{r}\)-differentiable at \(x\) then there exists a \(C^{r}\)-diffeomorphism \(\psi: \Re^{m} \rightarrow \Re^{m}\) such that \(\psi(y)=\underline{0}\) and
\[
\psi f\left(h_{1}, \ldots, h_{n}\right)=\left(h_{1}, \ldots, h_{n}, 0, \ldots, 0\right)
\]

Proof. 1. Now \(d f(x)=[B C]\), with respect to some coordinate system, where \(B\) is an \((m \times m)\) non singular matrix and \(C\) is an \((n-m) \times m\) matrix. Define \(F: \Re^{n} \rightarrow \Re^{n}\) by
\[
F\left(x_{1}, \ldots, x_{n}\right)=\left(f\left(x_{1}, \ldots, x_{n}\right), x_{m+1}, \ldots, x_{n}\right)
\]

Clearly \(D F(x)\) has rank \(n\), and by the inverse function theorem there exists an inverse \(\phi\) to \(F\) near \(x\). Hence \(F \circ \phi\left(h_{1}, \ldots, h_{n}\right)=\left(h_{1}, \ldots, h_{n}\right)\). But then \(f \circ\) \(\phi\left(h_{1}, \ldots, h_{n}\right)=\left(h_{1}, \ldots, h_{n}\right)\).
2. Follows similarly.

As an application of the theorem, suppose \(f: \mathfrak{R}^{m} \times \mathfrak{R}^{n-m} \rightarrow \mathfrak{R}^{m}\). Write \(x\) for a vector in \(\Re^{m}\), and \(y\) for a vector in \(\Re^{n-m}\), and let \(d f(x, y)=[B C]\) where \(B\) is an \(m \times m\) matrix and \(C\) is an \((n-m) \times m\) matrix. Suppose that \(B\) is invertible, at \((\bar{x}, \bar{y})\), and that \(f(\bar{x}, \bar{y})=0\). Then the implicit function theorem implies that there exists an open neighbourhood \(U\) of \(\bar{y}\) in \(\Re^{n-m}\) and a differentiable function \(g: U \rightarrow \Re^{m}\) such that \(g\left(y^{\prime}\right)=x^{\prime}\) and \(f\left(g\left(y^{\prime}\right), y^{\prime}\right)=0\) for all \(y^{\prime} \in V\).

To see this define
\[
F: \mathfrak{R}^{m} \times \mathfrak{R}^{n-m} \rightarrow \mathfrak{R}^{m} \times \mathfrak{R}^{n-m}
\]
by \(F(x, y)=(f(x, y), y)\).
Clearly \(d F(\bar{x}, \bar{y})=\left[\begin{array}{cc}B & C \\ O & I\end{array}\right]\) and so \(d F(\bar{x}, \bar{y})\) is invertible. Thus there exists a neighbourhood \(V\) of \((\bar{x}, \bar{y})\) in \(\Re^{n}\) on which \(F\) has a diffeomorphic inverse \(G\). Now \(F(\bar{x}, \bar{y})=(0, \bar{y})\). So there is a neighbourhood \(V^{\prime}\) of \((0, \bar{y})\) and a neighbourhood \(V\) of \((\bar{x}, \bar{y})\) s. t. \(G: V \subset \Re^{n} \rightarrow V^{\prime} \subset \Re^{n}\) is a diffeomorphism.

Let \(g\left(y^{\prime}\right)\) be the \(x\) coordinate of \(G\left(0, y^{\prime}\right)\) for all \(y^{\prime}\) such that \(\left(0, y^{\prime}\right) \in V^{\prime}\).
Clearly \(g\left(y^{\prime}\right)\) satisfies \(G\left(0, y^{\prime}\right)=\left(g\left(y^{\prime}\right), y^{\prime}\right)\) and so \(F \circ G\left(0, y^{\prime}\right)=F\left(g\left(y^{\prime}\right), y\right)=\) \(\left(f\left(g\left(y^{\prime}, y^{\prime}\right)\right), y^{\prime}\right)=\left(0, y^{\prime}\right)\).

Now if \(\left(x^{\prime}, y^{\prime}\right) \in V^{\prime}\) then \(y^{\prime} \in U\) where \(U\) is open in \(\Re^{n-m}\). Hence for all
\(y^{\prime} \in U, g\left(y^{\prime}\right)\) satisfies \(f\left(g\left(y^{\prime}\right), y^{\prime}\right)=0\). Since \(G\) is differentiable, so must be \(g: U \subset \Re^{n-m} \rightarrow \Re^{m}\). Hence \(x^{\prime}=g\left(y^{\prime}\right)\) solves \(f\left(x^{\prime}, y^{\prime}\right)=0\).
Example 5.2. 1. Let \(f: \mathfrak{R}^{3} \rightarrow \mathfrak{R}^{2}\) where
\[
\begin{aligned}
& f_{1}(x, y, z)=x^{2}+y^{2}+z^{2}-3 \\
& f_{2}(x, y, z)=x^{3} y^{3} z^{3}-x+y-z
\end{aligned}
\]

At \((x, Y, z)=(1,1,1), f_{1}=f_{2}=0\).
We seek a function \(g: \Re \rightarrow \Re^{2}\) such that \(f\left(g_{1}(z), g_{2}(z), z\right)=0\) for all \(z\) in \({ }_{153}\) a neighbourhood of 1 .

Now
\[
d f(x, y, z)=\left(\begin{array}{ccc}
2 x & 2 y & 2 z \\
3 x^{2} y^{3} z^{3}-1 & 3 x^{3} Y^{2} z^{3}+1 & 3 x^{3} y^{3} z^{2}-1
\end{array}\right)
\]
and so
\[
d f(1,1,1)=\left(\begin{array}{lll}
2 & 2 & 2 \\
2 & 4 & 2
\end{array}\right)
\]

The matrix
\[
\left(\begin{array}{ll}
2 & 2 \\
2 & 4
\end{array}\right)
\]
is non-singular. Hence there exists a diffeomorphism \(G: \mathbb{R}^{3} \rightarrow \mathfrak{R}^{3}\) such that \(G(O, O, 1)=(1,1,1)\), and \(G\left(O, O, z^{\prime}\right)=\left(g_{1}\left(z^{\prime}\right), g_{2}\left(z^{\prime}\right), z^{\prime}\right)\) for \(z^{\prime}\) near 1 . 0 , with \(d f(x, y)=(2(x-a), 2(y-b))\).

Now let \(F(x, y)=(x, f(x, y))\), where \(F: \mathfrak{R}^{2} \rightarrow \mathfrak{R}^{2}\), and suppose \(y \neq b\).
\[
\text { Then } \begin{aligned}
d F(x, y) & =\left(\begin{array}{cc}
1 & 0 \\
\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y}
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & 0 \\
2(x-a) & 2(y-b)
\end{array}\right)
\end{aligned}
\]
with inverse \(d G(x, y)=\frac{1}{2(y-b)}\left(\begin{array}{cc}2(y-b) & 0 \\ -2(x-a) & 1\end{array}\right)\).
Define \(g\left(x^{\prime}\right)\) to be the \(y\)-coordinate of \(G\left(x^{\prime}, 0\right)\). Then \(F \circ G\left(x^{\prime}, 0\right)=167\) \(F\left(x^{\prime}, g\left(x^{\prime}\right)\right)=F\left(x^{\prime}, f\left(x^{\prime}, y^{\prime}\right)\right)=\left(x^{\prime}, 0\right)\), and so \(y^{\prime}=g\left(x^{\prime}\right)\) for \(f\left(x^{\prime}, y^{\prime}\right)=0168\) and \(y^{\prime}\) sufficiently close to \(y\).

Note also that
\[
\phi: V \subset \Re^{n} \rightarrow U \subset \Re^{r} .
\]

When \(f: \Re^{n} \rightarrow \Re^{m}\) and rank \((d f(x))=m \leq n\) then say that \(f\) is a submersion
One way to interpret the implicit function theorem is as follows:
(1) When \(f\) is a submersion at \(x\), then the inverse \(f^{-1}(f(x))\) of a point \(f(x)\) "looks like" an object of the form \(\left\{x, h_{m+1}, \ldots, h_{n}\right\}\) and so is a smooth manifold in \(\Re^{n}\) of dimension \((n-m)\).
(2) When \(f\) is an immersion at \(x\), then the image of an ( \(n\)-dimensional) neighborhood \(U\) of \(x\) "looks like" an \(n\)-dimensional manifold, \(f(u)\), in \(\Re^{m}\). These observations can be generalized to the case when \(f: X^{n} \rightarrow Y^{m}\) is "smooth", and \(X, Y\) are themselves smooth manifolds of dimension \(n, m\) respectively. Without going into the formal details, \(X\) is a smooth manifold of dimenson \(n\) if it is a paracompact topological space and for any \(x \in X\) there is a neighborhood \(V\) of \(x\) and a smooth "chart", \(\phi: V \subset X \rightarrow U \subset \Re^{n}\). In particular if \(x \in V_{i} \cap V_{j}\) for two open neighborhoods, \(V_{i}, V_{j}\) of \(x\) then
\[
\phi_{i} \circ \phi_{j}^{-1}: \phi_{j}\left(V_{i} \cap V_{j}\right) \subset \Re^{n} \rightarrow \phi_{i}\left(V_{i} \cap V_{j}\right) \subset \Re^{n} .
\]
is a diffeomorphism. A smooth structure on \(X\) is an atlas, namely a family \(\left\{\left(\phi_{i}, V_{i}\right)\right\}\) of charts such that \(\left\{V_{i}\right\}\) is an open cover of \(X\). The purpose of this definition is that if \(f: X^{n} \rightarrow Y^{m}\) then there is an induced function near a point x given by
\[
f_{i} j=\psi_{1} \circ f \circ \phi_{j}^{-1}: \mathfrak{R}^{n} \rightarrow \phi_{j}^{-1}\left(V_{j}\right) \rightarrow Y \rightarrow \Re^{m} .
\]

Here \(\left(\phi_{j}, V_{j}\right)\) is a chart at \(x\), and \(\left(\psi_{i}, V_{i}\right)\) is a chart at \(f(x)\). If the induced functions \(\left\{f_{i j}\right\}\) at every point \(x\) are differentiable then \(f\) is said to be differentiable, and the "induced" differential of \(f\) is denoted by \(d f\). The charts thus provide a convenient way of representing the differential \(d f\) of \(f\) at the point \(x\). In particular once \(\left(\phi_{j}, V_{j}\right)\) and \(\left(\psi_{i}, V_{i}\right)\) are chosen for \(x\) and \(f(x)\), then \(d f(x)\) can be represented by the Jacobian matrix \(D f(x)=\left(\partial f_{i j}\right)\). As before \(D f(x)\) will consist of \(n\) columns and \(m\) rows. Characteristics of the Jacobian, such as rank, will be
independent of the choices for the charts (and thus coordinates) at \(x\) and \(f(x)\). (See Chillingsworth, 1976, for example, for the details.)

If the differential \(d f\) of a function \(f: X^{n} \rightarrow Y^{m}\) is defined and continuous then \(f\) is called \(C^{1}\). Let \(C_{1}(X, Y)\) be the collection of such \(C^{1}\)-maps. Analogous to the case of functions between real vector spaces, we may also write \(C_{r}(X, Y)\) for the class of \(C^{r}\)-differentiable functions between \(X\) and \(Y\).

The implicit function theorem also holds for members of \(C_{1}(X, Y)\).
Implicit Function Theorem for Manifolds. Suppose that \(f: X^{n} \rightarrow Y^{m}\) is a
\(C^{1}\)-function between smooth manifolds of dimension \(n, m\) respectively.
1. If \(n \geq m\) and \(f\) is a submersion at \(x\) (i.e., rank \(d f(x)=m\) ) then \(f^{-1}(f(x))\) is (locally) a smooth manifold in \(X\) of dimension \((n-m)\). Moreover, if \(Z\) is a manifold in \(Y^{n}\) of dimension \(r\), and \(f\) is a submersion at each point in \(f^{-1}(Z)\), then \(f^{-1}(Z)\) is a submanifold of \(X\) of dimension \(n-m+r\).
2. If \(n \leq m\) and \(f\) is an immersion at \(x\) (i.e., rank \(d f(x)=n\) ) then there is a neighbourhood \(U\) of \(x\) in \(X\) such that \(f(U)\) is an \(n\)-dimensional manifold in \(Y\) and in particular \(f(U)\) is open in \(Y\).

The proof of this theorem is considerably beyond the scope of this book, but the interested reader should look at Golubitsky and Guillemin (1973, page 9) or Hirsch (1976, page 22). This theorem is a smooth analogue of the isomorphism theorem for linear functions given in §2.2. For a linear function \(T: \Re^{n} \rightarrow \Re^{m}\) when \(n \geq m\) and \(T\) is surjective, then \(T^{-1}(y)\) has the form \(x_{0}+K\) where \(K\) is the \((n-m)\)-dimensional kernel. Conversely if \(T: \mathfrak{R}^{n} \rightarrow \Re^{m}\) and \(n<m\) when \(T\) is injective, then image \((T)\) is an \(n\)-dimensional subspace of \(\Re^{m}\). More particularly if \(U\) is an \(n\)-dimensional open set in \(\Re^{n}\) then \(T(U)\) is also an \(n\)-dimensional open set in \(\Re^{m}\).

Example 5.3. To illustrate, consider Example 5.2(2) again. When \(y \neq b, d f\) has rank 1 and so there exists a "local" solution \(y^{\prime}=g\left(x^{\prime}\right)\) such that \(f\left(x^{\prime}, g\left(x^{\prime}\right)\right)=0\). In other words
\[
f^{-1}(0)=\left\{\left(x^{\prime}, g\left(x^{\prime}\right)\right) \in \mathfrak{R}^{2}: x^{\prime} \in U\right\},
\]
which essentially is a copy of \(U\) but deformed in \(\mathfrak{R}^{2}\). Thus \(f^{-1}(0)\) is "locally" a one-dimensional manifold. Indeed the set \(S^{1}=\{(x, y): f(x, y)=0\}\) itself is a 1-dimensional manifold in \(\mathfrak{R}^{2}\).

If \(y \neq b\), and \((x, y) \in S^{1}\) then there is a neighbourhood \(U\) of \(x\) and a diffeomorphism \(g: S^{1} \rightarrow \Re:\left(x^{\prime}, y^{\prime}\right)+g\left(y^{\prime}\right)\) and this parametrises \(S^{1}\) near \((x, y)\).

If \(y=b\), then we can do the same thing through a local solution \(x^{\prime}=h\left(y^{\prime}\right)\) satisfying \(f\left(h\left(y^{\prime}\right), y^{\prime}\right)=0\).

Fig. 5.2


\subsection*{5.1.2 Singular Points and Morse Functions}

When \(f: X^{n} \rightarrow Y^{m}\) is a \(C^{1}\) - function between smooth manifolds, and rank \(d f(x)\) is maximal \((=\min (n, m))\) then as before write \(x \in S_{0}(f)\).

The set of singular points of \(f\) is \(S(f)=X \backslash S_{0}(f)\). Let \(z=\min (n, m)\) and say that \(x\) is a corank \(r\) singularity, or \(x \in S_{r}(f)\), if \(\operatorname{rank}(d f(x))=z-r\).

Clearly \(S(f)=\cup_{r>1} S_{r}(f)\).
In the next section we shall examine the corank \(t\) singularity sets of a \(C^{1}\)-function and show that they have a nice geometric structure. In this section we consider the case \(m=1\).

In the case of a \(C^{2}\)-function \(f: X^{n}+\mathfrak{R}\), either \(x\) will be regular (in \(S_{0}(f)\) ) or a critical point (in \(S_{1}(f)\) ) where \(d f(x)=0\). We call a critical point of \(f\) nondegenerate iff \(d^{2} f(x)\) is non-singular. A \(C^{2}\)-function all of whose critical points are non degenerate is called a Morse function. A Morse function, \(f\), near a critical point has a very simple representation.

A local system of coordinates at a point \(x\) in \(X\) is a smooth assignment
\[
y \xrightarrow{\phi}\left(h_{1}, \ldots, h_{n}\right)
\]
for every \(y\) in some neighbourhood \(U\) of \(x\) in \(X\).
Lemma 5.1. (Morse). If \(f: X^{n} \rightarrow \Re\) is \(C^{2}\) and \(x\) is a non-degenerate critical point of index \(k\), then there exists a local system of coordinates (or chart \((\phi, V)\) ) at \(x\) such that \(f\) is given by
\[
y \xrightarrow{\phi}\left(h_{1}, \ldots, h_{n}\right) \xrightarrow{g} f(x)-\sum_{i=1}^{k} h_{i}^{2}+\sum_{i=k+1}^{n} h_{i}^{2} .
\]

As before the index of the critical point is the number of negative eigenvalues of the Hessian \(H f\) at \(x\). The \(C^{2}\)-function \(g\) has Hessian
\[
H_{g}(0)=\left(\begin{array}{ccccc}
-2 & & & \\
& \cdot & & & \\
& \cdot & & \\
& & -2 & & \\
& & & 2 & \\
& & & \cdot \\
& & & & .
\end{array}\right)
\]

To see this note that for \(y \in V\),
\[
d f(y)=d g\left(h_{1}, \ldots, h_{n}\right)=\left(-2 h_{1}, \ldots, 2 h_{n}\right)=0
\]
iff \(h_{1}^{\prime}=\ldots=h_{n}=0\), or \(y=x\). Thus each critical point of \(f\) is isolated, and so \(S_{1}(f)\) is a set of isolated points and thus a zero-dimensional object.

As we shall see almost any smooth function can be approximated arbitrarily closely by a Morse function.

To examine the regular points of a differentiable function \(f: X \rightarrow \mathfrak{R}\), we can use the Sard Lemma.

First of all a set \(V\) in a topological space \(X\) is called nowhere dense if its closure, \(\operatorname{clos}(V)\), contains no non-empty open set. Alternatively \(X \backslash \operatorname{clos}(V)\) is dense.

If \(X\) is a complete metric space then the union of a countable collection of28 closed nowhere dense sets is nowhere dense. This also means that a residual set (the intersection of a countable collection of open dense sets) is dense. (See §3.1.2) A set \(V\) is of measure zero in \(X\) iff for any \(\epsilon>0\) there exists a family of cubes, with volume less than \(\epsilon\), covering \(V\). If \(V\) is closed, of measure zero, then it is nowhere dense.

Lemma 5.2. (Sard). If \(f: X^{n} \rightarrow \mathfrak{R}\) is a \(C^{r}\)-map where \(r \geq n\), then the set

To illustrate this consider Figure 5.3. \(f\) is a quasi-concave \(C^{1}\)-function \(f: \Re \rightarrow\)since \(S_{1}(f)\) has a non-empty interior. Thus \(f\) is not a Morse function. However\(f\left(S_{1}(f)\right)\) is an isolated point in the image.

Example 5.4. To illustrate the Morse lemma let \(Z=S^{1} \times S^{1}\) be the torus (the skin of a doughnut) and let \(f: Z \rightarrow \Re\) be the height function.

Fig. 5.3


Fig. 5.4 Critical Points on Z.

Point \(s\), at the bottom of the torus, is a minimum of the function, and so the index of \(s=0\). Let \(f(s)=0\).

Then near \(s, f\) can be represented by
\[
\left(h_{1}, h_{2}\right) \rightarrow+h_{1}^{2}+h_{2}^{2} .
\]

Note that the Hessian of \(f\) at \(s\) is \(\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]\), and so is positive definite.
The next critical point, \(t\), is obviously a saddle, with index 1 , and so we can write \(\left(h_{1}, h_{2}\right) \rightarrow f(t)+h_{1}^{2}-h_{2}^{2}\). Clearly \(H f(t)=\left[\begin{array}{ll}2 & 0 \\ 0 & -2\end{array}\right]\).

Suppose now that \(a \in(f(s), f(t))\). Clearly \(a\) is a regular value, and so any. 306 point \(x \in Z\) satisfying \(f(x)=a\) is a regular point, and \(f\) is a submersion at \(x\). By
the implicit function theorem \(f^{-1}(a)\) is a one-dimensional manifold. Indeed it is a single copy of the circle, \(S^{1}\).

The next critical point is the saddle, \(u\), near which \(f\) is represented as
\[
\left(h_{1}, h_{2}\right) \rightarrow f(u)-h_{1}^{2}+h_{2}^{2} .
\]

Now for \(b \in(f(t), f(u)), f^{-1}(b)\) is a one-dimensional manifold, but this time it is two copies of \(S^{1}\). Finally \(v\) is a local maximum and \(f\) is represented near \(v\) by \(\left(h_{1}, h_{2}\right) \rightarrow f(u)-h_{1}^{2}-h_{2}^{2}\). Thus the index of \(v\) is 2 .

We can also use this example to introduce the idea of the Euler characteristic \(\chi(X)\) of a manifold \(X\). If \(X\) has dimension, \(n\), let \(c_{i}(X, f)\) be the number of critical points of index \(i\), of the function \(f: X \rightarrow \Re\) and let
\[
\chi(X, f)=\sum_{i=0}^{n}(-1)^{i} c_{i}(X, f)
\]
(i) \(c_{0}(Z, f)=1\), since s has index 0
(ii) \(c_{1}(Z, f)=2\), since both t and u have index 1
(iii) \(c_{2}(Z, f)=1\), since \(v\) has index 2 .

Thus \(\chi(Z, f)=1-2+1=0\). In fact, it can be shown that \(\chi(X, f)\) is independent of \(f\), when \(X\) is a compact manifold. It is an invariant of the smooth manifold \(X\), labelled \((\chi(X))\). Example 5.4 illustrates the fact that \(\chi(Z)=0\).

Example 5.5. (1) The sphere \(S^{1}\). It is clear that the height function \(f: S^{1} \rightarrow \mathfrak{R}\) has an index 0 critical point at the bottom and an index 1 critical point at the top, so \(\chi\left(S^{1}\right)=1-1=0\).
2) The sphere \(S^{2}\) has an index 0 critical point at the bottom and an index 2 critical point at the top, so \(\chi\left(S^{2}\right)=c_{0}+c_{2}=1+1=2\).

It is possible to deform the sphere, \(S^{2}\), so as to induce a saddle, but this creates an index 0 critical point. In this case \(c_{0}=2, c_{1}=1\), and \(c_{2}=1\) as in Figure 5.5. Thus \(\chi\left(S^{2}\right)=2-1+1=2\) again.
(3) More generally, \(\chi\left(S^{n}\right)=0\) if \(n\) is odd and \(=2\) if \(n\) is even.
(4) To compute \(\chi\left(B^{n}\right)\) for the closed \(n\)-ball, take the sphere \(S^{n}\) and delete the top hemisphere. The remaining bottom hemisphere is diffeomorphic to \(B^{n}\). By this method we have removed the index \(n\) critical point at the top of \(S^{n}\).

For \(n=2 k+1\) odd, we know
\[
\chi\left(S^{2 k+1}\right)=\sum_{i=0}^{2 k}(-1)^{i} c_{i}\left(S^{n}\right)-c_{n}\left(S^{n}\right)=0,
\]
so \(\chi\left(B^{2 k+1}\right)=\chi\left(S^{2 k+1}\right)+1=1\). For \(n=2 k\), even we have \(\sum_{2 k-1}^{i=0}(-1) c_{i}\left(S^{n}\right)+\)
\(c_{n}\left(S^{n}\right)=2\), so \(\chi\left(B^{2 k}\right)=\chi\left(S^{2 k}\right)-1=1\).
Fig. 5.5 Critical points in
\(S^{2}\).

\subsection*{5.2 Transversality}

To examine the singularity set \(S(f)\) of a smooth function \(f: X \rightarrow Y\) we introduce the idea of transversality

A linear manifold \(V\) in \(\Re^{n}\) of dimension \(v\) is of the form \(x_{0}+K\), where \(K\) is avector subspace of \(\Re^{n}\) of dimension \(v\). Intuitively if \(V\) and \(W\) are linear manifoldsin \(\Re^{n}\) of dimension \(v, w\) then typically they will not intersect if \(v+w<n\).

On the other hand if \(v+w \geq n\) then \(V \cap W\) will typically be of dimension \(v+w-n\).

For example two lines in \(\Re^{2}\) will intersect in a point of dimension \(1+1-2\).
Another way of expressing this is to define the codimension of \(V\) in \(\Re^{n}\) to be \(n-v\). Then the codimension of \(V \cap W\) in \(W\) will typically be \(w-(v+w-n)=n-v\), the same codimension.

Suppose now that \(f: X^{n} \rightarrow Y^{m}\) where \(X, Y\) are vector spaces of dimension \(n, m\) respectively. Let \(Z\) be a \(z\)-dimensional linear manifold in \(Y\). Say that \(f\) is transversal to \(Z\) iff for all \(x \in X\), either (i) \(f(x) \notin Z\) or (ii) the image of \(d f(x)\), regarded as a vector subspace of \(Y^{m}\), together with \(Z\) span \(Y\). In this case write \(f \cap^{T} Z\). The same idea can be extended to the case when \(X, Y, Z\), are all manifolds. Whenever \(f \cap^{T} Z\), then if \(x \in f^{-1}(z), f\) will be a submersion at \(x\), and so \(f^{-1}(Z)\) will be a smooth manifold in \(X\) of codimension equal to the codimension of \(Z\) in \(Y\). Another way of interpreting this is that the number of constraints which determine \(Z\) in \(Y\) will be equal to the number of constraints which determine \(f^{-1}(Z)\) in \(X\). Thus \(\operatorname{dim}\left(f^{-1}(Z)\right)=n-(m-z)\).

In the previous chapter we put the Whitney \(C^{s}\)-topology on the set of \(C^{s}\) differentiable maps \(X^{n} \rightarrow Y^{m}\), and called this \(C^{s}(X, Y)\). In this topological space a residual set is dense. The fundamental theorem of singularity theory is that transversal intersection is generic.

Thom Transversality Theorem. Let \(X^{n}, Y^{m}\) be manifolds and \(Z^{z}\) a submanifold of \(Y\). Then the set

More generally if \(f: X^{n} \rightarrow Y^{m}\) with \(m \leq n\) then in the generic case, \(S_{1}(f)\) is 409 of codimension \((n-m+1)(n-m+1)=n-m+1\) in \(X\) and so \(S_{1}(f)\) will be 410 of dimension \((m-1)\).
Suppose now that \(n>2 m-4\), and \(n \geq m\). Then \(2 n-2 m+4>n\) and so 412 \(r(n-m+r)>n\) for \(r \geq 2\). But codimension \(\left(S_{r}(f)\right)=r(n-m+r)\), and since codimension \(\left.S_{r}(f)\right)>\) dimension \(X, S_{r}(f)=\Phi\) for \(r \geq 2\).
Submanifold Theorem. If \(Z^{z}\) is a submanifold of \(Y^{m}\) and \(z<m\) then \(Z\) is nowhere
In the case \(n \geq m\), the singularity set \(S(f)\) will generically consist of a union of the various co-rank \(r\) singularity submanifolds, for \(r \geq 1\). The highest dimension of these is \(m-1\). We shall call an \(S(f)\) a stratified manifold of dimension \((m-1)\). Note also that \(S(f)\) will then be nowhere dense in \(X\). We also require the following theorem.
Morse Sard Theorem. If \(f: X^{n}+Y^{m}\) is a \(C^{s}\)-map, where \(s>n-m\), then \(f(S(f))\) has measure zero in \(Y\) and \(f\left(S_{0}(f)\right)\) is residual and therefore dense in \(Y\).423
We are now in a position to apply these results to the critical Pareto set. Suppose 42 then that \(u=\left(u_{1}, \ldots, u_{m}\right): X^{n} \rightarrow \Re^{m}\) is a smooth profile on the manifold of feasible states \(X\).
Say \(x \in \stackrel{0}{\Theta}\left(u_{1}, \ldots, u_{m}\right)=\stackrel{0}{\Theta}(u)\) iff \(d L(\lambda, u)(x)=0\), where \(L(\lambda, u)=\) \(\sum_{i=1}^{m} \lambda_{i} u_{i}\) and \(\lambda \in \overline{\Re_{+}^{m}}\).
By Lemma ??, the critical Pareto set, \(\Theta(u)\), contains \({ }_{\Theta}^{\Theta}(u)\) but possibly also
Pareto Theorem. There exists a residual set \(U\) in \(C^{1}\left(X, \Re^{m}\right)\), for \(\operatorname{dim}(X) \geq m\),
As we have already observed this result implies that \(\Theta(u)\) can generally be

\subsection*{5.3 Generic Existence of Regular Economies}

In this section we outline a proof of the Debreu-Smale Theorem on the Generic Existence of Regular Economies (see. Debreu, 1970, and Smale, 1974).

As in \(\S 4.4\), let \(u=\left(u_{1}, \ldots, u_{m}\right): X^{m}+\Re^{m}\) be a smooth profile, where \(X=\Re_{+}^{n}\), the commodity space facing each individual. Let \(e=\left(e_{1}, \ldots, e_{m}\right) \in X^{m}\) be an initial endowment vector. Given \(u\), define the Walras manifold to be the set
\[
Z_{u}=\left\{(e, x, p) \in X^{m} \times X^{m} \times \Delta\right\}
\]
(where \(\Delta\) is the price simplex) such that \((x, p)\) is a Walrasian equilibrium for the
economy \((e, u)\). That is, \((x, p)=\left(x_{1}, \ldots, x_{m}, p\right) \in X^{m} \times \Delta\) satisfies:
1. individual optimality : \(D^{*} u_{i}\left(x_{i}\right)=p\) for \(i \in M\),
2. individual budget constraints: \(\langle p, x i\rangle=\left\langle p, e_{i}\right\rangle\) for \(i \in M\),
3. social resource constraints: \(\sum_{i=1}^{m} x_{i j}=\sum_{i=1}^{m} e_{i j}\) for each commodity \(j=\) \(1, \ldots, n\).

Note that we implicitly assume that each individual's utility function, \(u_{i}\), is defined on a domain \(X_{i} \equiv X \subset \Re_{+}^{n}\) so that the differential \(d u_{i}\left(x_{i}\right)\) at \(x_{i} \in X_{i}\) can be represented by a vector \(D u_{i}\left(x_{i}\right) \in \mathfrak{M}^{n}\). As we saw in Chapter 4 , we may normalize \(D u_{i}\) and \(p\) so the optimality condition for \(i\) becomes \(D^{*} u_{i}(x)=p\) for \(p \in \Delta\). For the space of normalized price vectors, we may identify \(\Delta\) with \(\left\{p \in \Re_{+}^{n}:\|p\|=1\right\}\). Observe that \(\operatorname{dim}(\Delta)=n-1\).

We seek to show that there is a residual set \(U\) in \(C^{s}\left(X, \Re^{m}\right)\) such that the Walras manifold is a smooth manifold of dimension mn .

Now define the Debreu projection
\[
\pi: Z_{u} \subset X^{m} \times X^{m} \times \Delta \rightarrow X^{m}:(e, x, p) \rightarrow e .
\]

Note that both \(Z_{u}\), and \(X^{m}\) will then have dimension \(m n\).
By the Morse Sard Theorem the set
\[
V=\left\{e \in X^{m}: d \pi \text { has rank } n m \text { at }(e, x p)\right\}
\]
is dense in \(X^{m}\).
Say the economy \((e, u)\) is regular if \(a(e, x, p)=e\) is a regular value of a (or \(\operatorname{rank} d \pi=m n)\) for all \((x, p) \in X^{m} \times \Delta\) such that \(\left.(e x, p) \in Z_{u}\right)\).

When \(e\) is a regular value of \(\pi\), then by the inverse function theorem,
\[
\pi^{-1}(e)=\left\{(e, x, p)^{1},(e, x, p)^{2}, \ldots(e, x, p)^{k}\right\}
\]
is a zero-dimensional object, and thus will consist of a finite number of isolated points. Thus for each \(e \in V\), the Walrasian equilibria associated with \(e\) will be finite
in number. Moreover there will exist a neighbourhood \(N\) of \(e\) in \(V\) such that the

Proof of the Generic Regularity of the Debreu Projection. Define \(\psi_{u}: X^{m} \times\) \(\Delta \rightarrow \Delta^{m+l}\) where \(u \in C^{r}\left(X, \Re^{m}\right)\) by \(\psi_{u}(x, p)=\left(D^{*} u_{1}\left(x_{1}\right), \ldots, D^{*} u_{m}\left(x_{m}\right), p\right)\) where \(x=\left(x_{1}, \ldots, x_{m}\right)\) and \(u=\left(u_{1}, \ldots, u_{m}\right)\). Let \(I\) be the diagonal \(\{(p, \ldots, p)\}\) in \(\Delta^{m+1}\). If \((x, p) \in \psi_{u}^{-1}(I)\) then for each \(i, D^{*} u_{i}\left(x_{i}\right)=p\) so the first order individual optimality conditions are satisfied. By the Thom Transversality Theorem there is a residual set (in fact an open dense set) of profiles \(U\) such that \(\psi_{u}\) is transversal to \(I\) for each \(u \in U\). But then the codimension of \(\psi_{u}^{-1}(I)\) in \(X^{m} \times \Delta\) equals the codimension of \(I\) in \(\Delta^{m+1}\).

Now \(\Delta\) and \(I\) are both of dimension \((n-1)\) and so codimension \((I)\) in \(\Delta^{m+1}\) is

Now let \(e \in X^{m}\) be the initial endowment vector and
\[
Y(e)=\left\{\left(x_{1}, \ldots, x_{m}\right) \in X^{m}: \sum_{i=1}^{m} x_{i}=\sum_{i=1}^{m} e_{i}\right\}
\]
be the set of feasible outcomes, a hyperplane in \(\Re_{+}^{n m}\) of dimension \(n(m-1)\). For \({ }_{49}\) each \(i\), let \(B_{i}(p)=\left\{x_{i} \in X:\left\langle p, x_{i}\right\rangle=\left\langle p, e_{i}\right\rangle\right\}\), be the hyperplane through the boundary of the \(i^{\text {th }}\) budget set at the price vector \(p\).

Define
\[
\sum(e)\left\{(x, p) \in X^{m} \times \Delta: x \in Y(e), x_{i} \in B_{i}(p), \forall i \in M\right\}
\]
and \(\Gamma=\left\{(e, x, p): e \in X^{m},(x, p) \in \sum(e)\right\}\).
As discussed in Chapter 4, \(Y(e)\) is characterized by \(n\) linear equations, while the budget restrictions induce a further \((m-1)\) linear restraints (the \(m^{\text {th }}\) budget restraint is redundant). Thus the dimension of \(\Gamma\) is \(2 m n+(n-1)-n-(m-1)=2 m n-m\). (In fact, if \(\Delta\) is taken to be the \((n-1)\) dimensional simplex, then \(\Gamma\) will be a linear manifold of dimension \(2 m n-m\). More generally, \(\Gamma\) will be a submanifold of \(X^{m} \times X^{m} \times \Delta\) of dimension \(2 m n-m\). At each point the projection is a regular map (i.e., the rank of the differential of \((e, x, p) \rightarrow(x, p)\) is maximal).

To see this define \(\phi: X^{m} \times X^{m} \times \Delta \rightarrow \Re^{n} \times \mathfrak{R}^{m-l}\) by
\[
\phi(e, x, p)=\left(\sum_{i=1}^{m} x_{i}-\sum_{i=1}^{m} e_{i},\left\langle, x_{1}\right\rangle-\left\langle p, x_{m-1}\right\rangle-\left\langle p, e_{m-1}\right\rangle\right) .
\]

Clearly if \(\phi(e, x, p)=\underline{0}\) then \(x \in Y(e)\) and \(x_{i} \in B_{i}(p)\) for each \(i\). But \(\underline{0}\) is of codimension \(n+m-1\) in \(\Re^{n} \times \Re^{m-1}\); thus \(\phi^{-1}(\underline{0})\) is of the same codimension in \(X^{2 m} \times \Delta\). Thus \(\operatorname{dim}\left(X^{2 m} \times \Delta\right)-\operatorname{dim} \phi^{-1}(\underline{0})=n+m-1\) and \(\operatorname{dim} \phi^{-1}(\underline{0})=\) \(2 n m+(n-1)-(n+m-1)=2 m n-m\) (giving the dimension of \(\Gamma\) ). In a similar fashion, for \((x, p) \in \Sigma(e), \phi(e, x, p)=0\), and so
\[
\operatorname{dim}\left(X^{m} \times \Delta\right)-\operatorname{dim} \phi^{-} 1(\underline{0})=n+m-1
\]

Thus \(\Sigma(e)\) is a submanifold of \(X^{m} \times \Delta\) of dimension
\[
n m+(n-1)-(n+m-1)=m n-m
\]

Finally define \(Z_{u}=\left\{(e, x, p) \in \Gamma: \psi_{u}(x, p) \in I\right\}\). For each \(u \in U, Z_{u}\) is a submanifold of \(X^{2 m} \times \Delta\) of dimension \(m n\).

To see this, let \(f_{u}(e, x, p)=\psi_{u}(x, p)\). Then
\[
f_{u}: \Gamma \rightarrow X^{m} \times X^{m} \times \Delta \rightarrow X^{m} \times \Delta \xrightarrow{\psi_{u}} \Delta^{m+1} .
\]

As we observed for all \(u \in U, \psi_{u}\), is transversal to \(I\) in \(\Delta^{m+1}\). But the codimension of \(I\) in \(\Delta^{m+1}\) is \(m(n-1)\). Since \(f_{u}\) will be transversal to \(I\),
\[
\operatorname{dim}(\Gamma)-\operatorname{dim}\left(f_{u}^{-1}(I)\right)=m(n-1)
\]

Hence \(\operatorname{dim}\left(f_{u}^{-1}(I)\right)=m n\). Clearly \(Z_{u}=f_{u}^{-1}(I)\).
Thus for all \(u \in U\), the Debreu projection \(\pi: Z_{u} \rightarrow X^{m}\) will be a \(C^{1}\) map between manifolds of dimension \(m n\). The Morse Sard Theorem gives the result.

Thus we have shown that for each smooth profile \(u\) in an open dense set \(U\), there exists an open dense set \(V\) of initial endowments such that \((e, u)\) is a regular economy for all \(e \in V\).

The result is also related to the existence of a demand function for an economy. A demand function for \(i\) (with utility \(u_{i}\) ) is the function
\[
f_{i}: \Theta \times \Re_{+} \rightarrow X
\]
where \(f_{i}(p, I)\) is that \(x_{i} \in X\) which maximizes \(u_{i}\) on
\[
B_{i}(p, I)=\{x \in X:\langle p, x\rangle=I\} .
\]

Now define \(\phi_{i}: X \rightarrow \Delta \times \mathfrak{R}_{+}\)by \(\phi_{i}(x)=\left(D^{*} u_{i}(x),\left\langle D^{*} u_{i}(x), x\right\rangle\right)\).
But the optimality condition is precisely that \(D^{*} u_{i}(x)=p\) and \(\left\langle D^{*} u_{i}(x), x\right\rangle=\) \(\langle p, x\rangle=I\). Thus when \(\phi_{i}\) has maximal rank, it is locally invertible (by the inverse function theorem) and so locally defines a demand function.

On the other hand if \(f_{i}\) is a \(C^{1}\)-function then \(\phi_{i}\) must be locally invertible (by \(f_{i}\) ). If this is true for all the agents, then \(\psi_{u}: X^{m} \times \Delta \rightarrow \Delta^{m+1}\) must be transversal to \(I\). Consequently if \(u=\left(u_{1}, \ldots, u_{m}\right)\) is such that each \(u_{i}\) defines a \(C^{1}\)-demand function \(f_{i}: \Delta \times \mathfrak{R}_{+} \rightarrow X\) then \(u \in U\), the open dense set of the regular economy theorem.


As a final note suppose that \(u \in U\) and \(e\) is a critical value of the Debreu projection. Then it is possible that \(\pi^{-1}(e)=e \times W\) where \(W\) is a continuum of Walrasian equilibria. Another possibility is that there is a continuum of singular or catastrophic endowments \(C\), so that as the endowment vector crosses \(C\) the number of Walrasian equilibria changes suddenly. As we discussed in §4.4, at a "catastrophic" endowment, stable and unstable Walrasian equilibria may merge (see Balasko, 1975).

Another question is whether for every smooth profile, \(u\), and every endowment 548 vector, \(e\), there exists a Walrasian equilibrium \((x, p)\). This is equivalent to the 549 requirement that for every \(u\) the projection \(Z_{u} \rightarrow X^{m}\) is onto \(X^{m}\).

In this case for each \(e \in X^{m}\) there will exist some \((e, x, p) \in Z_{u}\). This is clearly necessary if there is to exist a market clearing price equilibrium \(p\) for the economy (e, u).

The usual general equilibrium arguments to prove existence of a market clearing price equilibrium typically rely on convexity properties of preference (see Chapter 3). However weaker assumptions on preference permit the use of topological arguments to show the existence of an extended Walrasian equilibrium (where only the first order conditions are satisfied).

When the market-clearing price equilibrium does exist, it is useful to consider a price adjustment process (or "auctioneer") to bring about equilibrium.

\subsection*{5.4 Economic Adjustment and Excess Demand}

To further develop the idea of a demand function and price adjustment process, we consider the following famous example of Scarf (1960).

Example 5.5. There are three individuals \(i \in M=\{1,2,3\}\) and three commodities. Agent \(i\) has utility \(u_{i}\left(x_{1}^{i}, x_{2}^{i}, x_{3}^{i}\right)=\min \left(x_{i}^{i}, x_{j}^{i}\right)\) where \(x^{i}=\left(x_{1}^{i}, x_{2}^{i}, x_{3}^{3}\right) \in\) \(\Re_{+}^{3}\) is the \(i^{\text {th }}\) commodity space.

At income \(I\), and price vector \(p=\left(p_{1}, p_{2}, p_{3}\right), i\) demands equal amounts of \(x_{i}^{i}, x_{j}^{j}\) and zero of \(x_{k}^{i}\) : thus \(\left(p_{i}+p_{j}\right) x=I\), so \(x_{i}^{i}=I\left(p_{i}+p_{j}\right)^{-1}=x_{j}^{i}\).

Suppose the initial endowment \(e_{i}\) of agent \(i\) is 1 unit of the \(i^{t h}\) good, and nothing of the \(j^{\text {th }}\) and \(k^{t h}\). Then \(I=p_{i}\) and so \(i^{\prime} s\) demand function \(f_{i}\) has the form \(f_{i}(p)=\left(f_{i i}(p), f_{i j}(p), f_{i k}(p)\right)=\left(\frac{p_{i}}{p_{i}+p_{j}}, \frac{p_{i}}{p_{i}+p_{j}} 0\right) \in \mathfrak{R}^{3}\).

The excess demand function by \(i\) is \(\xi_{i}(p)=f_{i}(p)-e_{i}\).
Since \(e_{i}=\left(e_{i i}, e_{i j}, e_{i k}\right)=(1,0,0)\) this gives
\[
\xi_{i}(p)=\left(\frac{-p_{j}}{p_{i}+p_{j}}, \frac{p_{i}}{p_{i}+p_{j}}, 0\right)=\left(\xi_{i i}, \xi_{i j}, \xi_{i k}\right)
\]

Suppose now the other two consumers are described by cyclic permutation of subscripts, e.g., \(j\) has 1 unit of the \(j^{t h}\) good and utility \(u_{j}\left(x_{j}^{j}, x_{k}^{j}, x_{i}^{j}\right)=576\) \(\min \left(x_{j}^{j}, x_{k}^{j}\right)\), etc., then the total excess demand at \(p\) is
\[
\xi(p)=\sum_{i=1}^{3} \xi_{i}(p) \in \mathfrak{R}^{3}
\]

For example, the excess demand in commodity \(j\) is:
\[
\xi_{j}=\xi_{1 j}+\xi_{2 j}+\xi_{3 j}=\frac{p_{i}}{p_{i}+p_{j}}-\frac{p_{k}}{p_{j}+p_{k}} .
\]

Since each \(i\) chooses \(f_{i}(p)\) to maximize utility subject to \(\left\langle p_{1}, f_{i}(p)\right\rangle=I\left\langle p, e_{i}\right\rangle\) we expect \(\sum_{i=1}^{3}\left\langle, f_{i}(p)-r_{i}\right\rangle=0\).

To see this note that
\(\langle p, \xi(p)\rangle\)
\(=\left\langle p,\left(\frac{p_{3}}{p_{3}+p_{1}}-\frac{p_{2}}{p_{1}+p_{2}}, \frac{p_{1}}{p_{1}+p_{2}}-\frac{p_{3}}{p_{2}+p 3}, \frac{p_{2}}{p_{2}+p_{3}}-\frac{p_{1}}{p_{1}+p_{3}}\right)\right\rangle\)
\(=0\).

The equation \(\langle p, \xi(p)\rangle=0\) is known as Walras' Law. To interpret it, suppose we let \(\Delta\) be the simplex in \(\Re^{3}\) of price vectors such that \(\|p\|=1\), and \(p_{i}>0\). Walras' Law says that the excess demand vector \(\xi(p)\) is orthogonal to the vector \(p\). In other words \(\xi(p)\) may be thought of as a tangent vector in \(\Delta\). (This is easier to see if we identify \(\Delta\) with a quadrant of the sphere, \(S^{2}\).)

We may therefore consider a price adjustment process, which changes the price
vector \(p(t)\), at time \(t\) by the differential equation \(\frac{d p(t)}{d t}=\xi(p) \quad(*)\).
\(\qquad\)

This adjustment process is a vector field on \(\Delta\) : that is at every \(p\) there exists a rule that changes \(p(t)\) by the equation \(\frac{d p(t)}{d t}=\xi(p)\).

If at a vector \(p^{*}\), the excess demand \(\xi\left(p^{*}\right)=0\) then \(\left.\frac{d p(t)}{d t}\right|_{p} ^{*}=0\), and the price adjustment process has a stationary point. The flow on \(\Delta\) can be obtained by integrating the differential equation. It is easy to see that if \(p^{*}\) satisfies \(p_{1}^{*}=p_{2}^{*}=p_{3}^{*}\) then \(\xi\left(p^{*}\right)=0\), so there clearly is a price equilibrium where excess demand is zero.

The price adjustment equation \((*)\) does not result in a flow into the price equilibrium.

To see this, compute the scalar product
\(\left\langle\left(p_{2} p_{3}, p_{1} p_{3}, p_{1} p_{2}\right), \xi(p)\right\rangle=-p_{3} \frac{\left(p_{1}^{2}-p_{2}^{2}\right)}{p_{1}+p_{2}}+p_{2} \frac{\left(p_{3}^{2}-p_{1}^{2}\right)}{p_{1}+p_{3}}+p_{1} \frac{\left(p_{1}^{2}-p_{3}^{2}\right)}{p_{2}+p_{3}}\)
\(=p_{3}\left(p_{1}-p_{2}\right)+p_{2}\left(p_{3}-p_{1}\right)+p_{1}\left(p_{2}-p_{1}\right)\)
\(=0\).
But if \(\xi(p)=\frac{d p}{d t}\) then we obtain \(p_{2} p_{3} \frac{d p}{d t}+p_{1} p_{2} \frac{d p}{d t}=0\).
The obvious solution to this equation is that \(p_{1}(t) p_{2}(t) p_{3}(t)=\) constant.
In other words when the adjustment process satisfies \((*)\) then the price vector
\(p\) (regarded as a function of time, \(t\),) satisfies the equation \(p_{1}(t) p_{2}(t) p_{3}(t)=603\) constant. The flow through any point \(p=\left(p_{1}, p_{2}, p_{3}\right)\), other than the equilibrium price vector \(p^{*}\), is then homeomorphic to a circle \(S^{1}\), inside \(\Delta\).

Just to illustrate, consider a vector \(p\) with \(p_{3}=0\).
Then \(\xi(p)=\left(\frac{-p_{2}}{p_{1}+p_{2}}, \frac{p_{1}}{p_{1}+p_{2}}, 0\right)\).
Because we have drawn the flow on the simplex \(\Delta=\left\{p \in \mathfrak{R}_{+}^{3}: \sum p_{i}=1\right\}\) the flow \(\frac{d p}{d t}(t)=\xi(p)\) is discontinuous in \(p\) at the three vertices of \(\Delta\).

However in the interior of \(\Delta\) the flow is essentially circular (and anticlockwise) See Figure 5.7.

To examine the nature of the flow given by the differential equation \(\frac{d p}{d t}(t)=\) Since \(p^{*} \in \Delta\), we may choose \(p^{*}=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)\).

Then
\[
\begin{aligned}
\frac{d L}{d t} & =\sum_{i=1}^{3}-\left(p_{i}(t)-p_{i}^{*}\right) \frac{d_{p i}}{d t} \\
& =\sum_{i=1}^{3} \xi_{i}(p(t)) p_{i}(t)-\sum_{i=1}^{3} p_{i}^{*} \xi_{i}(p(t)) \\
& =-\frac{1}{3} \sum_{i=1}^{3} \xi_{i}(p(t))
\end{aligned}
\]

Fig. 5.7 Flow on the price simplex.

(This follows since \(\langle p, \xi(p)\rangle=0\).)
If \(\xi_{i}(p(t))>0\) for \(i=1,2,3\) then \(\frac{d l}{d t}<0\) and so the Lyapunov distance \(L(p(t))\) of \(p(t)\) from \(p^{*}\) decreases as \(t \rightarrow \infty\). In other words if \(\delta p(t)=p(t)-p^{*}\) then the distance \(\|\delta p(t)\| \rightarrow 0\) as \(t \rightarrow \infty\). The equilibrium \(p^{*}\) is then said to be stable.

If on the contrary \(\left.\xi_{( } p(t)\right)<0 \forall i\), then \(\frac{d L}{d t}>0\) and \(\|\delta p(t)\|\) increases as \(t \rightarrow \infty\). In this case \(p^{*}\) is called unstable.

However it is easy to show that the equilibrium point \(p^{*}\) is neither stable nor unstable. To see this consider the price vector \(p(t)=\left(\frac{2}{3}, \frac{1}{6}, \frac{1}{6}\right)\). It is then easy to show that \(\xi=\left(0, \frac{3}{10}, \frac{-3}{10}\right)\) so the flow through \(p\) (locally) keeps the distance \(L(p(t))\) constant. To see how \(L(p(t))\) behaves near \(p(t)\), consider the points \(p(t-\) \(\delta t)=\left(\frac{2}{3}, \frac{1}{6}-\frac{1}{20}, \frac{1}{6}+\frac{1}{10}\right)\) and \(p(t+d t)=\left(\frac{2}{3}, \frac{1}{6}+\frac{1}{10}, \frac{1}{6}-\frac{1}{10}\right)\). After some easy arithmetic we find that \(\xi(t-\delta t)=(0.195,0.409,-0.814)\) so that \(\|\delta p(t-\delta t)\|\) is increasing at \(p(t-\delta t)\). On the other hand \(\xi(t+\delta t)=(-0.195,0.814,-0.409) 629\) so \(\|\delta p(t+\delta t)\|\) is decreasing at \(p(t+\delta t)\). In other words the total excess demand \(\sum_{i=1}^{3} \xi_{i}(p(t))\) oscillates about zero as we transcribe one of the closed orbits, so the distance \(\|(\delta p(t) \|\) increases then decreases.

The Scarf Example gives a way to think more abstractly about the process of price adjustment in an economy.

As we have observed, the differential equation \(\frac{d p}{d t}=\xi(p)\) on \(\Delta\) defines a flow in \(\Delta\). That is if we consider any point \(p^{0} \in \Delta\) and then solve the equation for \(p\), we obtain an "orbit"
\[
\left\{p(t) \in \Delta, t \in(-\infty, \infty) ; p(0)=p^{0} \text { and } d p=\xi(p(t))\right\}
\]
that commences at the point \(p(0)=p^{0}\), and gives the past and future trajectory. Because the differential equation has a unique solution, any point \(p_{0}\) can belong 640 to only one orbit. As we saw, each orbit in the example satisfies the equation \(p_{1}(t) \cdot p_{2}(t) \cdot p_{3}(t)=\) constant. The phase portrait of the differential equation is its collection of orbits.

The differential equation \(\frac{d p}{d t}=\xi(p)\) assigns to each point \(p \in \Delta\) a vector \(\xi(p) \in \Re^{n}\), and so \(\xi\) may be regarded as a function \(\xi: \Delta \rightarrow \Re^{n}\). In fact \(\xi\) is a continuous map except at the boundary of \(\Delta\). This discontinuity only occurs because \(\Delta\) itself is not smooth at its vertices. If we ignore this boundary feature, then we may

write \(\xi \in C_{0}\left(\Delta, \Re^{n}\right)\), where \(C_{0}\) as before stands for the set of continuous maps. In fact if we examine \(\xi\) as a function of \(p\) then it can be seen to be differentiable, so \(\xi \in C_{1}\left(\Delta, \Re^{n}\right)\). Obviously \(C_{1}\left(\Delta, \Re^{n}\right)\) has a natural metric and therefore the set \(C_{1}\left(\Delta, \Re^{n}\right)\) can be given the \(C_{1}\)-topology. A differential equation \(\frac{d p}{d t}=\xi(p)\) of this kind can thus be treated as an element of \(C_{1}\left(\Delta, \Re^{n}\right)\) in which case it is called a vector field. \(C_{1}\left(\Delta, \mathfrak{R}^{n}\right)\) with the \(C^{1}\)-topology is written \(C^{1}\left(\Delta, \mathfrak{R}^{n}\right)\) or \(\mathcal{V}^{1}(\Delta)\). We shall also write \(\mathcal{P}(\Delta)\) for the collection of phase portraits on \(\Delta\). Obviously, once the vector field, \(\xi\), is specified, then this defines the phase portrait, \(\tau(\xi)\), of \(\xi\).

In the example, \(\xi\) was determined by the utility profile \(u\) and endowment vector \(e \in \mathfrak{R}^{3 \times 3}\). As Figure 5.8 illustrates the profile u can be smoothed by rounding each \(u_{i}\) without changing the essence of the example.

\subsection*{5.5 Structural Stability of a Vector Field}

More abstractly then we can view the excess demand function \(\xi\) as a map from \(C^{s}\left(X, \Re^{m}\right) \times X^{m}\) to the metric space of vector fields on \(\Delta\) : that is
\[
\xi: C^{s}\left(X, \Re^{m}\right) \times X^{m} \rightarrow \mathcal{V}^{1}(\Delta)
\]

The genericity theorem given above implies that, in fact, there is an open dense set \(U\) in \(C^{s}\left(X, \Re^{m}\right)\) such that \(\xi\) is indeed a \(C^{1}\) vector field on \(\Delta\). Moreover \(\xi\) is an excess demand function obtained from the individual demand functions \(\left\{f_{i}\right\}\) as described above.

An obvious question to ask is how \(\xi\) "changes" as the parameters \(u \in C^{s}\left(X, \Re^{m}\right)\) and \(e \in X^{m}\) change. One way to do this is to consider small perturbations in a vector field \(\xi\) and determine how the phase portrait of \(\xi\) changes.


Fig. 5.9 Dissimilar phase portraits.

It should be clear from the Scarf example that small perturbations in the utility profile or in \(e\) may be sufficient to change \(\xi\) so that the orbits change in a qualitative way. If two vector fields, \(\xi_{1}\), and \(\xi_{2}\) have phase portraits that are homeomorphic, then \(\tau\left(\xi_{1}\right)\) and \(\tau\left(\xi_{2}\right)\) are qualitatively identical (or similar).

Thus we say \(\xi_{1}\) and \(\xi_{2}\) are similar vector fields if there is a homeomorphism \(h: \Delta \rightarrow \Delta\) such that each orbit in the phase portrait \(\tau\left(\xi_{1}\right)\) of \(\xi_{1}\) is mapped by \(h\) to an orbit in \(\tau\left(\xi_{2}\right)\).

As we saw in the Scarf example, each of the orbits of the excess demand function, \(\xi_{1}\), say, comprises a closed orbit (homeomorphic to \(S^{1}\) ). Now consider the vector field \(\xi_{2}\) whose orbits approach an equilibrium price vector \(p^{*}\). The phase portraits of \(\xi_{1}\) and \(\xi_{2}\) are given in Figure 5.9.

The price equilibrium in Figure 5.9(ii) is stable since \(\lim _{t \rightarrow \infty} p(t) \rightarrow p^{*}\). Obviously each of the orbits of \(\xi_{2}\) are homeomorphic to the half open interval \((-\infty, 0]\). Moreover \((-\infty, 0]\) and \(S^{1}\) are not homeomorphic, so \(\xi_{1}\) and \(\xi_{2}\) are not similar.

It is intuitively obvious that the vector field, \(\xi_{2}\) can be obtained from \(\xi_{1}\) by a "small perturbation", in the sense that \(\left\|\xi_{1}-\xi_{2}\right\|<\delta\), for some small \(\delta>0\). When there exists a small perturbation \(\xi_{2}\) of \(\xi_{1}\), such that \(\xi_{1}\) and \(\xi_{2}\) are dissimilar, then \(\xi_{1}\) is called structurally unstable. On the other hand, it should be plausible that, for any small perturbation \(\xi_{3}\) of \(\xi_{2}\) then \(\xi_{3}\) will have a phase portrait \(\tau\left(\xi_{3}\right)\) homeomorphic to \(\tau\left(\xi_{2}\right)\), so \(\xi_{2}\) and \(\xi_{3}\) will be similar. Then \(\xi_{2}\) is called structurally stable. Notice that structural stability of \(\xi_{2}\) is a much more general property than stability of the equilibrium point \(p^{*}\left(\right.\) where \(\left.\xi_{2}\left(p^{*}\right)=0\right)\).
All that we have said on \(\Delta\) can be generalised to the case of a smooth manifold \(Y\). So let \(\mathcal{V}^{1}(Y)\) be the topological space of \(C^{1}\)-vector fields on \(Y\) and \(\mathcal{P}(Y)\) the collection of phase portraits on \(Y\).

Definition 5.1. (1) Let \(\xi_{1}, \xi_{2} \in \mathcal{V}^{1}(Y)\). Then \(\xi_{1}\) and \(\xi_{2}\) are said to be similar (written \(\xi_{1} \sim \xi_{2}\) ) iff there is a homeomorphism \(h: Y \rightarrow Y\) such that an orbit \(\sigma\) is the phase portrait \(\tau\left(\xi_{1}\right)\) of \(\xi_{1}\) iff \(h(\sigma)\) is in the phase portrait of \(\tau\left(\xi_{2}\right)\).
(2) The vector field \(\xi\) is structurally stable iff there exists an open neighborhood \(V\) of \(\xi\) in \(\mathcal{V}^{1}(Y)\) such that \(\xi^{\prime} \sim \xi\) for all \(\xi^{\prime} \in V\).

Fig. 5.10 A Source

(3) A property \(K\) of vector fields in \(\mathcal{V}^{1}(2)\) is generic iff the set \(\left\{\xi \in \mathcal{V}^{1}(y): \xi\right.\) satisfies \(K\) \} is residual in \(\mathcal{V}^{1}(Y)\).
As before, a residual set, \(V\), is the countable intersection of open dense sets, and, when \(\mathcal{V}^{1}(Y)\) is a "Baire" space, \(V\) will itself be dense.

It was conjectured that structural stability is a generic property. This is true if the dimension of \(Y\) is 2, but is false otherwise (Smale's 1966, Peixoto 1962).

Before discussing the Peixoto-Smale Theorems, it will be useful to explore further how we can qualitatively "classify" the set of phase portraits on a manifold \(Y\). The essential feature of this classification concerns the nature of the critical or singularity points of the vector field on \(Y\) and how these are constrained by the topological nature of \(Y\).

Example 5.6. Let us return to the example of the torus \(Z=S^{1} \times S^{1}\) examined in Example 5.4. We defined a height function \(f: Z \rightarrow \Re\) and considered the four critical points \(\{s, t, u, v\}\) of \(f\). TO remind the reader \(v\) was an index 2 critical point (a local maximum of \(f\) ). Near \(v, f\) could be represented as
\[
f\left(h_{1}, h_{2}\right)=f(v)-h_{1}^{2}-h_{2}^{2} .
\]

Now \(f\) defines a gradient vector field \(\xi\) where
\[
\xi\left(h_{1}, h_{2}\right)=-d f\left(h_{1}, h_{2}\right)
\]

Looking down on \(v\) we see the flow near \(v\) induced by \(\xi\) resembles Figure 5.10.
The field \(\xi\) may be interpreted as the law of motion under a potential energy field, \(f\), so that the system flows from the "source", \(v\), towards the "sink", \(s\), at the bottom of \(Z\).

Another way of characterizing the source, \(v\), is by what we can call the "degree" of \(v\). Imagine a small ball \(B^{2}\) around \(v\) and consider how the map \(g: S^{1} \rightarrow S^{1}\) : \(\left(h_{l}, h_{2}\right) \rightarrow \frac{\xi\left(h_{1}, h_{2}\right)}{\left\|\xi\left(h_{1}, h_{2}\right)\right\|}\) behaves as we consider points ( \(h_{1}, h_{2}\) ) on the boundary \(S^{1}\) of \(B^{2}\).

At point \(1, \xi\left(h_{1}^{\prime}, h_{2}^{\prime}\right)\) points "north" so \(1 \rightarrow 1^{\prime}\). Similarly at \(2,\left(\xi\left(h_{1}^{2}, h_{2}^{2}\right)\right.\) points east, so \(2 \rightarrow 2^{\prime}\). As we traverse the circle once, so does \(g\). The degree of \(g\) is +1 , and the degree of \(v\) is also +1 . However the saddle, \(u\), is of degree -1 .


Fig. 5.12 A Saddle.

At 1, the field points north, but at 2 the field points west, so as we traverse the circle on the left in a clockwise direction, we traverse the circle on the right in an anti-clockwise direction. Because of this change of orientation, the degree of \(u\) is -1 .

It can also easily be shown that the \(\operatorname{sink} s\) has degree +1 .
The rotation at \(s\) induced by \(g\) is clockwise. It can be shown that, in general, the Euler characteristic can be interpreted as the sum of the degrees of the critical points. Thus \(\chi(Z)=1-1-1+1\), since the degree at each of the two saddle points is -1 , and the degree at the source and sink is +1 .

Example 5.7. It is obvious that the flow for the Scarf example is not induced by a gradient vector field. If there were a function \(f: \Delta \rightarrow \Re\) satisfying \(\xi(p)=\) \(-d f(p)\), then the orbits of \(\xi\) would correspond to decreasing values of \(f\). As we saw however, there are circular orbits for \(\xi\). It is clearly impossible to have a circular flow such that \(f\) decreases round the circle. However the Euler characteristic still determines the nature of the zeros (or singularities) of \(\xi\).

First we compute the degree of the singularity \(p^{*}\) where \(\xi\left(p^{*}\right)=0\).


Fig. 5.13 A Sink.


Fig. 5.14

As we saw in Example 5.5, the orbits look like smoothed triangles homeomorphic to \(S^{1}\). Let \(S^{1}\) be a copy of the circle (see Figure 5.14). At \(1, g\) points west, while at \(2, g\) points northwest. At \(3, g\) points northeast, at \(4, g\) points east. Clearly the degree is +1 again.

As we showed, the Euler characteristic \(\chi(\Delta)\) of the simplex is +1 , and the degree of the only critical point \(p^{*}\) of the vector field \(\xi\) is +1 . This suggests that again there is a relationship between the Euler characteristic \(\chi(Y)\) of a manifold \(Y\) and the sum of the degrees of the critical points of any vector field \(\xi\) on \(Y\). One technical point should be mentioned, concerning the nature of the flow on the boundary of \(\Delta\). In the Scarf example the flow of \(\xi\) was "along" the boundary, \(\partial \Delta\), of \(\Delta\). In a real economy one would expect that as the price vector approaches the boundary \(\partial \Delta\) (so75 that \(p_{i} \rightarrow 0\) for some price pi ), then excess demand \(\xi_{i}\) for that commodity would 757 rapidly increase as \(\left(\xi_{i} \rightarrow \infty\right)\). This essentially implies that the vector field \(\xi\) would point towards the interior of \(\Delta\). So now consider perturbations of the Scarf example as in Figure 5.15.
In Figure 5.15(a) is a perturbation where one of the circular orbits (called \(S\) ) are


Fig. 5.15
a repellor; the closed orbit is an attractor, and the singularity point or zero, \(p^{*}\), is a source (or point repellor). In Figure 5.15(b) the flow is reversed. The closed orbit \(S\) is a repellor; \(p^{*}\) is a sink (or attractor), while \(\Delta \partial\) is an attractor. Now consider a copy \(\Delta^{\prime}\) of \(\Delta\) inside \(\Delta\) (given by the dotted line in Figure 5.15(b)). On the boundary of \(\Delta^{\prime}\) the flow points outwards. Then \(\chi\left(\Delta^{\prime}\right)\) is still 1 and the degree of \(p^{*}\) is still 1 . This illustrates the following theorem.

Poincaré-Hopf Theorem. Let \(Y\) be a compact smooth manifold with boundary \(\partial Y\). Suppose \(\xi \in \mathcal{V}^{1}(Y)\) has only a finite number of singularities, and points outwards on \(\partial Y\). Then \(\chi(Y)\) is equal to the sum of the degrees of the singularities of \(\xi\).

To apply this theorem, suppose \(\xi\) is the vector field given by the excess demand function. Suppose that \(\xi\) points towards the interior of \(\Delta\). Then the vector field ( \(-\xi\) ) points outward. By the Debreu-Smale Theorem, we can generically assume that \(\xi\) has (at most) a finite number of singularities. Since \(\chi(\Delta)=1\), there must be at least one singularity of \((-\xi)\) and thus of \(\xi\). Unfortunately this theorem does not allow us to infer whether or not there exists a singularity \(p^{*}\) which is stable (i.e., an attractor).
The Poincaré-Hopf Theorem can also be used to understand singularities of vector fields on manifolds without boundary. As we have suggested, the Euler characteristic of a sphere is 2 for the even dimensional case and 0 for the odd dimensional case. This gives the following result.

The "Hairy Bail" Theorem. Any vector field \(\xi\) on \(S^{2 n}\) (even dimension) must have a singularity. However there exists a vector field \(\xi\) on \(S^{2 n+1}\) (odd dimension) such that \(\xi(p)=0\) for no \(p \in S^{2 n+1}\).

To illustrate Figure 5.16 shows a vector field on \(S^{2}\) where the flow is circular on


A vector field \(v \in \mathcal{V}^{1}(\Delta)\) is dual to \(\xi\) iff \(v(p) \in \xi^{*}(p)\) for all \(p \in \operatorname{Int} \Delta\), and 852 \(v(p)=0\) iff \(\xi(p)=0\) for \(p \in \operatorname{Int} \Delta\). It may be possible to find a vector field, \(v,{ }_{853}\) dual to \(\xi\) which has attractors. Suppose that \(v\) is dual to \(\xi\), and that \(f: \Delta \rightarrow \Delta\) is induced by \(v\). As we have seen, the Lefschetz number of \(f\) gives information about the singularities of \(v\).
Dierker (1972) essentially utilized the following hypothesis: there exists a dual vector field, \(v\), and a function \(f: \Delta \rightarrow \Delta\) induced by \(v\) such that \(f=f_{0}\) is homotopic to the constant map \(f_{1}: \Delta \rightarrow\left\{\left(\frac{1}{n}, \ldots, \frac{1}{n}\right)\right\}\) such that \(\{p \in \Delta\) \(f_{t}(p)=p\) for \(\left.t \in[0,1]\right\}\) is compact. Under the assumption that the economy is regular (so the number of singularities of \(\xi\) is finite), then he showed that the number of such singularities must be odd. Moreover, if it is known that \(\xi\) only has stable singularities, then there is only one. The proof of the first assertion follows by observing that \(\lambda\left(f_{0}\right)=\lambda\left(f_{1}\right)\). But \(f_{1}\) is the constant map on \(\Delta\) so \(\lambda\left(f_{1}\right)=1\). Moreover \(\lambda\left(f_{0}\right)\) is equal to the sum of the degrees of the singularities of \(v\), and Dierker shows that at each singularity of \(v\), the degree is \(\pm 1\). Consequently the number of singularities must be odd. Finally if there are only stable singularities, each has degree +1 , so it must be unique.
Example 5.11. As a further application of the Lefschetz obstruction, sup pose, contrary to the usual assumption that negative prices are forbidden, that \(p \in S^{n-1}\) rather than \(\Delta\). It is natural to suppose that \(\xi(p)=\xi(-p)\) for any \(p \in S^{n-1}\). Suppose now that \(\xi(p)=0\) for no \(p \in S^{n-1}\). This defines an (even) spherical map \(g: S^{n-1} \rightarrow S^{n-1}\) by \(g(p)=\xi(p) /\|\xi(p)\|\). Thus \(g(p)=g(-p)\). The degree \((\operatorname{deg}(g))\) of such a \(g\) can readily be seen to be an even integer, and it follows that the Lefschetz obstruction of \(g\) is \(\lambda(g)=1+(-1)^{n-1} \operatorname{deg}(g)\).
Clearly \(\lambda(g) \neq 0\) and so \(g\) has a fixed point \(\bar{p}\) such that \(g(\bar{p})=\bar{p}\). But then \(\xi(p)=\alpha p\) for some \(\alpha>0\). This violates Walras' Law, since \(\langle p, \xi(p)\rangle=\alpha\|p\|^{2} \neq\) 0 , so \(\xi(p)=0\) for some \(p \in S^{n-1}\). Keenan (1992) goes on to develop some of the earlier work by Rader (1972) to show, in this extended context, that for generic, regular economies there must be an odd number of singularities.
The above examples have all considered flows on the simplex or the sphere. To 88 return to the idea of structural stability, let us consider once again examples of a vector field on the torus.
Example 5.12. (1) For a more interesting deformation of the torus \(Z=S^{1} \times S^{1}\), consider Figure 5.17.
The closed orbit at the top of the torus is a repellor, \(R\), say. Any flow starting 886 near to \(R\) winds towards the bottom closed orbit, \(A\), an attractor. There are no 887 singularities, and the induced deformation is fixed point free.
(2) Not all flows on the torus \(Z\) need have closed orbits. Consider the flow on \(Z\) given in Figure 5.18. If the tangent of the angle, \(\theta\), is rational, then the orbit through \(x\) is closed, and will consist of a specific number of turns round \(Z\). However suppose this flow is perturbed. There will be, in any neighborhood of \(\theta\), an irrational angle. The orbits of an irrational flow will not close up. To relate this to the Peixoto Theorem which follows, with rational flow there
\(\qquad\)

Fig. 5.17


Fig. 5.18

will be an infinite number of closed orbits. However the phase portrait for rational flow cannot be homeomorphic to the portrait for irrational flow. Thus any perturbations of rational flow gives a non-homeomorphic irrational flow. Clearly any vector field on the torus which gives rational flow is structurally unstable. unstable.

\section*{Structural Stability Theorem.}
1. If \(\operatorname{dim} Y=2\) and \(Y\) is compact, then structural stability of vector fields on \(Y\) is generic.
2. If \(\operatorname{dim} Y \geq 3\), then structural stability is non-generic.

Peixoto (1962) proved part (1) by showing that structurally stable vector fields on compact \(Y\) (of dimension 2) must satisfy the following properties:
(1) there are a finite number of non-degenerate isolated singularities (that is, critical points which can be sources, sinks, or saddles)


Fig. 5.19
(2) there are a finite number of attracting or repelling closed orbits
(3) every orbit (other than closed orbits) starts at a source or saddle, or winds away from a repellor and finishes at a saddle or sink, or winds towards an attractor
(4) no orbit connects saddle points.

Peixoto showed that for any vector field \(\xi\) on \(Y\) and any neighborhood \(V\) of \(\xi\) in 912 \(\mathcal{V}^{1}(Y)\) there was a vector field \(\xi^{\prime}\) in \(V\) that satisfied the above four conditions and thus was structurally stable.

Although we have not carefully defined the terms used above, they should be intuitively clear. To illustrate, Figure 5.19(i) shows an orbit connecting saddles, while Figure 5.19 (ii) shows that after perturbation a qualitatively different phase portrait is obtained

In Figure 5.19(i), \(A\) and \(B\) are connected saddles, \(C\) is a repellor (orbits startingnear to \(C\) leave it) and \(D\) is a closed orbit. A small perturbation disconnects \(A\) and920 \(B\) as shown in Figure 5.19(ii), and orbits starting near to \(D\) (either inside or outside) approach \(D\), so it is an attractor.
The excess demand function, \(\xi\), of the Scarf example clearly has an infinite number of closed orbits (all homeomorphic to \(S^{1}\) ). Thus \(\xi\) cannot be structurally stable. From Peixoto's Theorem, small perturbations of \(\xi\) will destroy this feature. As we suggested, a small perturbation may change \(\xi\) so that \(p^{*}\) becomes a stable equilibrium (an attractor) or an unstable equilibrium (a repellor).

Smale's (1966) proof that structural stability was non-generic in three or more
that for a neighborhood \(V\) of \(\xi\) in \(\mathcal{V}^{1}(y)\), no \(\xi^{\prime}\) in \(V\) was structurally stable. In 931 other words every ' when perturbed led to a qualitatively different phase portrait. We could say that \(\xi\) was chaotic. Any attempt to model \(\xi\) by an approximation \(\xi^{\prime}\), and its ramifications will be discussed in general terms in the next section. The consequence for economic theory is immediate, however. Since it can be shown that any excess demand function \(\xi\) and thus any vector field can result from an economy, \((u, e)\), it is possible that the price adjustment process is chaotic.
As we observed after Example 5.7, an economically realistic excess demand function \(\xi\) on \(\Delta\) should point into the price simplex at any price vector on \(\partial \Delta\). This follows because if \(p_{i} \rightarrow 0\) then \(\xi_{i}\) would be expected to approach \(\infty\). Let \(\mathcal{V}_{0}^{1}(\Delta)\) be the topological space of vector fields on \(\Delta\), of the form \(\left.\frac{d p}{d t}\right|_{p}=\xi(p)\), such that \(\left.\frac{d p}{d t}\right|_{p}\) points into the interior of \(\Delta\) for \(p\) near \(\partial \Delta\).
The Sonnenschein-Mantel-Debreu Theorem. The map
\(\quad \xi: C^{s}\left(X, \Re^{m}\right) \times X^{m} \rightarrow \mathcal{V}_{0}^{1}(\Delta)\)
is onto if \(m \geq n\).
Suppose that there are at least as many economic agents \((m)\) as commodities Then it is possible to construct a well-behaved economy ( \(u, e\) ) with monotonic strictly convex preferences induced from smooth utilities, and an endowment vector \(e \in X^{m}\), such that any vector field in \(\mathcal{V}_{0}^{1}(\Delta)\) is generated by the excess demand function for the economy \((u, e)\).
Versions of the theorem were presented in Sonnenschein (1972), Mantel (1974) and Debreu (1974). A more recent version can be found in Mas-Colell (1985). As we have discussed in this section, because the simplex \(\Delta\) has \(\chi(\Delta)=1\), then the "excess demand" vector field \(\xi\) will always have at least one singularity. In fact, from the Debreu-Smale theorem, we expect \(\xi\) to generically exhibit only a finite number of singularities. Aside from these restrictions, \(\xi\), is essentially unconstrained. If there are at least four commodities (and four agents) then it is always possible to construct \((u, e)\) such that the vector field induced by excess demand is "chaotic".
As we saw in Section 5.4, the vector field \(\xi\) of the Scarf example was structurally unstable, but any perturbation of \(\xi\) led to a structurally stable field \(\xi^{\prime}\), say, either with an attracting or repelling singularity. The situation with four commodities is potentially much more difficult to analyze. It is possible to find \((u, e)\) such that the induced vector field \(\xi\) on \(\Delta\) is chaotic-in some neighborhood \(V\) of \(\xi\) there is no structurally stable field. Any attempt to model \(\xi\) by \(\xi^{\prime}\), say, must necessarily incorporate some errors, and these errors will multiply in some fashion as we attempt to map the phase portrait. In particular the flow generated by \(\xi\) through some point \(x \in \Delta\) can be very different from the flow generated by \(\xi^{\prime}\) through \(x\). This phenomenon has been called "sensitive dependence on initial conditions."

Jupiter, Saturn perhaps, on the Mars orbit. The calculations would give a prediction ..... 1010
very close to the actual orbit. Using the approximations, the planetary orbits could ..... 1011
be computed far into the future, giving predictions as precise as calculating ability ..... 1012
permitted. Without convergence, it would be impossible to make predictions with ..... 1013
any degree of certainty. Laplace in his work "Mécanique Céleste" (published ..... 1014
between 1799 and 1825) had argued that the solar system (viewed as a formal ..... 1015
dynamical system) is structurally stable (in our terms). Consistent with hi view was ..... 1016the use of successive approximations to predict the perihelion (a point nearest the
sun) of Haley's comet, in 1759 , and to infer the existence and location of Neptune ..... 1018in 1846.1019
Structural stability in the three-body problem (of two planets and a sun) was the ..... 1020
obvious first step in attempting to prove Laplace's assertion. In 1885 a prize was ..... 1021
announced to celebrate the King of Sweden's birthday. Henri-Poincaré submitted ..... 1022his entry "Sur le problème des trois corps et les Equations de la Dynamique." 1023This attempted to prove structural stability in a restricted three body problem.The prize was won by Poincaré's entry, although it was later found to contain anerror. Poincaré had obtained his doctorate in mathematics in Paris in 1878, hadbriefly taught at Caen and later became professor at Paris. His work on differentialequations in the 1880's and his later work on Celestial Mechanics in the 1890'sdeveloped new qualitative techniques (in what we now call differential topology) tostudy dynamical equations.
In passing it is worth mentioning that since there is a natural periodicity to anyrotating celestial system, the state space in some sense can be viewed as productsof circles (that is tori). Many of the examples mentioned in the previous section,such as periodic (rational) or a-periodic (non-rational) flow on the torus came upnaturally in celestial mechanics.1035
One of the notions implicitly emphasized in the previous sections of this chapter ..... 1036
is that of bifurcation: namely a dynamical system on the boundary separating ..... 1037
qualitatively different systems. At such a bifurcation, features of the system separate ..... 1038out in pairs. For example, in the Debreu map, a birfurcation occurs when two of theprice equilibria coalesce. This is clearly linked to the situation studied by Dierker,where the number of price equilibria (in \(\Delta\) ) is odd. At a bifurcation, two equilibriawith opposite degrees coalesce. In a somewhat similar fashion Poincaré showedthat, for the three-body problem, if there is some value \(\mu_{0}\) (of total mass, say) suchthat periodic solutions exist for \(\mu \leq \mu_{0}\) but not for \(\mu>\mu_{0}\), then two periodicsolutions must have coalesced at \(\mu_{0}\). However Poincaré also discovered that thebifurcation could be associated with the appearance of a new solution with period1039104010411042104310441045double that of the original. This phenomenon is central to the existence of a period-1046
doubling cascade as one of the characteristics of chaos. Near the end of his Celestial1047
Mechanics, Poincaré writes of this phenomenon: ..... 1049
"Neither of the two curves must ever cut across itself, but it must bend back ..... 1050upon itself in a very complex manner an infinite number of times.... Nothing is 10511051
more suitable for providing us with an idea of the complex nature of the three body
Although Poincaré was led to the possibility of chaos in his investigations into the solar system, it appears that the system is in fact structurally stable. Arnol'd showed in 1963 that for a system with small planets, there is an open set of initial conditions leading to bounded orbits for all time. Computer simulations of the system far into time also suggests it is structurally stable. \({ }^{3}\) Even so, there are events in the system that affect us and appear to be chaotic (perhaps catastrophic would be a more appropriate term). The impact of large asteroids may have a dramatic effect on the biosphere of the earth, and these have been suggested as a possible cause of mass extinction. The onset and behavior of the ice ages over the last 100,000 years is very possibly chaotic, and it is likely that there is a relationship between these violent climatic variations and the recent rapid evolution of human intelligence. \({ }^{4}\)

More generally, evolution itself is often perceived as a gradient dynamical process, leading to increasing complexity. However Stephen Jay Gould has argued over a number of years that evolution is far from gradient-like: increasing complexity coexists with simple forms of life, and past life has exhibited an astonishing variety. \({ }^{5}\) Evolution itself appears to proceed at a very uneven rate. \({ }^{6}\)
"Empirical" chaos was probably first discovered by Edward Lorenz in his efforts to numerically solve a system of equations representative of the behavior of weather. \({ }^{7}\) A very simple version is the non-linear vector equation
\[
\frac{d x}{d t}=\left(\begin{array}{l}
d x_{1} \\
d x_{2} \\
d x_{3}
\end{array}\right)=\left(\begin{array}{l}
-a\left(x_{1}-x_{2}\right) \\
-x_{1} x_{3}+a_{2} x_{1}-x_{2} \\
x_{1} x_{2}-a_{3} x_{3}
\end{array}\right)
\]
which is chaotic for certain ranges of the three constants, \(a_{1}, a_{2}, a_{3}\).
The resulting "butterfly" portrait winds a number of times about the left hole (A in Figure 5.20), then about the right hole (B), then the left, etc. Thus the phase prortrait can be described by a sequence of winding numbers ( \(w_{l}^{1}, w_{k}^{1}, w_{l}^{2}, w_{k}^{2}\), etc.) Changing the constants \(a_{1}, a_{2}, a_{3}\) slightly changes the winding numbers.
\({ }^{2}\) My observations and quotations are taken from D. Goroff's introduction and the text of a recent ledition of Poincaré's New Methods of Celestial Mechanics, (1993) American Institute of Physics New York.
\({ }^{3}\) See I. Peterson, Newton's Clock: Chaos in the Solar System (1993) Freeman: New York. \({ }^{4}\) See W. H. Calvin, The Ascent of Mind. Bantam: New York.
\({ }^{5}\) S. J. Gould, Full House (1996) Harmony Books: New York; S. J. Gould, Wonderful Life (1989) Norton: New York.
\({ }^{6}\) N. Eldredge and S. J. Gould, "Punctuated Equilibria: An Alternative to Phyletic Gradualism," in Models in Paleobiology (1972), T. J. M. Schopf, ed. Norton: New York.
\({ }^{7}\) E. N. Lorenz, "The Statistical Prediction of Solutions of Dynamical Equations," Proceedings Int. Symp. Num. Weather Pred (1962) Tokyo; E. N. Lorenz "Deterministic Non Periodic Flow," J Atmos Sci (1963): 130-141.

Fig. 5.20 The Butterfly.


Given that chaos can be found in such a simple meteorological system, it is worthwhile engaging in a thought experiment to see whether "climatic" choas is a plausible phenomenon. Weather occurs on the surface of the earth, so the spatial context is \(S^{2} \times I\), where \(I\) is an interval corresponding to the depth of 1081 the atmosphere. As we know, \(\chi\left(S^{2}\right)=\chi\left(S^{2} \times I\right)=2\) so we would expect singularities. Secondly there are temporal periodicities, induced by the distance from the sun and earth's rotation. Thirdly there are spatial periodicities or closed orbits. Chief among these must be the jet stream and the oceanic orbit of water from the southern hemisphere to the North Atlantic (the Gulf Stream) and back. The most interesting singularities are the hurricanes generated each year off the coast of Africa and channeled across the Atlantic to the Caribbean and the coast of the U.S.A. Hurricanes are self-sustaining heat machines that eventually dissipate if they cross land or cool water. It is fairly clear that their origin and trajectory is chaotic.1083

Perhaps we can use this thought experiment to consider the global economy. First

It is evident enough that the general equilibrium (GE) emphasis on the existence
Remember, it is a key assumption of GE that agents' preferences are defined on 1107 the commodity space alone. If, on the contrary, these are defined on commodities and prices, then it is not obvious that the assumptions of the Ky Fan Theorem (cf., Chapter 3) can be employed to show existence of a price equilibrium. Indeed manipulation of the kind described in Chapter 4 may be possible. More generally one can imagine energy engines (very like hurricanes) being generated in asset markets, and sustained by self-reinforcing beliefs about the trajectory of prices. It is true that modern decentralised economies are truly astonishing knowledge or dataprocessing mechanisms. From the perspective of today, the argument that a central planning authority can be as effective as the market in making "rational" investment decisions appears to have been lost. Hayek's case, the so-called "calculation' argument, with von Mises and against Lange and Schumpeter, was based on the observation that information is dispersed throughout the economy and is, in any case, predominantly subjective. He argued essentially that only a market, based on individual choices, can possibly "aggregate" this information. \({ }^{8}\)
Recently, however, theorists have begun to probe the degree of consistency or convergence of beliefs in a market when it is viewed as a game. It would seem that when the agents "know enough about each other", then convergence in beliefs is a consequence. \({ }^{9}\)
In fact the issue about the "truth-seeking" capability of human institutions is very old and dates back to the work of Condorcet. \({ }^{10}\) Nonetheless it is possible for belief cascades or bubbles to occur under some circumstances. \({ }^{11}\) It is obvious enough that economists writing after the Great Crash of the 1930's might be more willing than those writing today to consider the possibility of belief cascades and collapse. John Maynard Keynes' work on The General Theory of Employment, Interest and Money (1936) was very probably the most influential economic book of the century. What is interesting about this work is that it does appear to have grown out of work that Keynes did in the period 1906 to 1914 on the foundation of probability, and that eventually was published as the Treatise on Probability (1921). In the Treatise, Keynes viewed probability as a degree of belief. He also wrote: "The old assumptions, that all quantity is numerical and that all quantitative characteristics are additive, can no longer be sustained. Mathematical reasoning now appears as an aid in its symbolic rather than its numerical character. I, at any rate, have not the
\({ }^{8}\) See F. A. Hayek, "The Use of Knowledge in Society," American Economic Review (1945) 55: 519-530, and the discussion in A. Gamble, Hayek: The Iron Cage of Liberty (1996) Westview: Boulder, Colorado.
\({ }^{9}\) See R. J. Aumann, "Agreeing to Disagree," Annals of Statistics (1976) 1236-1239 and K. J. Arrow "Rationality of Self and Others in an Economic System," Journal of Business (1986) 59: S385S399.
\({ }^{10}\) See his work on the so-called Jury Theorem in his Essai of 1785. A discussion of Condorcet's work can be found in I. McLean and F. Hewitt, Condorcet: Foundations of Social Choice and Political Theory (1994) Edward Elgar: Aldershot, England.
\({ }^{11}\) See S. Bikhchandani, D. Hirschleifer and I. Welsh, "A Theory of Fads, Fashion, Custom, and Cultural Change as Information Cascades," Journal of Political Economy (1992) 100: 992-1026.
\begin{tabular}{|c|c|}
\hline same lively hope as Condorcet, or even as Edgeworth, 'Eclairer le Science morales et politiques par le flambeau de l'Algèbre.' "12 & \\
\hline Macro-economics as it is practiced today tends to put a heavy emphasis on & \\
\hline empirical relationships between economic aggregates. Keynes' & \\
\hline er from the Treatise, suggest that he was impressed neither by econometric & \\
\hline lationships nor by algebraic manipulation. Moreover, his ideas on "speculative & \\
\hline uphoria" and crashes \({ }^{13}\) would seem to be based on an understanding & \\
\hline economy grounded not in econometrics or algebra but in the qualitative aspects of its dynamics. & \\
\hline Obviously I have in mind a dynamical representation of the economy somewhere & \\
\hline ween macro-economics and general equilibrium theory. The laws of motion of & \\
\hline ch an economy would be derived from modeling individuals' "rational" behav & \\
\hline they process information, update beliefs and locally optimise. At present it is & \\
\hline t possible to construct such a micro-based macro-economy because the laws of & 1153 \\
\hline motion are unknown. Nonetheless, just as simulation of global weather sy & \\
\hline be based on local physical laws, so may economic dynamics be built up from local & \\
\hline "rationality" of individual agents. In my view, the qualitative theory of dynamic & \\
\hline ms will have a major r81e in this enterprise. The applications of this theory & \\
\hline ined in the chapter, are intended only to give the reader a taste of how this the & \\
\hline might be developed.ff & \\
\hline References & \\
\hline A very nice though brief survey of the applications of global analysis (or differential topology) to & 1161 \\
\hline economics is: & \\
\hline Debreu, G. (1976) "The Application to Economics of Differential Topology and Global Analy & 1163 \\
\hline Regular Differentiable Economies," American Economic Review 66: 280-287. & \\
\hline An advanced and detailed text on the use of differential topology in economics is: & 1165 \\
\hline Mas-Colell, A. (1985) The Theory of General Economic Equilibrium. Cambridge Unive & 1166 \\
\hline Cambridge. & \\
\hline Background reading on differential topology and the ideas of transversality can be found in: & 1168 \\
\hline Chillingsworth, D. R. J. (1976) Differential Topology with a View to Applications. Pitman: London. & 1169 \\
\hline Golubitsky, M. and V. Guillemin (1973) Stable Mappings and their Singularities. Springer: Berlin. & 1170 \\
\hline Hirsch, M. (1976) Differential Topology. Springer: Berlin. For the Debreu-Smale Theorem see: & 1171 \\
\hline Balasko, Y. (1975) "Some Results on Uniqueness and on Stability of Equilibrium in General & 117 \\
\hline Equilibrium Theory," Journal of Mathematical Economics 2: 95-118. & 1173 \\
\hline Debreu, G. (1970) "Economies with a Finite Number of Equilibria," Ewnometrica 38: 387-392. & 1174 \\
\hline Smale, S. (1974) "Global Analysis of Economics IV: Finiteness and Stability of Equilibria with & 1175 \\
\hline General Consumption Sets and Production," Journal of Mathematical Economics 1: 119-127. & 1176 \\
\hline
\end{tabular}

\footnotetext{
\({ }^{12}\) John Maynard Keynes, Treatise on Probability (1921) Macmillan: London pp. 349. The two volumes by Robert Skidelsky on John Maynard Keynes \((1986,1992)\) are very useful in helping to understand Keynes' thinking in the Treatise and the General Theory
\({ }^{13}\) See, for example, the work of Hyman Minsky John Maynard Keynes (1975) Columbia University Press: New York, and Stabilizing an Unstable Economy (1986) Yale University Press: New Haven.
}


\section*{Review Exercises}

\section*{Chapter 1}
1.1. Consider the relations:
\(P=\{(2,3),(1,4),(2,1),(3,2),(4,4)\}\) and \(Q=\{(1,3),(4,2),(2,4),(4,1)\}\).
Compute \(Q \circ P, P \circ Q,(P \circ Q)^{-1}\) and \((Q \circ P)^{-1}\). Let \(\phi_{Q}\) and \(\phi_{P}\) be the 5 mappings associated with these two relations. Are either \(\phi_{Q}\) and \(\phi_{P}\) functions, and are they surjective and/or injective?
1.2. Suppose that each member \(i\) of a society \(M=\{1, \ldots, m\}\) has weak and strict 8 preferences \(\left(R_{i}, P_{i}\right)\) on a finite set \(X\) of feasible states. Define the weak Pareto rule, \(Q\), on \(X\) by \(x Q y\) iff \(x R_{i y} \forall i \in M\), and \(x P_{j y}\) for some \(j \in M\). Show that if each \(R_{i}, i \in M\), is transitive, then \(Q\) is transitive. Hence show that the Pareto choice set \(C_{Q}(X)\) is non empty.
1.3. Show that the set \(\Theta=\left\{e^{i \theta}: 0 \leq \theta \leq 2 \pi\right\}\), of all \(2 \times 2\) matrices representing rotations, is a subgroup of \(\left(M^{\prime}(2), \circ\right)\), under matrix composition, \(\circ\).

\section*{Chapter 2}
2.1. With respect to the usual basis for \(\mathfrak{R}^{3}\), let \(x_{1}=(1,1, O), x_{2}=(0,1,1), x_{3}=\) \((1,0,1)\). Show that \(\left\{x_{1}, x_{2}, x_{3}\right\}\) are linearly independent
2.2. Suppose \(f: \mathfrak{R}^{5} \rightarrow \mathfrak{R}^{4}\) is a linear transformation, with a 2 -dimensional kernel Show that there exists some vector \(z \in \mathfrak{R}^{4}\), such that for any vector \(y \in \mathfrak{R}^{4}\) there exists a vector \(y_{0} \in \operatorname{Im}(f)\) with \(y=y_{0}+\lambda_{z}\) for some \(\lambda \in \Re\).
-20
2.3. Find all solutions to the equations \(A(x)=b_{i}\), for \(i=1,2,3\), where \(A=\)
\(\left(\begin{array}{cccc}1 & 4 & 2 & 3 \\ 3 & 1 & -1 & 1 \\ 1 & -1 & 4 & 6\end{array}\right)\) and \(b_{1}=\left(\begin{array}{l}7 \\ 3 \\ 4\end{array}\right), b_{2}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\) and \(b_{3}=\left(\begin{array}{l}3 \\ 2 \\ 1\end{array}\right)\).
2.4. Find all solutions to the equation \(A(x)=b\) where \(A=\left(\begin{array}{cccc}6 & -1 & 1 & 4 \\ 1 & 1 & 3 & -1 \\ 3 & 4 & 1 & 2\end{array}\right)\) and
\(b=\left(\begin{array}{l}4 \\ 3 \\ 7\end{array}\right)\).
2.5. Let \(F: \mathfrak{R}^{4} \rightarrow \mathfrak{R}^{2}\) be the linear transformation represented by the matrix
\[
\left(\begin{array}{cccc}
1 & 5 & -1 & 3 \\
-1 & 0 & -4 & 2
\end{array}\right) .
\]

Compute the set \(F^{-1}(y)\), when \(y=\binom{4}{1}\).
2.6. Find the kernel and image of the linear transformation, \(A\), represented by the matrix
\[
\left(\begin{array}{ccc}
3 & 7 & 2 \\
4 & 10 & 2 \\
1 & -2 & 5
\end{array}\right)
\]

Find new bases for the domain and codomain of \(A\) so that \(A\) can be represented as a matrix
\[
\left(\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right)
\]
with respect to these bases
2.7. Find the kernel of the linear transformation, \(A\), represented by the matrix
\[
\left(\begin{array}{ccc}
1 & 3 & 1 \\
2 & -1 & -5 \\
-1 & 1 & 3
\end{array}\right)
\]

Use the dimension theorem to compute the image of \(A\). Does the equation \(A(x)=b\) have a solution when
\[
b=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) ?
\]
2.8. Find the eigenvalues and eigenvectors of
2.9. Diagonalize the matrix
\[
\left(\begin{array}{ccc}
4 & 1 & 1 \\
1 & 8 & 0 \\
1 & 10 & 2
\end{array}\right) .
\] of \(A\) is open and the closure, \(\operatorname{Clos}(A)\), is closed. Show that \(\operatorname{Int}(A) \subset A \subset \operatorname{Clos}(A)\). 50 What is the interior and what is the closure of the set \([a, b)\) in \(\mathfrak{R}\), with the Euclidean 51

3.2. If two metrics \(d_{1}, d_{2}\) on a space \(X\) are equivalent write \(d_{1} \sim d_{2}\). Show that \(\sim\) is 53 an equivalence relation on the set of all metrics on \(X\). Thus show that the Cartesian, Euclidean and city block topologies on \(\Re^{n}\) are equivalent.
3.3. Show that the set, \(L\left(\Re^{n}, \Re^{m}\right)\), of linear transformations from \(\Re^{n}\) to \(\Re^{m}\) is a normed vector space with norm
\[
\|f\|=\sup _{x \in \Re^{n}}\left\{\frac{\| f(x \|)}{\|x\|}:\|x\| \neq 0\right\}
\]
with respect to the Euclidean norms on \(\Re^{n}\) and \(\Re^{m}\). In particular verify that \(\left\|\|_{L}\right.\) satisfies the three norm properties. Describe an open neighbourhood of a member \(f\) of \(L\left(\Re^{n}, \Re^{m}\right)\) with respect to the induced topology on \(L\left(\Re^{n}, \Re^{m}\right)\). Let \(M(n, m)\) be the set of \(n \times m\) matrices with the natural topology (see page 106), and let
\[
M: L\left(\Re^{n} \Re^{m}\right) \rightarrow M(n, m)
\]

3.7. In \(\Re^{2}\), let \(B_{C}\left(x, r_{1}\right)\) be the Cartesian open ball of radius \(r_{1}\) about \(x\), and 80 \(B_{E}\left(y, r_{2}\right)\) the Euclidean ball of radius \(r_{2}\) about \(x\). Show that these two sets are 81 convex. For fixed \(x, y \in \mathfrak{R}^{2}\) obtain necessary and sufficient restrictions on \(r_{1}, r_{2}\) so 82 \begin{tabular}{l|l|l}
\hline that these two open balls may be strongly separated by a hyperplane. & 83
\end{tabular}
3.8. Determine whether the following functions are. convex, quasi-concave, or
concave:
1. \(\mathfrak{R} \rightarrow \mathfrak{R}_{+}: x \rightarrow e^{x}\);
2. \(\mathfrak{R} \rightarrow \mathfrak{R}: x \rightarrow x^{7}\);
3. \(\mathfrak{R}^{2} \rightarrow \mathfrak{R}:(x, y) \rightarrow x y\);
4. \(\mathfrak{R} \rightarrow \mathfrak{R}: x \rightarrow \frac{1}{x}\);
5. \(\mathfrak{R}^{2} \rightarrow \mathfrak{R}:(x, y) \rightarrow x^{2}-y\).

\section*{Chapter 4}
4.1. Suppose that \(f: \mathfrak{R}^{n} \rightarrow \Re^{m}\) and \(g: \Re^{m} \rightarrow \Re^{k}\) are both \(C^{r}\)-differentiable. Is \(g \circ f: \Re^{n} \rightarrow \mathfrak{R}^{k}\), a \(C^{r}\)-differentiable function? If so, why?
4.2. Find and classify the critical points of the following functions
1. \(\mathfrak{R}^{2} \rightarrow \mathfrak{R}:(x, y) \rightarrow x^{2}+x y+2 y^{2}+3\);
2. \(\mathfrak{R}^{2} \rightarrow \mathfrak{R}:(x, y) \rightarrow-x^{2}+x y-y^{2}+2 x+y\);
3. \(\mathfrak{R}^{2} \rightarrow \mathfrak{R}:(x, y) \rightarrow e^{2 x}-2 x+2 y\).
4.3. Determine the critical points, and the Hessian at these points, of the function 9 \(\Re^{2} \rightarrow \Re:(x, y) \rightarrow x^{2} y\).

Compute the eigenvalues and eigenvectors of the Hessian at critical points, and use this to determine the nature of the critical points.
4.4. Show that the origin is a critical point of the function:
\[
\mathfrak{R}^{3} \rightarrow \mathfrak{R}:(x, y, z) \rightarrow x^{2}+2 y^{2}+3 z^{2}+x y+x z
\]

Determine the nature of this critical point by examining the Hessian.
4.5. Determine the set of critical points of the function
\[
\mathfrak{R}^{2} \rightarrow \mathfrak{R}:(x, y) \rightarrow-x^{2} y^{2}+4 x y-4 x^{2} .
\]
4.6. Maximise the function \(\mathfrak{R}^{2} \rightarrow \Re:(x, y) \rightarrow x^{2} y\) subject to the constraint \(1-x^{2}-y^{2}=0\).
4.7. Maximise the function \(\mathfrak{R}^{2} \rightarrow \mathfrak{R}:(x, y) \rightarrow a \log x+b \log y\), subject to the constraint \(p x+q y \leq I\), where \(p, q, I \in \mathfrak{R}_{+}\).

\section*{Chapter 5}
5.1. Show that if dimension \((X) \geq m\), then for almost every smooth profile \(u=\) \(\left(u_{1}, \ldots, u_{m}\right): X \rightarrow \Re^{m}\) it is the case that Pareto optimal points in the interior of \(X\) can be parametrised by at most \((m-1)\) strictly positive coefficients \(\left\{\lambda_{1}, \ldots, \lambda_{m-1}\right\}\)
5.2. Consider a two agent, two good exchange economy, where the initial endow ment of good \(j\), by agent \(i\) is \(e_{i j}\). Suppose that each agent, \(i\), has utility function \(u_{i}:\left(x_{i 1}, x_{i 2}\right) \rightarrow a \log x_{i 1}+b \log x_{i 2}\). Compute the critical Pareto set \(\Theta\), within the feasible set
\[
Y=\left\{\left(x_{11}, x_{12}, x_{21}, x_{22}\right) \in \mathfrak{R}_{+}^{4}\right\},
\]
where the coordinates of \(Y\) satisfy
\[
x_{11}+x_{21}=e_{11}+e_{21} \text { and } x_{12}+x_{22}=e_{12}+e_{22}
\]

What is the dimension of \(Y\) and what is the codimension of \(\Theta\) in \(Y\) ? Compute the market-clearing equilibrium.
5.3. Figure R 1 shows a "butterfly singularity", \(A, \mathfrak{R}^{2}\). Compute the degree of this singularity. Show why such a singularity (though it is isolated) cannot be associated with a generic excess demand function on the two-dimensional price simplex.


Fig. R1 The Butterfly Singularity.

\section*{Subject Index}
abelian group 24;
accumulation point 97;
acyclic relation 32;
additive inverse 17 ;
additive relation 32;
admissible set 186;
antisymmetric relation 28;
Arrow's Impossibility Theorem 38, 41;
associativity in a group 17;
associativity of sets 2;
asymmetric relation 28 ;
attractor of a vector field 266;
Baire space 262;
Banach space 146, 234;
base for a topology 96;
basis of a vector space 51 ;
Bergstrom's Theorem 152;
bilinear map 79;
bijective function 13;
binary operation 16 ;
binary relation 28 ;
bliss point of a preference 36 ;
Boolean algebra 2;
boundary of a set 96;
boundary problem 197;
bounded function 105;
Brouwer Fixed Point Theorem 139, 142;
Browder Fixed Point Theorem 147;
butterfly dynamical system 279;
budget set 132;
calculation argument on economic information 280;
canonical form of a matrix 87 ;
Cartesian metric 99;
Cartesian norm 92;
Cartesian open ball 99;
Cartesian product 8;

Cartesian topology 99, chain rule 165 ;
change of basis 65;
chaos 275, 278;
characteristic equation of a matrix 76;
choice correspondence 32 ;
city block metric 100;
city block norm 92 ;
city block topology 100;
closed set 96;
closure of a set 96;
coalition feasibility 219;
codomain of a relation 9 ;
cofactor matrix 63;
collegial rule 42;
collegium 41;
commutative group 24 ;
commutativity of sets 2 ;
compact set 109;
competitive allocation 218;
complement of a set 2 ;
complete vector space 146,234 ;
composition of mappings 10 ;
composition of matrices 16 ;
concave function 116;
connected relation 28;
constrained optimisation 186;
consumer optimisation 132;
continuous function 103;
contractible space 140 ;
convex function 116 ;
convex preference 116;
convex set 116;
corank 141;
corank \(r\) singularity 248;
Core Theorem for an exchange economy 220;
cover for a set 8,108 ;
critical Pareto set 211;
critical point 178;
Debreu projection 252, 255;
Debreu-Smale Theorem 226, 249, 251-254, 266;
decisive coalition 38 ;
deformation 268;
deformation retract 140;
degree of a singularity 263 ;
demand 134;
dense set 97;
derivative of a function 160 ;
determinant of a matrix 16,62 ;
diagonalisation of a matrix 66,74;
dictator 38;
diffeomorphism 166;
differentiable function 159 ;
differential of a function 162 ;
dimenison of a vector space 54 ;
dimension theorem 59;
direction gradient 164 ;
distributivity of a field 24;
distributivity of sets 2 ;
domain of a mapping 10 ;
domain of a relation 9 ;
economic optimisation 196;
Edgeworth box 224;
eigenvalue 73;
eigenvector 73;
endowment 128;
equilibrium prices 134 ;
equivalence relation 33 ;
Euclidean norm 90;
Euclidean scalar product 89 ;
Euclidean topology 100;
Euler characteristic of sphere and torus 246;
of simplex 265;
excess demand function 256 ;
exchange theorem 53 ;
existential quantifier 8 ;
Fan Theorem 148, 280;
feasible input output vector 131;
field 24;
filter 38, 40;
fine topology 101;
finite intersection property 109 ;
finitely generated vector space 52;
fixed point property 139;
frame 49;
free-disposal equilibrium 156;
function 12;
function space 108;
game 151;
general linear group 62;
generic existence of regular economies 226 , 249;
generic property \(225,248,262\);
global maximum (minimum) of a function 178 ;
global saddlepoint of the Lagrangian 137;
graph of a mapping 11 ;
group 17;
Hairy Ball theorem 267;
Hausdorff space 112;
Heine-Bore1 Theorem 112;
Hessian 168-170;
homomorphism 21;
homeomorphism 140;
identity mapping 12 ;
identity matrix 15,62 ;
identity relation 9 ;
image of a mapping 10 ;
image of a transformation 59;
immersion 24;
implicit function theorem 237, 241;
index of a critical point 180;
index of a quadratic form 82 ;
indifference 28 ;
infimum of a function 102;
injective function 13;
interior of a set 96;
intersection of sets 1 ;
inverse element 17 ;
inverse function 13;
inverse function theorem 234;
inverse matrix 15,63 ;
inverse relation 9 ;
invisible dictator 41;
irrational flow on torus 271;
isomorphism 21;
isomorphism theorem 66;
Jacobian of a function 165;
Knaster-Kuratowski-Mazur-kiewicz (KKM) Theorem 146;
kernel of a transformation 59;
kernel rank 59;
Kuhn Tucker theorems 136-139;
Lagrangian 137;
Lefschetz fixed point theorem 269;
Lefschetz obstruction 270;
Liapunov function 257, 258;
limit of a sequence 104;
limit point 97;
linear combination 49;
linear dependence 19;
linear transformation 54;
linearly independent 49;
local maximum (minimum) 178;
locally non satiated preference 129 ;
lower demi-continuity 109;
lower hemi-continuity 146;
majority rule 40;
manifold 240 ;
mapping 10;
marginal rate of technical substitution 206;
market equilibrium 134 ;
matrix 15,55 ;
mean value theorem 174 ;
measure zero 244;
metric 93;
metric topology 96;
metrisable space 93;
Michael's Selection Theorem 145-146;
monotonic rule 42;
morphism 21;
Morse lemma 243;
Morse function 185, 243;
Morse Sard theorem 250;
Morse theorem 249;
Nakamura Lemma 43;
Nakamura number 42;
Nakamura Theorem 150;
Nash equilibrium 152;
negation of a set 1 ;
negative definite form 82 ;
negative of an element 24 ;
negatively transitive 31 ;
neighbourhood 95;
non-degenerate critical point 179;
non-degenerate form 82 ;
non-satiated preference 129 ;
norm of a vector 80,90 ;
norm of a vector space 92 ;
normal hyperplane 124;
nowhere dense 244;
null set 1 ;
nullity of a quadratic form 82 ;
oligarchy 38,40 ;
open ball 94;
open cover 108;
open set 95 ;
optimum 136;
orthogonal vectors 79;
Pareto correspondence 209;
Pareto set 34, 209;
Pareto theorem 251;
partial derivative 164;
partition 8;
Peixoto-Smale theorem 262;
permutation 13;
phase portrait 259 ;
Poincaré-Hopf Theorem 266;
positive definite form 82;
preference manipulation 222 ;
preference relation 28;
prefilter 44;
price adjustment process 257 ;
price equilibrium 134, 208;
existence 154-156;
price vector 130, 132;
producer optimisation 131;
product rule 166;
product topology 97;
production set 132;
profit function 131;
propositional calculus 4;
pseudo-concave function 191;
q-majority 42 ;
quadratic form 81 ;
quasi-concave function 116;
rank of a matrix 61;
rank of a transformation 59;
rationality 30 ;
real vector space 47;
reflexive relation 28 ;
regular economy 226,252 ;
regular point 237;
regular yalue 237;
relation 9;
relative topology 7, 97;
repellor for a vector field 266 ;
residual set 97, 225;
resource manipulation 222 ;
retract 140 ;
retraction 140;
Rolle's theorem 171;
rotations 19, 86;
saddle 82;
saddle point 180;
Sard's lemma 244;
scalar 26;
scalar product 56, 89 ;
separating hyperplane 125 ;
separation of convex sets 124 ;
set theory 1-4;
shadow prices 130;
Shauder's Fixed Point Theorem 148;
similar matrices 68;
singular matrix 16;
singular point 243;
singularity set of a function 247;
singularity theorem 249;
smooth function 168 ;
social choice 32 ;
social utility function 34 ;


\section*{Name Index}

Aliprantis, C. 157;
Arrow, K. J. 38, 41, 45, 231, 281;
Aurnann, R. J. 280;
Balasko, Y. 222-223, 231, 255, 282;
Bergstrom, T. 152, 157;
Bikhchandani, S. 281 ;
Brouwer, L. E. J. 139, 142, 156;
Browder, F. E. 147, 156;
Brown, R. 157, 283;
Calvin, W. H. 278;
Chillingsworth, D. R. J. 282;
Condorcet, M. J. A. N. 281;
Debreu, G. 226, 250, 252, 254-255, 266,
274-277, 282-283;
Dierker, E. 270, 277, 282;
Eldridge, N. 278;
Fan, K. 148, 157, 280;
Gale, D. 222, 231;
Gamble, A. 280;
Gleick, J. 284;
Golubitsky, M. 282;
Goroff, D. 278;
Gould, S. J. 278;
Greenberg, J. 157;
Guesnerie, R. 231;
Guillemin, V. 282;
Hahn, F. H. 231;
Hayek, F. A. 280;
Heal, E. M. 156;
Hewitt, F. 281;
Hildenbrand, W. 128, 231;
Hirsch, M. 282;
Hirschleifer, D. 281;
Hubbard, J. H. 284;
Kauffinan, S. 275;
Keenan, D. 271, 283;
Kepler, J. 276;

Keynes, J. M. 281;
Kiman, A. P. 45, 128, 231 ;
Knaster, B. 146, 157;
Konishi, H. 158;
Kuhn, H. W. 136, 156;
Kuratowski, K. 146, 157;
Laffont, J. -J. 231;
Lange, O. 280;
Lqlace, P. S. 277;
Lorenz, E. N. 278, 284;
Mantel, R. 274-276, 283;
Mas-Colell, A. 282;
Mazerkiewicz, S. 146, 157;
McLean, I. 281;
Michael, E. 145-146, 157;
Minsky, H. 281;
Mises, L. von 280;
Nakamura, K. 42-43, 45, 150;
Nash, J. F. 152, 157;
Newton, I. 276;
Peixoto, M. 262, 272, 283;
Peterson, I. 278;
Poincaré, H. 266, 277-278;
Pontrjagin, L. S. 284;
Prabhakar, N. 157
Rader, T. 271, 283;
Saari, D. 284;
Scarf, H. 255, 259, 270, 283;
Schauder, J. 148, 157;
Schofield, N. 158, 269, 283;
Schumpeter, J. A. 280;
Shafer, W. 157;
Skidelsky, R. 281;
Smale, S. 226, 231, 250, 262, 266, 272, 274, 276, 282-283;
Sondeman, D. 45;
Sonnenschein, H. 157, 274-276, 283;

Stmad, J. 158;
Thorn, R. 248, 284;
Tucker, A. W. 136, 156;
Welsh, I. 281;

West, B. H. 284;
Yannelis, N. 157;
Zame, W. R. 157.```

